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Abstract In this paper we examine the recently introduced
Dvali-Gabadadze-Porrati (DGP) gravity model. We use a
space-time metric in which the local gravitation source dom-
inates the metric over the contributions from the cosmologi-
cal flow. Anticipating ideal possible solar system effects, we
derive expressions for the signal time delays in the vicin-
ity of the Sun. and for various ranges of the angle θ of the
signal approach, The time contribution due to DGP correc-
tion to the metric is found to be proportional to b3/2/c2r0.
For r0 equal to 5 Mpc and θ in the range [−π/3,π/3], �t

is equal to 0.0001233 ps. This delay is extremely small to
be measured by today’s technology but it could be probably
measurable by future experiments.
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1 Introduction

There is recent attention for the so-called Dvali-Gabadadze-
Porrati (DGP) model. This is a five dimensional gravity
model that explains the observed acceleration of the expan-
sion of the Universe. Furthermore, it predicts minor post-
Einstein effects, testable at local scales resulting to infor-
mation on the Universe’s global properties in relation to
the ongoing cosmological expansion (Iorio 2005a, 2005b,
2005c). So far, two-body scenarios have been investigated
in which the time rates of change for the longitude of peri-
center and the mean anomaly of the secondary have been
carried out (Lue and Starkman 2003; Iorio 2005b), with
the effects being functions of eccentricity. Following Iorio
(2005b, 2005c), one might say that the “ideal test-bed for
such tests is the inner planets of the solar system”. Mea-
surements of such precessions lie in the limit of precision
of today’s planetary data. For a more detailed and complete
overview on the DGP gravity, see Lue (2006).

The DGP model is based on an extra flat dimension w,
and a free crossover parameter r0 which defines a radius be-
yond which the four-dimensional gravitational theory tran-
sitions into a five-dimensional regime. The last parameter
is defined by r0 = k2/2μ. The constants μ2 and k2 define
the energy scales of the theories of gravity: the first one is
Newton’s constant, μ2 = 8πG, while the second represents
the energy scale of the bulk gravity (Sawicki et al. 2007).
The crossover parameter is also fixed from observations of
IA type supernova to a value approximately equal to 5 Gpc
(Lue and Starkman 2003). For distances greater than 5 Gpc
Newtonian gravity needs to be modified, which can lead to
different explanations for the dark matter when somebody
tries to interpret the accelerations observed in the Universe.

In this short contribution we consider the case when
the Newtonian-Einstein gravity is modified according to the
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Dvali-Gabadadze-Porrati braneworld model, We will calcu-
late the resulting radar signal time delay in the vicinity of
the Sun We proceed with in a way similar to that used in
Haranas and Ragos (2011) and Haranas et al. (2011). We
base our analysis on the angle θ defined by the distance of
the closest approach, and any other point along the path of
a traveling radar signal. We apply our results for various an-
gular ranges.

2 The Dvali-Gabadadze-Porrati metric

Following Lue and Starkman (2003), the metric of a spher-
ical source in a cosmological de Sitter background can be
described by the following line element:

ds2 = c2N2(r,w)dt2 − A2(r,w)dr2

− B2(r,w)
(
dθ2 + sin2 dφ2) − dw2. (1)

In the region where the local gravitation dominates the met-
ric over the contributions from the cosmological flow, the de
Sitter solution of the five-dimensional field equations can be
expressed by Lue and Starkman (2003):

N(r, z) = 1 + n(r, z) = 1 − GM

rc2
±

√
GMr

r2
0

, (2)

A(r, z) = 1 + a(r, z) = 1 + GM

rc2
∓

√
GMr

r2
0

, (3)

B(r, z) = r
(
1 + b(r, z)

)
, (4)

where M is the gravitating mass, G is the constant of uni-
versal gravitation, w is the fourth special coordinate, and
b(r, z), n(r, z), a(r, z) are functions of the coordinates, that
can be calculated using the derived field equations. For dis-
tances scales r much smaller than r0, Newton-Einstein grav-
ity is obtained with few exceptions that include minor cor-
rections. With reference to Lue and Starkman (2003) we can
write the DGP line element in the following way:

ds2 = c2
(

1 − GM

rc2
±

√
GMr

r2
0

)2

dt2

−
(

1 + GM

rc2
∓

√
GMr

r2
0

)2

dr2

− r2(1 + b(r, z)
)2

dΩ2 − dw2. (5)

To deal with the DGP effect on the propagation of elec-
tromagnetic signals in the vicinity of the Sun, we incorpo-
rate an additional DGP correction term in the Schwarzschild
space-time metric coefficients of the line element. Next we
modify the Schwarzschild metric used in the solar sys-
tem when general relativistic effects are taken into account.

Therefore, if r, θ,φ are the polar coordinates of any point
along the signal’s path, and Ω is the corresponding solid an-
gle, the photon transmission time can be written as follows:

dt ′ = ds

c
, (6)

and the line element takes the form:

dt =
(

1 + GM

rc2
∓

√
GMr

r2
0

)2

dt ′

=
(

1 + GM

rc2
∓

√
GMr

r2
0

)2
ds

c
, (7)

where the plus sign is related to the Friedman-Lemaitre-
Robertson-Walker phase of the universe, while the minus
sign is related to a self accelerating phase (Iorio 2005a).
In this paper, we first consider the plus sign or Friedman-
Lemaitre-Robertson-Walker phase and, then, the minus sign
representing the accelerating phase.

Since r = b/ cos θ , where b is the distance of the closest
signal approach, we have that:

dr = −b sin θ

cos2 θ
dθ. (8)

Also, ds = √
dr2 + r2dθ2 and after substitution and simpli-

fication, Eq. (7) becomes:

dt = b

c

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜
⎝

1 + 2GM

bc2
cos θ + G2M2

b2c4
cos2 θ

+ GMb

c2r2
0

sec θ + 2

√
GMb

c2r2
0

sec θ

+ 2GM

bc2

√
GMb sec θ

c2r2
0

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟
⎠

sec2 θdθ. (9)

Equation (9) contains classical, general relativistic, DGP
time delays. Since we are interested in the DGP delay only,

we may neglect the term 1 + 2GM

bc2 cos θ + G2M2

b2c4 cos2 θ .
Then, we, then, have to integrate the following expression:

dt = b

c

(
GMb

c2r2
0

sec θ + 2

√
GMb

c2r2
0

sec θ

+ 2GM

bc2

√
GMb sec θ

c2r2
0

)
sec2 θdθ. (10)

Omitting order O(c−3) and O(c−4) terms for being too
small, we integrate over various angular subintervals of the
range (−π/2,π/2) to avoid the singularities at θ = ±π/2.
For any such interval [α,β] the corresponding radar signal
time delay will be:

�t = b

c

∫ β

α

(
GMb

c2r2
0

sec θ + 2

cr0

√
GMb sec θ

)
sec2 θdθ.

(11)
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We start at [−π/6,π/6]. The integration over that range re-
sults that:

�t = 2GMb2

3c3r2
0

+ GMb2 ln(27)

6c3r2
0

+ 8b
√

2bGM

37/4c2r0

+ 8b
√

bGM

3c2r0
F

(
π

12
,2

)
, (12)

where, F is the elliptic integral function of the first kind.
Similarly, integrating over the range [−π/4,π/4], we obtain
that:

�t = GMb2
√

2

c3r2
0

+ 8 × 21/4b
√

GMb

3c2r0

+ 8b
√

GMb

3c2r0
F

(
π

8
,2

)

+ GMb2

c3r2
0

ln

[
cos(π/8) + sin(π/8)

cos(π/8) − sin(π/8)

]
. (13)

Next, for the range [−π/3,π/3] we have that:

�t = b2
√

2GM

c3r2
+ 8b

c2r0

√
2GMb

3
+ 8b

√
GMb

3c2r
F

(
π

6
,2

)

+ GMb2

c3r2
0

ln

(
1 + √

3

1 − √
3

)
, (14)

Finally, for the range [−4π/10,4π/10], we obtain the fol-
lowing expression

�t = GMb2
√

50 + 22
√

5

c3r2
0

+ 8b
√

bGM
√

15 + 7
√

5

3c2r0

+ 8b
√

GMb

3c2r0
F

(
π

5
,2

)

+ GMb2

c3r2
0

ln

(
1 + √

5 +
√

10 − 2
√

5

1 + √
5−

√
10 − 2

√
5

)
. (15)

Next, in the same way, we proceed to calculate the signal
delays when the DGP correction to the metric appears with
a negative sign. For any interval [α,β] ⊂ (−π/2,π/2) the
corresponding radar signal time delay will be:

�t = b

c

∫ β

α

(
GMb

c2r2
0

sec θ − 2

cr2
0

√
GMb sec θ

)
sec2 θdθ.

(16)

Over [−π/6,π/6], we obtain:

�t = 2GMb2

3c3r2
0

− 8b
√

2GMb

37/4c2r0
− 8b

√
GMb

3c2r0
F

(
π

12
,2

)

+ GMb2

6c3r2
0

ln(27). (17)

Similarly, and for [−π/4,π/4], we get that:

�t =
√

2GMb2

c3r2
0

− 8 × 21/4b
√

GMb

3c2r0

− 8b
√

GMb

3c2r0
F

(
π

8
,2

)

+ GMb2

c3r2
0

ln

(
cos(π/8) + sin(π/8)

cos(π/8) − sin(π/8)

)
, (18)

for [−π/3,π/3], the integration results:

�t = GMb2

c3r2
0

− 8b

c2r0

√
2GMb

3
− 8b

√
GMb

3c2r0
F

(
π

6
,2

)

+ GMb2

c3r2
0

ln

[
1 + √

3

−1 + √
3

]
(19)

and, finally, for [−4π/10,4π/10], we obtain that:

�t =
√

50 + 22
√

5GMb2

c3r2
0

− 8b
√

15 + 7
√

5
√

GMb

3c2r0
− 8b

√
GMb

3c2r0
F

(
π

5
,2

)

+ GMb2

c3r2
0

ln

[
1 + √

5 +
√

10 − 2
√

5

1 + √
5 −

√
10 − 2

√
5

]
. (20)

In order to calculate the values of the elliptic function F

used above, we have utilized an up to 4th order series expan-
sion of this function. This expansion is given below:

F(θ, k) ≈ θ +
(

sin−1(sin θ) − sin θ sin2 θ

4

)
k

+

⎛

⎜⎜⎜
⎝

9(sin−1(sin θ) − cos2 θ sin θ)

64

− 3 cos2 θ sin3 θ

32

⎞

⎟⎟⎟
⎠

k2

+

⎛

⎜⎜⎜
⎝

25(sin−1(sin θ) − sin θ sin2 θ)

256

− 25 cos2 θ sin3 θ

384
− 5 cos2 θ sin5 θ

96

⎞

⎟⎟⎟
⎠

k3

+

⎛

⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1225(sin−1(sin θ) − cos2 θ sin θ)

16384

− 1225 cos2 θ sin3 θ

24576

− 245 cos2 θ sin5 θ

6144

− 35

1024
cos2 θ sin7 θ

⎞

⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

k4

+ O
(
k5). (21)
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Then:

F

(
π

12
,2

)
≈ −585

512
+ 3339

√
3

16384
+ 1379π

4096
≈ 0.268087,

(22)

F

(
π

8
,2

)
≈ 413

1024
− 285

128
√

2
+ 4137π

8192
≈ 0.415422, (23)

F

(
π

6
,2

)
≈ −14491

√
3

16384
+ 1379π

2048
≈ 0.583429, (24)

(
π

5
,2

)
≈ −

√
3309806810 + 65996498

√
5

32768
+ 4137π

5120
≈ 0.744014. (25)

3 Numerical results

To apply the above analysis in the case of the Sun, we have
used that the mass of the Sun is M = 1.99 × 1030 kg. For
the Friedman-Lemaitre-Robertson-Walker phase, the signal
time delay in the vicinity of the Sun for −π/6 ≤ θ ≤ π/6,
we have:

�t = 5.977 × 10−6
(

b2

r2
0

)
+ 3.033 × 10−7

(
b3/2

r0

)

≈ 3.033 × 10−7
(

b3/2

r0

)
. (26)

Similarly, for −π/4 ≤ θ ≤ π/4 we obtain:

�t = 1.128 × 10−5
(

b2

r2
0

)
+ 5.477 × 10−7

(
b3/2

r0

)

≈ 5.477 × 10−7
(

b3/2

r0

)
. (27)

Next, for −π/3 ≤ θ ≤ π/3 we get that:

�t = 2.350 × 10−5
(

b2

r2
0

)
+ 1.035 × 10−6

(
b3/2

r0

)

≈ 1.035 × 10−6
(

b3/2

r0

)
. (28)

Finally, for −4π/10 ≤ θ ≤ 4π/10:

�t = 5.802 × 10−5
(

b2

r2
0

)
+ 2.144 × 10−6

(
b3/2

r0

)

≈ 2.144 × 10−6
(

b3/2

r0

)
. (29)

After applying that b ≈ RS = 6.96 × 108 m and r0 ≈
5 Gpc = 1.542 × 1023 m (Lue and Starkman 2003), the de-
lays in picoseconds [ps] for the above mentioned ranges of
θ are tabulated in Table 1.

Similarly, for the accelerating phase of the universe we
obtain that:

Table 1 Radar signal time delays due to the DGP gravity in the vicin-
ity of the Sun. Results related to the Friedman-Lemaitre-Robertson-
Walker phase of the universe

Angular range of closest approach (rad) Signal time delays (ps)

−π/6 ≤ θ ≤ π/6 0.0000361

−π/4 ≤ θ ≤ π/4 0.0000652

−π/3 ≤ θ ≤ π/3 0.0001233

−4π/10 ≤ θ ≤ 4π/10 0.0002553

Table 2 Radar signal time delays due to the DGP gravity in the vicin-
ity of the Sun. Results related to the accelerating phase of the universe

Angular range of closest approach (rad) Signal time delays (ps)

−π/6 ≤ θ ≤ π/6 −0.0000361

−π/4 ≤ θ ≤ π/4 −0.0000652

−π/3 ≤ θ ≤ π/3 −0.0001233

−4π/10 ≤ θ ≤ 4π/10 −0.0002553

�t = 5.977 × 10−6
(

b2

r2
0

)
− 3.033 × 10−7

(
b3/2

r0

)

≈ −3.033 × 10−7
(

b3/2

r0

)
, (30)

�t = 1.128 × 10−5
(

b2

r2
0

)
− 5.477 × 10−7

(
b3/2

r0

)

≈ −5.477 × 10−7
(

b3/2

r0

)
, (31)

�t = 2.350 × 10−5
(

b2

r2
0

)
− 1.035 × 10−6

(
b3/2

r0

)

≈ −1.035 × 10−6
(

b3/2

r0

)
, (32)

�t = 5.802 × 10−5
(

b2

r2
0

)
− 2.144 × 10−6

(
b3/2

r0

)

≈ −2.144 × 10−6
(

b3/2

r0

)
. (33)

Then, the signal delays are given in Table 2. Next, Fig. 1
gives a 3D plot of the signal time delay in the vicinity of the
Sun, related to the Friedman-Lemaitre-Robertson-Walker
phase of the universe, as a function of the DGP parame-
ter r0 and the distance of closest approach b, for the range
[−4π/10,4π/10]. Similarly, Fig. 2 represents a 3D plot of
the time signal delay in the vicinity of the Sun, related to the
accelerating phase of the universe, as a function of the same
parameters and for the same angular range.
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Fig. 1 Signal time delay in the vicinity of the Sun, related to the Fried-
man-Lemaitre-Robertson-Walker phase of the universe, is plotted as
a function of the DGP parameter r0 and the distance of closest ap-
proach b, for the range [−4π/10,4π/10]

Fig. 2 Signal time delay in the vicinity of the Sun, related to the ac-
celerating phase of the universe, is plotted as a function of the DGP
parameter r0 and the distance of closest approach b for the range
[−4π/10,4π/10]

4 Conclusions

The signal time delay in the vicinity of the Sun due the
Dvali-Gabadadze-Porrati metric (DGP) has been calculated,
for various subintervals of the range (−π/2,π/2) of θ .
Both algebraic signs have been considered in the metric el-
ement. The plus sign is related to the Friedman-Lemaitre-
Robertson-Walker phase of the universe, while the negative

one is related to the self accelerating one. The Friedman-
Lemaitre-Robertson-Walker phase results in an increase to
the signal delay, while the self accelerating phase of the uni-
verse results in a reduction of this delay. With reference to
Haranas and Ragos (2011) we say that to get an idea of to-
day’s radar systems, somebody could talk about the sensi-
tivity of radar, a property that is related to the power of the
transmitting radar. Since we are interested in signal time de-
lays and in order to substantiate our findings, we will refer to
today’s radar resolution instead, something that is related to
the detectable times. Quoting Shapiro et al. (1968), Shapiro
(1999), fractional system errors of echo time delays in solar
system experiments can be up to 1 part in 1010 or smaller.
Signal delays of this magnitude might be in the borderline
of time detection of today’s technology and, therefore, it will
be difficult to be detected. Future technologies might be able
to push for such delectability limit, and therefore delays at-
tribute to (DGP) gravity might be measured.
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