L'Hospital's Rule

Pierre-Yves Gaillard

Abstract. We give a short proof of l'Hospital's Rule.

Warning: We use Bourbaki's notation]a, b[for open intervals.

Theorem. Suppose f and g are real and differentiable in]a, b[, and g'(x) is not 0 for all x in]a, b[, where $-\infty \le a < b \le +\infty$. Suppose

$$\frac{f'(x)}{g'(x)} \to A \text{ as } x \to b$$

If $f(x) \to 0$ and $g(x) \to 0$ as $x \to b$, or if $g(x) \to +\infty$ as $x \to b$, then

$$\frac{f(x)}{g(x)} \to A \text{ as } x \to b.$$

(Statement taken word for word from Rudin's **Principles of Analysis**.) Lemma. Let a, b and A be as above, let T be the triangle

$$T := \{ (x, y) \mid x, y \in]a, b[, x < y \},\$$

let $u: T \to \mathbb{R}$ be a function such that u(x, y) tends to A as (x, y) tends to (b, b)(while remaining in T), and let $(y_n)_{n \in \mathbb{N}}$ be a sequence in]a, b[converging to b. If $u(x, y_n)$ tends to $v(x) \in [-\infty, +\infty]$ for all x, then $v(x) \to A$ as $x \to b$. *Proof of the Lemma.* If N is a closed neighborhood of A in $[-\infty, +\infty]$, then there is a c in]a, b[such that $c \leq x < y < b$ implies $u(x, y) \in N$, and thus $v(x) \in N$. *Proof of the Theorem.* For $(x, y) \in T$ put

$$u(x,y) := \frac{f(x) - f(y)}{g(x) - g(y)}$$

By Cauchy's Mean Value Theorem (or Extended Mean Value Theorem), there is, for each (x, y) in T, a t in]x, y[such that

$$u(x,y) = \frac{f'(t)}{g'(t)}$$

This implies that u(x, y) tends to A as (x, y) tends to (b, b). Let (y_n) be a sequence in]a, b[converging to b such that $f(y_n)/g(y_n)$ tends to some B in $[-\infty, +\infty]$, let v(x) be equal to f(x)/g(x) if $f(x) \to 0$ and $g(x) \to 0$ as $x \to b$, and to B if $g(x) \to +\infty$ as $x \to b$, and use the Lemma.

 $This \ is \ version \ 1. \ Last \ version \ available \ at \ http://www.iecn.u-nancy.fr/\sim gaillapy/DIVERS/Hospital/$