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Abstract

The geometry of the Schwarzschild black hole is compared to the geometry of the
signal space from Shannon’s mathematical theory of communication. One result of
these considerations is that the black hole is found to leak in a way that does not
introduce an information loss paradox.

1 Introduction

Shannon’s mathematical theory of communication (information theory) has been successfully
applied to the study of black hole thermodynamics for quite some time now, and the results
can be summarized by the holographic principle [1–3]: The maximum amount of information
required to describe the physics that occurs within a region – that is, the maximum average
information content per microscopic state, or maximum entropy – is proportional not to the
total volume of the region (as one may initially suspect), but rather to the total area of the
boundary of the region. A Schwarzschild black hole embodies this limit, where the entropy
is proportional to the black hole’s event horizon area.

The ultimate goal of this paper is to consider some possible connections between the
geometry of the black hole and the geometry of the signal space from Shannon’s theory. We
will begin by discussing Shannon’s theory on signals. We will then discuss the entropy of
the black hole and van der Pauw sheet resistance-conductance. We will finish by discussing
the interior and exterior volume of the black hole. A brief review follows.

2 Noise-free and distortionless discrete binary signals

In Shannon’s theory, as presented in his paper “Communication in the Presence of Noise”
(see [4,5]), a noise-free and distortionless discrete binary signal consists of a string of n binary
samples (‘off’ or ‘on’ values).

Each of the 2n distinct signals form a distinct vector in an n dimensional flat space – the
signal space. Where x1, x2, ..., xn are the n binary samples in an individual signal, the length
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of the signal vector in the nD signal space is

d =

√√√√ n∑
m=1

x2
m. (1)

In this paper we will assume that ‘on’ ≡ 1. As for the numerical value corresponding to ‘off’,
we have to make a choice between 0 and -1:

1. If ‘off’ ≡ 0, then the signal vector lengths can be any one of d =
√

0,
√

1,
√

2, . . . ,
√
n.

The integer factorial is

z! =

{
1, z = 0∏z

m=1m, z > 0
. (2)

For large z, the integer factorial can be reasonably approximated via Stirling’s contin-
uous approximation. The distribution of the 2n signal vector lengths is given by the
binomial coefficient “n choose k”(

n

k

)
=

n!

k!(n− k)!
, (3)

n∑
k=0

(
n

k

)
= 2n, (4)

where k is the number of ‘on’ samples per signal (or equivalently, the number of ‘off’
samples per signal, due to a symmetry of the distribution). For large n, the signal
vector length distribution can also be reasonably approximated (indirectly) via the
continuous normal distribution.

2. Otherwise, if ‘off’ ≡ −1, then the the signal vector lengths are always d ≡
√
n. In this

case, the tips of all of the 2n signal vectors are constrained to a single (n − 1)D shell
in the nD signal space. Altogether, the 2n signal vectors form a perfect binary tree in
the nD signal space, where a branching in the signal tree occurs once per dimension.

In this paper we will assume that ‘off’ ≡ −1, although the alternative is clearly interesting
in its own way.

The binary ‘Shannon’ entropy, or average information content (in bits) per distinct signal,
is

S =
−
∑2n

m=1 pm ln pm
ln 2

, (5)

where pm is the probability of occurrence for the mth distinct signal, and the probabilities
add up to unity

2n∑
m=1

pm = 1. (6)

In this paper we will assume that the signals are all equiprobable, where pm ≡ 1/2n, and so
the entropy is maximized and simplifies to

S =
ln 2n

ln 2
= n. (7)
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In this case where the signals are all equiprobable, and thus the entropy is maximized, the
average information content per signal (n bits per signal) is identical to the average data
content per signal (n binary samples, or bits, per signal). If the signals had not all been
equiprobable, and thus the entropy had not been maximized, then the average information
content per signal would have been less than the average data content per signal.

In Shannon’s theory, the value n = d2 is a measure of power.
This paper will use geometrized units, where c ≡ G ≡ h̄ ≡ kb ≡ 1, and so measures of

power are dimensionless (units of length / length). Incidentally, measures of electric potential
are also dimensionless (units of length / length).

Note that even though the value of h̄ is set to unity, it is still a dimensionful constant
(units of length2) and so it will be explicitly written out in this paper in order to make the
dimension (or lack thereof) of each equation clear.

Also note that the signal space is not quite the same as the familiar state space from
quantum field theory / quantum gravity: Although there is a one-to-one mapping between
the 2n discrete binary signals and the 2n states (both are effectively defined by the same
data – the samples – and as such are effectively the same thing), each state would instead
be represented by a distinct unit length vector in a flat space of 2n dimensions (the state
vectors, altogether, would form the set of 2n orthonormal basis vectors for the state space).
The signal space is also not quite the same as the phase space, nor is it quite the same as
the configuration space, etc. The signal space is power space.

3 Noisy and distorted discrete binary signals and the

effective dimension of the signal space

For any n, there exist signals other than the 2n root noise-free and distortionless discrete
binary signals that were discussed in the previous section.

Consider a continuous sinusoidal toy representation of the root signals (see [6, 7] for a
complex version of such), where the signal frequency (band limit) is ν = 1 (and thus the
Nysquist sampling rate is 2ν = 2).

In the presence of phase distortion, the individual sample amplitudes can range in value
from −1 through 1 (they are no longer necessarily integer values, like in the case of the root
signals). As such, the tips of the signal vectors are no longer constrained to end upon an
(n− 1)D shell of ‘radius’ d =

√
n, but can now end within an nD ball of ‘radius’ d =

√
n.

In the presence of noise, for instance, randomly-generated amplitudes that can range in
value from −1 through 1 are added to the signal’s (possibly already phase distorted) sample
amplitudes. Considering the special case where all of the signal amplitudes have a value of 1,
and all of the noise amplitudes have a value of 1, is it found that the tips of the signal vectors
can now end within an nD ball of ‘radius’ d =

√
22 + 22 + 22 + . . .+ 22 = 2

√
n. Generally,

the noise power need not scale like the signal power. For instance, the noise can scale like 1,
instead of like n.

Altogether, the noisy and distorted versions of the root signals are aliases of the root
signals, and we can effectively perform a dimensional reduction of the signal space (from nD
down to (n−1)D) by simply ignoring these alias signals (or at least those alias signals which
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do not end upon the (n − 1)D shell). This dimensional reduction is indicative of a kind of
gauge redundancy, insomuch that the transformation of a root signal into an alias signal can
be ideally represented as a single ‘rotation plus scale’ operation in the nD signal space (a
gauge transformation).

As mentioned in the previous section, the length-squared of a signal vector d2 is a measure
of power, and so the amplitude-squared of a signal’s sample x2

m is also a measure of power.
For instance, the amplitude-squared of any sample in a root signal corresponds to a measure
of 1 (the Planck power), and so the length-squared of any root signal corresponds to a
measure of n. As such, samples of amplitude-squared x2 < 1 are sub-Planckian samples,
samples of x2

m = 1 are Planckian samples, and samples of x2
m > 1 are trans-Planckian

samples. Similarly, the (off-shell) signals of length-squared d2 < n are sub-Planckian signals,
(on-shell) signals of d2 = n are Planckian signals, and (off-shell) signals of d2 > n are
trans-Planckian signals.

Some discussion of gauge redundancy and gravity can be found in [8–14].
Some discussion of the signal space (albeit sans discussion of dimensional reduction and

black holes) can be found in [15].

4 Leaky black holes and van der Pauw sheet resistance-

conductance

As discussed in a previous section, a signal and a state are effectively defined by the same
data, and so we consider them to be effectively the same thing. As such, even though we
will exclusively use the word ‘signal’ in this section for the sake of consistency, we could have
just as readily used the word ‘state’ in its place. In this section, we will consider a possible
connection between the geometry of the signal space and the geometry of the black hole’s
event horizon radius.

The event horizon radius and event horizon area of a Schwarzschild black hole [16–18], is

Rs = 2Ebh, (8)

A = 4πR2
s . (9)

The binary ‘Bekenstein-Hawking’ (also known as ‘von Neumann’) entropy, or average infor-
mation content per root signal, of a Schwarzschild black hole is

S = n =
A

4h̄ ln 2
=

πR2
s

h̄ ln 2
=

4πE2
bh

h̄ ln 2
. (10)

The equation S = n means that each of the black hole’s 2n equiprobable root signals requires
an average of n bits of information content to be described, as was exactly the case in
Eq. (7). The proportionality S ∝ A means that the average information content per root
signal is proportional to the bounding area (event horizon area) of the black hole, as per the
holographic principle. Taking the holographic principle quite literally, the (data/information
of the) 2n root signals of the black hole are generated by a shell of S = n qubits (spin-like
degrees of freedom) at radius Rs.
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Where
α =

π

ln 2
, (11)

the root signal shell ‘radius’ d =
√
n is related to the event horizon radius by

d = Rs

√
α/h̄. (12)

Likewise, a root signal’s power is related to the black hole energy by a dimensionless integer
constant (units of length3 / length3)

h̄(x2
1 + x2

2 + x2
3 + . . .+ x2

n)

αE2
bh

= 4. (13)

In the presence of noise, it is inevitable that some of the alias signals will be trans-
Planckian (where d2 > n). If the relationship r = d/

√
α/h̄ holds, then these trans-Planckian

alias signals exist in spacetime at a radius of r > Rs, in which case it would be possible for
these trans-Planckian alias signals to escape to infinite distance. Clearly these leaked signals
must be represented by some form of energy, such as Hawking radiation of temperature (at
infinite distance)

T =
h̄

8πEbh

. (14)

The photons constituting the Hawking radiation at infinite distance should not possess any
kind of overtly trans-Planckian properties when sampled by a detector in spacetime. In
terms of Shannon’s theory, this is to say that the trans-Planckian nature of the leaked alias
signals should be suppressed by a mapping from the signal space to the message space that
corresponds to the sampled photon property [19].

Given that noise is the mechanism by which the alias signals are leaked in the first place,
and that the black hole’s temperature decreases as a root signal’s power increases, it seems
that the noise power does not scale at all. This is to say that E ∝ h̄/T ∝

√
n, and so

T ∝ h̄/
√
n. In effect, the black hole’s temperature is a kind of indirect measure of ‘noise-to-

signal ’ which indicates that the noise is constant like h̄ (like a quantum of noise), and thus
independent of the root signal shell ‘radius’ d =

√
n.

Since we have no reason to suspect a priori that the entanglement of any of the signals
is broken when the trans-Planckian alias signals are leaked [20], we shall assume that the
entropy of the entire system (the black hole proper plus the radiation) does not reduce as
the black hole evaporates. This semi-classical interpretation is not quite the same as the
standard semi-classical interpretation of black hole thermodynamics, in which case the black
hole is found to leak energy, but there is still some remaining ambiguity as to what happens
to the entropy (and the signals that generate it) – does it stay behind in the black hole proper;
does it leak out; does it vanish? Through consideration of the signal space representation
of the black hole, we instead find that the black hole evaporates over time in a way which
does not produce an entropy (information) loss paradox, because we know from the very
beginning that the signals are leaked and we have no reason to suspect a priori that the
entanglement of any of the signals is broken in the process. This possibility is remarkable
largely because it is based on a classical theory of communication that pre-dates the work
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on black hole thermodynamics. Altogether, the black hole becomes a trans-Planckian alias
of itself as it evaporates due to the presence of noise.

What may or may not be immediately obvious about the entropy and temperature equa-
tions is the following set of circumstances, altogether:

1. The event horizon is a 2D sheet.

2. The entropy is dimensionless (units of length2 / length2), which is dimensionally equiv-
alent to resistance-conductance (both also have units of length2 / length2).

3. The factor α = π/ ln 2 is van der Pauw’s constant from his theory of sheet resistance-
conductance [21], and so the entropy is similar to resistance-conductance in terms of
how to calculate the numerical magnitude.

This leaves us with a choice to make as to whether we shall interpret the entropy to be a
measure of sheet resistance or a measure of sheet conductance. Given that an increase in
conductance is generally related to a decrease in temperature, it seems more likely that the
entropy is a measure of sheet conductance.

Some discussion on black hole superconductivity and temperature can be found in [22,23].
Some discussion of the thermodynamics of gravity can be found in [24–30]. Some discussion
of fuzzy black holes can be found in [31]. Some further discussion of the relation between
Shannon’s theory and noise-based uncertainty can be found in [32,33], which were the direct
inspiration for considering the possible relation between Shannon’s theory, van der Pauw
sheet resistance-conductance, and black holes. Some further discussion of the entanglement
of the signals can be found in [34–37].

5 Finite volume and volume derivative of the black

hole interior

In this section, we will consider a possible connection between the geometry of the signal
space and the geometry of the black hole interior and exterior.

In Shannon’s theory, it is often noted that as the dimension n of the signal space increases,
the majority of the volume of the space becomes more and more distributed toward the
(n− 1)D shell at ‘radius’ d =

√
n. This can be stated in terms of the volume ratio

Vol(n, d)

Vol(n, d
2
)

= 2n. (15)

For instance: where n = 2, the ‘volume’ ratio for a 2D disk of radius r = d and a 2D disk
of radius r = d/2 is 22 = 4; where n = 3 the ratio is 23 = 8; where n = 4 the ratio is
24 = 16; etc. This is ultimately because the derivative of the volume with respect to radius
r is proportional to rn−1.

The integer Gamma function is

Γ(z) = (z − 1)!. (16)
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The half-integer Gamma function is

Γ1/2(z + 1/2) =
√
π

(2z)!

z!4z
. (17)

Again, for large z, the integer factorial can be reasonably approximated via Stirling’s con-
tinuous approximation.

The volume of a zD ball of radius r is proportional to rz

Vol(z, r) =

{ √
πzrz

Γ(z/2+1)
, z mod 2 = 0

√
πzrz

Γ1/2([z+1]/2)
, z mod 2 = 1

, (18)

and the derivative of the volume with respect to r is proportional to rz−1

dVol(z, r)

dr
= Vol(z, r)

z

r
. (19)

Consider the possibility that the volume (and/or the derivative of the volume) of the
black hole interior is also related to the signal space. In the paper [38], an effectively time-
independent total interior volume of (4/3)πR3

s is calculated (also see [39,40]), which is equal
to Vol(3, Rs). If we wish to use this calculation as a starting point, then the signal space
would affect only the derivative of the volume. For instance, where z = n and r ≤ Rs

Volbh(r) = Vol(3, Rs)
Vol(n, r)

Vol(n,Rs)
. (20)

In effect, we have cast the volume derivative of nD space into the role of the volume derivative
of 3D space, thus possibly curving the 3D space.

For instance, where n = 3, the volume derivative would be the same as flat 3D space –
the volume ratio from Eq. (15) holds as Volbh(Rs)/Volbh(Rs/2) = 23 – and so the 3D space
would not become curved.

Where n = 1 and n = 2, the volume would contract near the centre of the black hole –
the volume ratio would be Volbh(Rs)/Volbh(Rs/2) < 23 – and so the 3D space would become
positively curved. The contraction of space near the black hole centre would accelerate
anything within the black hole toward the centre, somewhat like how the contraction of
space in the black hole exterior region near the event horizon causes anything outside of the
black hole to accelerate toward the event horizon. We take this to mean that for n = 1 and
n = 2 that all of the black hole’s matter would reside at the centre of the black hole, but
at least both the volume and the volume derivative are always finite – no central singularity
arises.

Where n ≥ 4 the volume would instead contract near the event horizon – the volume
ratio would be Volbh(Rs)/Volbh(Rs/2) > 23 – and so the 3D space would become negatively
curved. The contraction of space near the event horizon would accelerate anything within
the black hole toward the event horizon. We take this to mean that for n ≥ 4 that all of the
black hole’s matter would reside at the black hole’s event horizon.

Similarly, we could consider the possibility that the 2nD state space affects the derivative
of the volume. For instance, where z = 2n and r ≤ Rs

Volbh(r) = Vol(3, Rs)
Vol(2n, r/Rs)

Vol(2n, 1)
, (21)
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which would simply serve to increase the degree of the contraction of space near the event
horizon much more rapidly than the case where z = n.

If we do not wish to use the calculation from [38] as a starting point, then the signal
space would affect not only the volume derivative, but also the total interior volume. For
instance, where z = n and r ≤ Rs, the volume could be

Volbh(r) = Vol(n, r/Rs), (22)

in which case the total interior volume of the black hole all but vanishes as n increases toward
infinity. In effect the black hole would be all but hollow, in somewhat similar fashion to what
is presented in the paper [41], but with the exception that the exterior and interior solutions
are not (in terms of the present formulation) connected in a continuous way (in terms of
both total interior volume and volume derivative).

Some other possibilities for the volume are

Volbh(r) = Vol(n, r), (23)

Volbh(r) = Vol(n, d[r/Rs]), (24)

Volbh(r) = Vol(2n, r/Rs), (25)

Volbh(r) = Vol(2n, r), (26)

Volbh(r) = Vol(2n,
√

2n[r/Rs]). (27)

In any case under consideration, both the total interior volume and the volume derivative
are always finite – no singularities ever arise. In most cases (where z ≥ 4), it is found that the
black hole’s matter would reside not at the centre of the black hole, but rather at the event
horizon. Altogether, considering the possibility that the geometry of the nD signal (or 2nD
state) space is related to the geometry of spacetime (as far as the total interior volume and
the volume derivative are concerned) leads to a set of possible black hole interior solutions
that (in most cases) enforce the holographic principle via black hole interior ‘antigravitation’,
while never suffering from the singularities that afflict standard general relativity.

Considering the possibility that a black hole also contributes to the exterior volume
derivative, it seems likely that the vast majority of the Universe’s matter currently exists
in the form of black holes of n = 3, E = 1

2

√
(3 ln 2)/π since the vast majority of space is

flat and n = 3 is the only measure for n that is accompanied by the appropriate volume
derivative. One interesting conclusion that can be drawn from the possibility that the black
hole also contributes to the exterior volume is that if the volume is all but vanishing, like
with the solutions described by Eqs. (22) and (25), and if all of the Universe’s matter were
to be consolidated into a single black hole, then the Universe itself would be effectively
constrained to exist upon a 2D shell – a dimensional reduction of the Universe would occur
because both the interior and exterior volume of the black hole would be essentially zero.
As such, in the case of these solutions with all but vanishing exterior volume, it seems likely
that the vast majority of the Universe’s matter currently exists in the form of black holes
of very small n, since the volume of the Universe is known to be gigantic, and only a huge
number of small black holes would be able to generate such a vast amount of volume. This is
the essentially the same conclusion that was drawn at the beginning of this paragraph when
we considered only the exterior volume derivative, and so regardless of which solution we
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choose to consider, it seems likely that the vast majority of the Universe currently exists in
the form of black holes of very small n, since this is the only configuration that consistently
leads to a spatially flat Universe with non-vanishing volume, like the one that we apparently
live in.

Some discussion of the black hole volume can be found in [42]. Some discussion of a
model of quantum gravity that makes use of higher order derivatives can be found in [43].

6 Review

In this paper we considered some possible connections between the geometry of the signal
space and the geometry of the black hole.

First, we discussed noise-free and distortionless discrete binary signals (root signals), and
we noted that these root signals are constrained to end upon a single (n − 1)D shell in the
nD signal space. We also discussed the aliasing of the root signals via noise and distortion,
and we noted how aliasing increases the effective dimension of the signal space from (n−1)D
to nD.

Next, we discussed the possibility (via the van der Pauw constant) that the radius of the
(n−1)D shell in the signal space is related to the event horizon radius in spacetime. We also
discussed how the black hole leaks trans-Planckian alias signals (due to the presence of noise)
in a way that does not introduce an entropy (information) loss paradox. We noted how the
entropy of the black hole is dimensionally and numerically similar to the van der Pauw sheet
resistance-conductance, and that it is possible to interpret the entropy as a measure of sheet
conductance.

Finally, we discussed the possibility that the black hole interior volume and volume
derivative is related to the dimension of the signal space. The primary result was a set of
possible black hole interior solutions that do not suffer from singularities. We also discussed
the possibility that the black hole exterior volume and volume derivative is also related to the
dimension of the signal space. The primary result was the conclusion that the vast majority
of the Universe’s matter likely exists in the form of microscopic black holes, which is the
only configuration that consistently produces a spatially flat Universe with non-vanishing
volume.

Although the model presented here may be a semi-classical toy, it is nevertheless inter-
esting to note how the toy immediately highlights the fact that dimensional reduction is
an integral part of Shannon’s theory. We feel that this aspect of Shannon’s theory is not
mentioned nearly enough in the literature on black hole thermodynamics, even though both
information theory and dimensional reduction clearly already play a critical role in the study
of black holes. Perhaps there are actual physical models of the black hole based on this little-
advertised coincidence. Clearly, we should seriously consider the possibility that Shannon
(and his colleagues von Neumann and Pierce) effectively predicted that black hole evapora-
tion and the holographic principle would become some of the most important concepts in
the physical theories of the 21st century – we should seriously consider the possibility that
Shannon was the progenitor of quantum gravity.

This paper is dedicated to Bob. Thank you to many people for various discussions on
the FQXi website (Hi Steve).
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