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ABSTRACT 

 

A very simplified way of calculating the lifetime of some elementary 

particles decaying through the weak interaction is presented. The method 

makes use of a non-linear version of the Klein-Gordon-Yukawa equation, 

combined with the time-energy uncertainty principle. Although the 

analytical relations evaluated in this work do not always reproduce those 

usually found in literature, numerical estimates of them agree with their 

respective experimental values. 
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1 – INTRODUCTION 

 

As was pointed out by Perkins [1], the weak interactions take place 

between all the quark and lepton constituents, each of them endowed with a 

“weak charge”. This interaction is so feeble, so that it manifests itself only 

in the absence of the much stronger electromagnetic and strong 

interactions, when some conservation rule is at work. Yet according 

Perkins [1], the observable weak interactions therefore either involve 

neutrinos (not endowed with electric or strong charges) or quarks with a 

flavor change, which is forbidden for strong or electromagnetic 

interactions. In this work we want to discuss some examples of weak decay 

in a very simplified way.  

 

2 – THE MUON DECAY: FIRST APPROXIMATION 

 

 
   

Figure 1 – Feynman diagram for the muon decay  

Figure 1 shows a Feynman diagram for the muon beta decay. The 

interaction happens with the exchange of a massive W-boson, responsible 

for the short-range character of the weak force. But as was pointed out by 

Griffiths [2] in the Fermi’s original theory of the beta decay (1933) there 

was no W-boson: the interaction was supposed to be a direct four-particle 

coupling, the broken line representing the W-boson was absent and the 

remaining lines of the diagram representing the muon, the electron and 

their respective neutrino and anti-neutrino are jointed in a single vertex. 

In this first approximation we intend to obtain the muon lifetime in a 

more simplified way than that considered in the Fermi’s original approach. 

 Inspired in the Newton’s theory of gravitation, we can write 

 

                           GF = mμ
2
 c

4
 ∕ (hc)

2
 =  mμ c

2
 R.                                   (1) 
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Relation (1) proposes that the mass-energy of the muon can be computed 

by taking in account the muon self-interaction, where GF is the Fermi 

constant of the weak interaction and R is some characteristic radius related 

to the range of the weak interaction. Solving (1) for R, we obtain 

 

                                     R = GF mμ c
2
 ∕ [(2π)

2
 (ħc)

2
].                                    (2) 

 

To compute the muon lifetime it is worth to evaluate the cross-section σ, 

related to the process responsible for the muon decay. We have 

 

                        σ = ⅓ π R
2
 = ⅓ π GF

2
 mμ

2
 c

4
 ∕  [(2π)

4
 (ħc)

4
].                      (3) 

 

The factor one over three which appears in eq.(3), is a way to express the 

radius of the cross-sectional area in terms of  R. Now let us consider the 

phenomenology of the molecular diffusion and write 

 

                                                     σ (cτ) n = 1.                                            (4) 

 

In (4), cτ is the mean free path and n is the number of targets per unit of 

volume, and c is the speed of light. To make the adaptation of eq.(4) in 

order to the determine the muon lifetime we assume that 

 

                                        n = mμ
3
 c

3
 ∕ [(4 ∕ 3)π ħ

3
],                                      (5) 

 

where we have just one muon occupying a sphere which radius is equal to 

its reduced Compton wavelength. Inserting the information given by (3) 

and (5) into (4) and solving for τ, we get 

 

                                 τ = (64 π) π
3
 ħ

7
 ∕ [GF

2
 mμ

5
 c

4
].                                 (6)

 
 

 

The above result for the muon lifetime must be compared with that which 

is usually found in the literature (please see Griffiths [2] and Rohlf [3]), 

namely 

 

                             τ|literature = 192 π
3
 ħ

7
 ∕ [GF

2
 mμ

5
 c

4
].                                (7) 
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Therefore the result here presented differs from that found in the literature 

by a factor of  3 ∕ π.    
 
  

 

3 – THE MUON DECAY: SECOND APPROXIMATION 

 

   As was pointed out by Griffiths [2], from the modern perspective , 

Fermi’s theory combined the W propagator with two vertex factors in the 

diagram of figure 1, to make an effective four-particle constant GF. 

   Meanwhile if we look at relation (1), and by taking in account the usual 

way of dealing with the coupling constants it is possible to write 

 

                                            GF E
2
 = ξ ħ c αW,                                          (8A) 

 

                                         GF MW
2
 c

4
 = ξ ħ c α.                                        (8B) 

 

In (8), ξ is a constant, E is the variable energy and MW is the W-boson 

mass. Dividing (8A) by (8B) we get 

 

                                        αW = α [E ∕ ( MW c
2
)]

2
.                                         (9) 

 

We observe from (9) that, when the energy E equals the W-boson mass-

energy value, we have the identification between the weak coupling αW  

and the electromagnetic coupling α. 

   Now if we think of the possibility of create a muon-antimuon pair 

through the weak interaction we write 

 

                                       2 mμ c
2
 = (αW ħ c) ∕ R,                                        (10) 

 

where αW  must be evaluated at the energy scale of the mass-energy of the 

muon, namely 

 

                                           αW =  α (mμ ∕ MW )
2
.                                       (11) 
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Solving (10) for R, and working in an analogous way we have done in a 

first approximation, and after to consider the first equality in eq.(3), and 

eqs. (4), (5) and (11), we obtain 

 

                                τ = [(16 ħ) ∕ (α
2
 c

2
)] (MW

4
 ∕ mμ

5
).                               (12) 

 

4 – MUON DECAY: THIRD APPROXIMATION 

 

     In this third approximation we intend to look at the muon decay by using 

a non-linear wave equation (a non-linear Klein-Gordon-Yukawa equation). 

It is worth to point out that this equation would play a similar role of that 

represented by the use of the W-boson propagator. We write 

 

         ∆Ψ – (1∕ c
2
) ∂

 2
 Ψ ∕ ∂ t

 2
 = (mμ

2
 c

4
 ∕ ħ

2
) Ψ – (MW

2
 c

4
 ∕ ħ

2
) Ψ 

3
.           (13) 

 

We look for the “stationary” condition by making the two sides of eq.(13) 

equal to zero. This gives 

 

                                         Ψ 
2
 = (mμ ∕ MW) 

2
.                                            (14) 

 

We will call the square of the Ψ 
2
-term in (14), namely the Ψ 

4
-term: “the 

geometric factor”. This geometric interpretation comes from the fact that if 

we consider in the four-dimensional momentum space a hypercube of edge  

MW c, the fraction of volume occupied by a tinny cube of edge mμ c is 

given by Ψ 
4
. 

   Now from the –energy form of the uncertainty principle we have 

 

                                     υ = 1 ∕ ∆t  = mμ c
2
 ∕ h.                                          (15) 

 

Each vertex of the Feynman diagram (fig.1) contributes with √α for the 

amplitude, so that the overall contribution will be proportional to α
2
. 

Therefore the transition rate or the total decay rate Γ is 

 

                                           Γ = ⅓ υ α 
2
 Ψ 

4
.                                            (16) 
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The factor ⅓ which appears in (16) has the same origin as that of eq. (3). 

Thus according the third approximation the muon lifetime can be written as 

 

                         τ = 1 ∕ Γ = [(6π ħ) ∕ (α
2
 c

2
)] (MW

4
 ∕ mμ

5
).                         (17) 

 

By comparing (17) with (7) we get 

 

                                     GF = (4√2π ħ
3
 α) ∕ (MW

2
 c).                                 (18) 

 

The Fermi constant GF given by (18) agrees with that estimated by Rohlf 

[3]. We also verify that the muon lifetime evaluated in the second 

((eq.(12)) and third (eq.(17)) approximations differ by a numerical factor 

close to the unity. 

 

5 – THE NEUTRON BETA DECAY 

 

Figure 2 - The Feynman diagram for beta-minus decay of a neutron into a 

proton, electron and electron anti-neutrino, via an intermediate heavy W− 

boson  

 

   In the present study of the neutron weak decay, we intend to proceed in a 

similar way we have done in the muon weak decay case. First let us look at 

the geometric factor. We write 

 

               

    ∆Ψ – (1∕ c
2
) ∂

 2
 Ψ ∕ ∂ t

 2
 = [(mn – mp)

2
 c

4
 ∕ ħ

2
] Ψ – (MW

2
 c

4
 ∕ ħ

2
) Ψ 

3
.     (19) 
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Here we are essentially considering the three legs at the left of the Feynman 

diagram exhibited in figure 2.  Indeed, the neutron and proton legs, with 

their constituents’ quarks are “three-bone” legs. The (mn – mp)-term stands 

for the neutron-proton mass difference. 

   The search for the “stationary regime” is reached by putting left and right 

sides of eq. (19) equals to zero, and solving for Ψ 
2
, we find 

 

                                          Ψ 
2
 = (mn – mp)

2
 ∕  MW

2
.                                  (20) 

 

Now, looking at the left vertex of figure 2, we observe that although 

neutron decay is governed by the weak interaction, it seems that in the 

process leading from neutron to proton “transmutation”, the strong 

interaction is also at work. A basic feature present in QCD description of 

the strong interaction is its non-Abelian character. We intend to mimic this 

fact through the action A (ħ=c=1). 

 

                                 A = ∫ d
4
 x [∂μФ ∂

μ
Ф – к Ф

4
].                                    (21) 

 

In a paper dealing with the critical behavior of the Ising model, C. J. 

Thompson [4,5] wrote a action as a means to study its critical behavior, 

supposed to be within the same class of universality of the Ф
4
-theory. 

Inspired in the Thompson work [4], we assume that each term of the action 

given by (21) is separately equal to the unity. 

    Applying Thompson’s recipe to the first term of (21) we get 

 

                                       |∫ d
4
 x (∂μФ ∂

μ
Ф)| = 1,                                        (22) 

 

which implies that       

 

                                                  Ф
2
 = 1 ∕ x

2
.                                               (23) 

 

Applying the same recipe to the second term of (21), we have 

 

                         |∫ d
4
 x ( к Ф

4
)| = |∫ (к ∕ x

4
) x

3
dx| = 1.                                 (24) 
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In the next step we will put ‹к› outside the integral symbol, where  ‹к› 

stands for averaged “к- coupling” and perform the integration between the 

low and high energies cutoff, after making the change of variable E ≡ 1∕ x. 

Doing this we have 

 

                                         ‹к› ∫L
H
d(lnE) = 1,                                              (25) 

 

and after solving for ‹к›, we get 

 

                                    ‹к›
-1

 = ln[MW ∕ (mn – mp)],                                    (26)   

 

where we have identified MW c
2
 and (mn – mp) c

2
 with the high(H) and 

low(L) energies cutoff, respectively. 

  In the next step of evaluating the neutron decay we take in account the 

uncertainty principle. Also looking at the left vertex of figure 2, we may 

consider that the intermediate time where neutron and proton undergo a 

virtual interaction, we have a typical problem of a two-body interaction of 

nearly equal mass. Therefore we have from the uncertainty relation  

  

                                       υ = 1 ∕ ∆t  = ½ mn c
2
 ∕ h.                                     (27) 

 

In (27), ½ mn is the approximated reduced mass of a proton-neutron virtual 

pair.  

   Therefore the transition rate for the neutron weak decay is given by 

 

                                        Γn =  ⅓ υ α 
2
 ‹к› 

2
  Ψ 

4
,                                      (28) 

 

and the neutron lifetime τn = (Γn)
-1

 reads 

 

 τn = [(12π ħ) ∕ (α
2
 mn c

2
)] [MW ∕ ( mn – mp)]

4
 {ln [MW ∕ ( mn – mp)]}

2
.    (29) 

 

We observe that the electron mass does not appears in relation (29) for the 

neutron lifetime. Despite this, the right side vertex of figure 2, can be 

considered the only possible outcome consistent with energy, electric 
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charge and lepton number conservations which must be obeyed by any 

physical process, including the neutron weak decay. 

 

 

6 – PION WEAK DECAY 

 

  

Figure 3 - π+ decay through the weak interaction  

 

Figure 3 shows the Feynman diagram for the pion(+) decay. As a means to 

study the charged pion decay let us write again a non-linear Klein-Gordon-

Yukawa equation, namely 

 

    ∆Ψ – (1∕ c
2
) ∂

 2
 Ψ ∕ ∂ t

 2
 = [(mπ – mμ)

2
 c

4
 ∕ ħ

2
] Ψ – (MW

2
 c

4
 ∕ ħ

2
) Ψ 

3
.     (30) 

The “stationary” solution of (30) is given by 

 

                                     Ψ 
2
 = [(mπ - mμ) ∕ MW] 

2
.                                      (31) 

 

Now in order to determine the geometric factor we must remember the pion 

as being a bound state of two quarks, therefore having a linear axis 

connecting them. With this idea in mind we can imagine an anisotropic 

prism in the four-dimensional momentum space, with the axis of this four-

dimensional prism essentially infinite (pL → ∞). If we consider in the four-

dimensional momentum space a hyper-prism of perpendicular edge MW c, 

the fraction of volume occupied by a tinny prism of perpendicular edge  

(mπ – mμ) c can be written as  

 

                          [(mπ – mμ)
3
 c

3
 pL] ∕ [MW

3
 c

3
 pL] ≡  Ψ 

3
.                           (32) 

 

The time-energy uncertainty principle for this process implies in 

 

                                          υ = 1 ∕ ∆t  =  mπ c
2
 ∕ h.                                     (33) 
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Therefore the transition rate Γπ of the pion weak decay is 

 

                                              Γπ = ⅓ υ α 
2
 Ψ 

3
,                                          (34) 

 

And the charged pion lifetime τπ ≡  Γπ 
-1

 reads 

 

                    τπ = [(6π ħ) ∕ (α
2
 mπ c

2
)] [MW ∕ ( mπ – mμ)] 

3
.                        (35) 

 

7- CHARGED KAON DECAY 

 

 The decay of the charged Kaon, despite the mesonic character of this 

particle, will be treated on equal footing with the neutron decay. We can 

imagine a pair of particles K
+
 and K

-
 forming a bound state having total 

electric charge equals to zero, and with total mass close to the neutron 

mass. We propose that in an analogous way to the neutron beta decay case, 

in the charged Kaon decay, both the strong and the weak forces are at 

work. Therefore the expression for the charged Kaon decay can be written 

by adapting the expression which was obtained in the neutron decay (please 

see (29)). We write  

  

τK = [(6π ħ) ∕ (α
2
 2mK c

2
)] [MW ∕ ( mK – mμ)]

4
 {ln [MW ∕ ( mK – mμ)]}

2
.   (36) 

 

In writing (36) we had in mind the reaction 

 

                                          K
±
 →  μ

±
  +  υμ.                                              (37) 

 

 

8- DISCUSSION 

 

   In this work we are proposing a novel way to calculate a particle lifetime 

which decays through the weak interaction. The analytical expressions here 

obtained differ from those usually found in the literature. However 

numerical estimates of the lifetimes agree approximately with their 

respective experimental determinations. In this way by taking numbers 
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from the Particle Data Group [6], as quoted in Blin-Stoyle’s book [7], 

namely 

 

MW = 80.49 GeV;  mn = 939.57 MeV;  mp = 938.28 MeV;   

MK = 493.65 MeV;  mπ = 139.57 MeV;  mμ = 105.66 MeV;   

me = 0.511 MeV, 

 

we get the numerical estimates: 

 

           τπ = 2.23 x 10
- 8

 s;   τn = 916 s;  τK = 1.24 x 10
-8

 s.                 (38) 

 

These numbers must be compared with their respective lifetime 

experimental determinations, namely: 

2.60 x 10
-8

s, for the charged pion; 899.7 ± 8.9 s, for the neutron and 1.24 x 

10
-8

 s, for the charged kaon. An interesting discussion about the difficulties 

to calculate the neutron decay lifetime can be found in Griffiths [2] 

  We must to stress that we was unable to determine the branching ratio 

between the two possibilities of the charged pion decay, namely the 

relation between line widths resulting in electrons or muons and their 

respective neutrinos. 

  Finally we would like to point out that a previous paper related to present 

one was published by the author in 1995 [8]. 
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