Quantum Reversal of Soul Energy

Fran De Aquino
Maranhao State University, Physics Department, S.Luis/MA, Brazil. Copyright © 2012 by Fran De Aquino. All Rights Reserved.

Abstract

In the last decades, the existence of the Soul has been seriously considered by Quantum Physics. It has been frequently described as a body of unknown energy coupled to human body by means of a mutual interaction. The Quantum Physics shows that energy is quantized, i.e., it has discrete values that are defined as energy levels. Thus, along the life of a person, the energy of its soul is characterized by several quantum levels of energy. Here, we show by means of application of specific electromagnetic radiations on the human body, that it is possible to revert the energy of the soul to previous energy levels. This process can have several therapeutic applications.

Key words: Modified theories of gravity, Microwave fields effects, Therapeutic applications, Quantum information. PACS: 04.50.Kd, 87.50.S-,87.50.st, 03.67.-a.

1. Introduction

Since long the Soul has remained an element of strongly consideration by Religion. Some authors claim that Religion is the science of the Soul [1]. Others claim that Soul and Religion are related to evolution. Sir Julian Huxley, a leading evolutionary biologist, the first Director-General of UNESCO and signatory to the Humanist Manifesto II, wrote: "Human Soul and Religion are just the product of evolution" [2]. This show how important the Soul is for the Religion. Philosophy also realizes the importance of the Soul. Plato, drawing on the words of his teacher Socrates, considered the Soul the essence of a person, being that which decides how we behave. As bodies die, the Soul is continually reborn in subsequent bodies.

Nowadays, Quantum Physics and other branches of Science are seriously considering the existence of the Soul.

It has been frequently described as a body of unknown energy coupled to human body by means of a mutual interaction. This type of energy from the viewpoint of Physics has been considered as Imaginary Energy. The term imaginary are borrowed from Mathematics (real and imaginary numbers) [3].

Quantum Physics shows that energy is quantized, i.e., that it has discrete values that are defined as discrete energy levels that correspond to all positive integer values of
the quantum number $n,(n=1,2,3, \ldots)$
Thus, along the life of a person, the energy of its Soul is characterized by several quantum levels of energy. Here, we show that, by means of application of specific electromagnetic radiations on the human body (its Soul), it is possible to revert the energy of the Soul to previous energy levels. This process can have several therapeutic applications.

2. Theory

From the quantization of gravity it follows that the imaginary gravitational mass $m_{g(i m)}$ and the imaginary inertial mass $m_{i 0 \text { (im) }}$ are correlated by means of the following factor [5]:

$$
\begin{equation*}
\chi=\frac{m_{g(i m)}}{m_{i 0(i m)}}=\left\{1-2\left[\sqrt{1+\left(\frac{\Delta p_{(i m)}}{m_{i 0(i m)} c}\right)^{2}}-1\right]\right\} \tag{1}
\end{equation*}
$$

where $m_{i 0(i m)}=-\frac{2}{\sqrt{3}} m_{i 0} i$ is the imaginary inertial mass at rest of the particle and $\Delta p_{(i m)}=U_{(i m)} n_{r} / c=(U i) n_{r} / c$ is the variation in the particle's imaginary kinetic momentum; c is the speed of light. Thus, Eq. (1) can be rewritten as follows

$$
\begin{equation*}
\chi=\frac{m_{g(i m)}}{m_{i 0(i m)}}=\left\{1-2\left[\sqrt{1+\frac{3}{4}\left(\frac{U n_{r}}{m_{i 0} c^{2}}\right)^{2}}-1\right]\right\} \tag{2}
\end{equation*}
$$

When Δp is produced by the absorption of a photon with wavelength λ, i.e., $U=h f$, Eq. (2) becomes
$\chi=\frac{m_{g(\text { im })}}{m_{i 0(\text { im })}}=\left\{1-2\left[\sqrt{1+\frac{3}{4}\left(\frac{\lambda_{0}}{\lambda_{\text {mod }}}\right)^{2}}-1\right]\right\}$
where $\lambda_{0}=h / m_{i 0} c$ is the De Broglie wavelength for the particle with rest inertial mass (real) $m_{i 0}$ and $\lambda_{\text {mod }}=\lambda / n_{r}$.

From Electrodynamics we know that when an electromagnetic wave with frequency f and velocity c incides on a material with relative permittivity ε_{r}, relative magnetic permeability μ_{r} and electrical conductivity σ, its velocity is reduced to $v=c / n_{r}$ where n_{r} is the index of refraction of the material, given by [6]

$$
\begin{equation*}
n_{r}=\frac{c}{v}=\sqrt{\frac{\varepsilon_{r} \mu_{r}}{2}\left(\sqrt{1+(\sigma / \omega \varepsilon)^{2}}+1\right)} \tag{4}
\end{equation*}
$$

If $\sigma \gg \omega \varepsilon, \omega=2 \pi f$, Eq. (4) reduces to

$$
\begin{equation*}
n_{r}=\sqrt{\frac{\mu_{r} \sigma}{4 \pi \varepsilon_{0} f}} \tag{5}
\end{equation*}
$$

Thus, the wavelength of the incident radiation (See Fig. 1) becomes

$$
\begin{equation*}
\lambda_{\bmod }=\frac{v}{f}=\frac{c / f}{n_{r}}=\frac{\lambda}{n_{r}}=\sqrt{\frac{4 \pi}{\mu f \sigma}} \tag{6}
\end{equation*}
$$

Fig. 1 - Modified Electromagnetic Wave. The wavelength of the electromagnetic wave can be strongly reduced, but its frequency remains the same.

If an imaginary lamina with thickness equal to ξ contains n imaginary molecules $/ \mathrm{m}^{3}$, then the number of molecules per unit area is $n \xi$. Thus, if the electromagnetic radiation with frequency f incides on an area S of the lamina it reaches $n S \xi$ molecules. If it incides on the total area of the lamina, S_{f}, then the total number of molecules reached by the radiation is $N=n S_{f} \xi$. The number of molecules per unit volume, n, is given by

$$
\begin{equation*}
n=\frac{N_{0} \rho}{A} \tag{7}
\end{equation*}
$$

where $N_{0}=6.02 \times 10^{26}$ moleculess $/ \mathrm{kmole}$ is the Avogadro's number; ρ is the matter density of the lamina (in $\mathrm{kg} / \mathrm{m}^{3}$) and A is the molar mass($\mathrm{kg} / \mathrm{kmole}$).

When an electromagnetic wave incides on the lamina, it strikes N_{f} front molecules, where $N_{f} \cong\left(n S_{f}\right) \phi_{m}, \phi_{m}$ is the "diameter" of the molecule. Thus, the electromagnetic wave incides effectively on an area $S=N_{f} S_{m}$, where $S_{m}=\frac{1}{4} \pi \phi_{m}^{2}$ is the cross section area of one molecule. After these collisions, it carries out $n_{\text {collisions }}$ with the other molecules (See Fig.2).

Fig. 2 - Collisions inside the imaginary lamina.

Thus, the total number of collisions in the volume $S \xi$ is

$$
\begin{align*}
N_{\text {collisions }} & N_{f}+n_{\text {collisions }} \overline{\bar{s}} l \\
& n_{l} S \phi_{m}+\left(n_{l} S \xi-n_{n l} S \phi_{m}\right)= \tag{8}\\
& =n_{n} S \xi
\end{align*}
$$

The power density, D, of the radiation on the lamina can be expressed by

$$
\begin{equation*}
D=\frac{P}{S}=\frac{P}{N_{f} S_{m}} \tag{9}
\end{equation*}
$$

We can express the total mean number of collisions in each molecule, n_{1}, by means of the following equation

$$
\begin{equation*}
n_{1}=\frac{n_{\text {total photons }} N_{\text {collisions }}}{N} \tag{10}
\end{equation*}
$$

Since in each collision a momentum h / λ is transferred to the molecule, then the total momentum transferred to the lamina will be $\Delta p=\left(n_{1} N\right) h / \lambda$, i.e., $U n_{r} / c=\left(n_{1} N\right) n_{r} h / \lambda=\left(n_{1} N\right) h / \lambda_{\text {mod }}$ Therefore, in accordance with Eq. (2), we can write that

$$
\begin{align*}
& \frac{m_{g(l) \text { im }}}{m_{\text {iolli) }}}=\left\{1-2\left[\sqrt{1+\frac{3}{4}\left[\left(n_{1} N\right) \frac{\lambda_{0}}{\lambda_{\text {mod }}}\right]^{2}}-1\right]\right\}= \\
& =\left\{1-2\left[\sqrt{1+\frac{3}{4}\left[n_{\text {total photons }} N_{\text {collisions }} \frac{\lambda_{0}}{\lambda_{\text {mod }}}\right]^{2}}-1\right]\right\} \tag{11}
\end{align*}
$$

Since Eq. (8) gives $N_{\text {collisions }}=n_{l} S \xi$, we get

$$
\begin{equation*}
n_{\text {total photons }} N_{\text {collisions }}=\left(\frac{P}{h f^{2}}\right)\left(n_{l} S \xi\right) \tag{12}
\end{equation*}
$$

Substitution of Eq. (12) into Eq. (11) yields
$\frac{m_{g(l) \text { im }}}{m_{\text {ioll lim }}}=\left\{1-2\left[\sqrt{1+\frac{3}{4}\left[\left(\frac{P}{h f^{2}}\right)\left((n, S \xi) \frac{\lambda_{0}}{\lambda_{\text {mod }}}\right]^{2}\right.}-1\right]\right\}$ (13)
Substitution of P given by Eq. (9) into Eq. (13) gives

$$
\begin{equation*}
\left.\left.\frac{m_{g(l) \mathrm{i}}}{m_{\text {lotli) }}}=\left\{1-2\left[\sqrt{1+\frac{3}{4}\left[(\frac { N _ { f } S _ { m } D } { f ^ { 2 } }) \left(\frac{n_{1} S \xi}{m_{i(l)}} c\right.\right.}\right) \frac{1}{\lambda_{\text {mod }}}\right]^{2}-1\right]\right\} \tag{14}
\end{equation*}
$$

Substitution of $N_{f} \cong\left(n_{l} S_{f}\right) \phi_{m}$ and $S=N_{f} S_{m}$ into Eq. (14) results
$\frac{m_{g(l) \mathrm{im}}}{m_{\text {i(l) } \mathrm{im}}}=\left\{1-2\left[\sqrt{1+\frac{3}{4}\left[\left(\frac{n_{1}^{3} S_{f}^{2} S_{m}^{2} \phi_{m}^{2} \xi \mathcal{D}}{m_{i(l)} c f^{2}}\right) \frac{1}{\lambda_{\text {mod }}}\right]^{2}}-1\right]\right\}(15)$
where $m_{i 0(l)}=\rho_{(l)} V_{(l)}$.
The case in which the area S_{f} is just the area of the cross-section of the lamina $\left(S_{\alpha}\right)$, we obtain from Eq. (15),
considering that $m_{0(l)}=\rho_{(l)} S_{\alpha} \xi$, the following expression

$$
\begin{equation*}
\frac{m_{g(l) i m}}{m_{\text {iollim }}}=\left\{1-2\left[\sqrt{1+\frac{3}{4}\left[\left(\frac{n_{l}^{3} S_{\alpha} S_{m}^{2} \phi_{m}^{2} D}{\rho_{l()} c f^{2}}\right) \frac{1}{\lambda_{\text {mod }}}\right]^{2}}-1\right]\right\} \tag{16}
\end{equation*}
$$

If the electrical conductivity of the lamina, $\sigma_{(l)}$, is such that $\sigma_{(l)} \gg \omega \varepsilon$, then the value of λ is given by Eq. (6), i.e.,

$$
\begin{equation*}
\lambda=\lambda_{\bmod }=\sqrt{\frac{4 \pi}{\mu f \sigma}} \tag{17}
\end{equation*}
$$

Substitution of Eq. (17) into Eq. (16) gives

$$
\begin{equation*}
\chi=\frac{m_{g(l) i m}}{m_{i(l)(l) i m}}=\left\{1-2\left[\sqrt{1+\frac{3 n_{1}^{6} S_{\alpha}^{2} S_{m}^{4} \phi_{m}^{4} \mu \sigma D^{2}}{16 \pi \rho^{2} c^{2} f^{3}}}-1\right]\right\} \tag{18}
\end{equation*}
$$

The Soul has been frequently described as a body of unknown energy coupled to human body by means of a mutual interaction. This type of energy from the viewpoint of Physics, has been considered as Imaginary Energy. The term imaginary is borrowed from Mathematics (real and imaginary numbers) [3]. As imaginary energy, the Soul can be now defined as an imaginary body, made of imaginary particles each one them described by imaginaries wavefunctions $\psi_{i m}$, by similarity to the real bodies, which are made of real particles described in Quantum Mechanics by its real wavefunction ψ. The extension of the imaginary wavefunction to the relativistic form can be then made in a consistent way with the Lorentz transformations equations of the special theory of relativity $[\underline{7}, \underline{8}]$, similarly to the real wavefunction [4]. In addition, the Soul's energy can be now expressed by the well-known Einstein's energy expression $\left(E=m c^{2}\right)$ extended to the imaginary form, i.e., $E_{g(s) i m}=m_{g(s) i m} c^{2}$. Therefore, we can say that the Soul has an imaginary energy $E_{g(S) i m}=m_{g(s) i m} c^{2}$ where $m_{g(s) i m}$ is the imaginary gravitational mass of Soul, which according to Eq. (18), is correlated to imaginary inertial mass of Soul at rest, $m_{i 0(S) i m}$, by means of the following expression: $\quad \chi_{S}=m_{g(S) i m} / m_{i 0(S) i m}$. This
means that the value of $E_{g(S) \text { im }}$ can be decreased and also made negative by means of absorption of energy of radiation incident upon the Soul (See Eq.18).

As widely mentioned in the literature of Spiritualistic Philosophy, the Soul has 2 parts: Perispirit and Spirit (See Fig.1). The Spirit is inside the human body (HB); the Perispirit is an involucre of the spirit, its boundaries coincide with the boundaries of the human body. The perispirit density $\left(\rho_{\text {pe }}=m_{i 0(p e j i m} / V_{\text {(pejim }}=r e a\right)$ is equal to the density of the mean where the Soul is [9]. This occurs by the imaginary mass decrease or by the imaginary mass increase, resultant, respectively, from the emission or absorption of imaginary energy from the Universe. Thus, in the human body the perispirit density is

$$
\rho_{\text {pe }}=\rho_{H B} \cong 1000 \mathrm{~kg} \cdot \mathrm{~m}^{-3}
$$

Therefore, according to Eq. (7), we can write that the density of molecules in the perispirit is given by

$$
n_{p e}=\left(N_{0} \rho_{p e} / A\right) \cong 3.3 \times 10^{28} \text { molecules. } m^{-3}
$$

where $A=A_{H 2 O}=18 \mathrm{~kg} / \mathrm{kmole}$. Out of the Earth's atmosphere (outer space) the density of the perispirit is equal to the density of the $\operatorname{spirit}\left(\rho_{s}=m_{i 0(s) i m} / V_{(s) i m}=\right.$ real). In the outer space, the Earth's atmospheric pressure drops to about $3.2 \times 10^{-7} \mathrm{~atm}$ [10]. Thus using the well-known Equation of State ($\rho=P M_{0} / Z T$), we can write the following correlation expression:

$$
\frac{\rho_{\text {air(1atm) }}}{\rho_{\text {air(outer space) })}}=\frac{1 \mathrm{~atm}}{3.2 \times 10^{-7} \mathrm{~atm}}
$$

This means that the density of spirit is given by

$$
\begin{aligned}
\rho_{s} & =\rho_{\text {pe(outer space) })}=\rho_{\text {air (outer space) })}= \\
& =3.8 \times 10^{-7} \mathrm{~kg} . \mathrm{m}^{-3}
\end{aligned}
$$

Thus, inside the human body the perispirit density is $\rho_{p e}=\rho_{\text {HB }} \cong 1000 \mathrm{~kg} . \mathrm{m}^{-3}$ and the spirit density is $\rho_{s}=3.8 \times 10^{-7} \mathrm{~kg} . \mathrm{m}^{-3}$. Since the Perispirit is just an involucre of the spirit, we can assume that $\rho_{S} \cong \rho_{s}$.

The gravitational mass of the Soul, $m_{g(s) i m}$, is given by the sum of the spirit's gravitational mass with the perispirit's gravitational mass, i.e.,

$$
m_{g(S) i m}=m_{g(s) i m}+m_{g(p e) i m}
$$

As the perispirit is the unique part of the Soul with sufficient density to absorb measurable amounts of electromagnetic energy, we can neglect the contribution of the energy absorbed by the spirit in the calculation of the total energy absorbed by the Soul making $m_{g(s) \text { im }}=0$. Under these conditions, we can write that the gravitational mass of the Soul, $m_{g(S) \text { im }}$, is given by

$$
\begin{equation*}
m_{g(S) i m}=\underbrace{m_{g(s i m}}_{0}+m_{g(p e j i m}=m_{g(p e) i m} \tag{19}
\end{equation*}
$$

By analogy, the expression of the inertial mass of the Soul, $m_{i 0(s) i m}$ can be written as follows

$$
\begin{equation*}
m_{10(S) i m}=\underbrace{m_{0(S) i m}}_{0}+m_{10(p e j i m} \cong m_{10(p e j m} \tag{20}
\end{equation*}
$$

Based on Eq. (19) we can write that $\rho_{S} V_{(S) \text { im }}=\rho_{p e} V_{(p e) i m}$, where $V_{(p e) i m}=S_{(\alpha) i m} \Delta x_{p e}$; $\Delta x_{p e}$ is the thickness of perispirit. Since $\rho_{S} \cong \rho_{s}$ and $V_{(S) i m} \cong V_{(s) i m}$, we can write that $\rho_{S} V_{(S) \text { im }} \cong \rho_{s} V_{\text {(s)im }}=\rho_{p e} V_{(p e) i m}$. In addition, we have $V_{\text {Ssim }} / S_{\alpha \text { 人jim }} \cong V_{\text {(slim }} / S_{\alpha \alpha \text { im }}=V_{H B} / S_{H B} \cong 0.4 m^{3} / 1.1 m^{2} \cong 0.4 m$. Thus, we can conclude that

$$
\begin{equation*}
\Delta x_{p e}=\left(\frac{\rho_{s}}{\rho_{p e}}\right)\left(\frac{V_{(s) i \mathrm{i}}}{S_{(\alpha) \mathrm{im}}}\right) \cong 2 \times 10^{-10} \mathrm{~m} \tag{21}
\end{equation*}
$$

Fig. 3 - Perispirit and Spirit. The Spirit is inside the human body; the Perispirit is an involucre of the spirit, its boundaries coincide with the boundaries of the human body.

The power density of radiation, $D_{p e}$, absorbed by the perispirit can be expressed by $D_{p e}=\left(\Delta x_{p e} / \delta_{p e}\right) D$ where $\delta_{p e}$ is length scale for total absorption of the radiation with frequency $\omega=2 \pi f$. As we know, if the electrical conductivity of the mean, σ, is such that $\sigma \gg \omega \varepsilon$, where ε is the permittivity of the mean, then δ is given by [11]:

$$
\begin{equation*}
\delta=2.5 \times 10^{3} / \sqrt{f \sigma} \tag{22}
\end{equation*}
$$

Therefore, we can write that

$$
\begin{equation*}
D_{p e}=\left(\Delta x_{p e} / \delta_{p e}\right) D \cong 8 \times 10^{-14} \sqrt{f \sigma_{p e}} D \tag{23}
\end{equation*}
$$

where D is the total power density of the incident radiation on the perispirit.

By dividing Eq. (19) by Eq. (20) we obtain

$$
\chi_{S}=\frac{m_{g(S) i m}}{m_{0(S) i m}}=\frac{m_{g(p e l i m}}{m_{00(p e l i m}}=\chi_{p e}
$$

Thus, based on Eq. (18), we can write that

$$
\begin{align*}
\chi_{S} & =\chi_{p e}=\frac{m_{g(p e) i m}}{m_{i 0(p e j i m}}= \\
& =\left\{1-2\left[\sqrt{1+\frac{3 n_{p e}^{6} e_{\alpha}^{2} S_{m}^{4} \phi_{m}^{4} \mu_{0} \sigma_{p e} D_{p e}^{2}}{16 \pi \rho_{p e}^{2} c^{2} f^{3}}}-1\right]\right\} \tag{24}
\end{align*}
$$

Further on, we will show that the electrical conductivity of perispirit is enormous (10 trillion times greater than that of the metals), what shows that it contains a plasma. For the population of excited states for the elements in the plasma to be predominately caused by collisions with electrons and not by radioactive processes, it requires a minimal electron density to ensure these collisions. This minimal electron density is known as the McWhirter criterion and is defined as [12]:

$$
\begin{equation*}
N_{e} \geq 1.6 \times 10^{18} T^{\frac{1}{2}}(\Delta E)^{3} \tag{25}
\end{equation*}
$$

where ΔE (in eV) is the largest gap between 2 adjacent energy levels; T (in K) is the plasma temperature, and N_{e} is in electrons $/ \mathrm{m}^{3}$.

This condition is deduced for hydrogen and hydrogen-like atoms in an optically thin,
stationary and homogenous plasma [13]. The largest gap for hydrogen is indeed between the ground state and the first excited energy state and corresponds to 4 eV . This is not always the case for other elements. The largest energy gap for oxygen does not include the ground state and is 10 eV . In order to calculate the value of n_{e} for the perispirit at the human body, we must take these values: $\Delta E=10 \mathrm{eV}, T \cong 300 \mathrm{~K}$. The result is

$$
\begin{equation*}
N_{e} \geq 3 \times 10^{22} \text { electrons. } \mathrm{m}^{-3} \tag{26}
\end{equation*}
$$

As we have already shown $n_{p e} \cong 3.3 \times 10^{28}$ moleculesm ${ }^{-3}$. Thus, we can assume that

$$
N_{p e} \approx 10^{28} \text { ionsm }^{-3}
$$

It is known that the electrical conductivity is proportional to both the concentration and the mobility of the ions and the free electrons, and is expressed by

$$
\sigma=n_{e} \mu_{e}+n_{i} \mu_{i}
$$

where n_{e} and n_{i} express respectively the concentrations $\left(C / m^{3}\right)$ of electrons and atom-ions; μ_{e} and μ_{i} are respectively the mobilities of the electrons and the ions.

In order to calculate the electrical conductivity of the perispirit, we first need to calculate the concentrations n_{e} and n_{i}. We start by calculating the value of n_{i}, which is given by

$$
n_{i}=n_{e}=N_{p e} e \approx 10^{9} \mathrm{C} / \mathrm{m}^{3}
$$

This corresponds to the concentration level in the case of conducting materials. For these materials, at temperature of 300 K , the mobilities μ_{e} and μ_{i} are of the order of $10^{-1} \mathrm{~m}^{2} V^{-1} \mathrm{~s}^{-1}[14]$. Very high mobility has been found in several low-dimensional systems, such as two-dimensional electron gases (2DEG) $\left(300 m^{2} V^{-1} s^{-1}\right)$, [15] carbon nanotubes $\left(10 m^{2} V^{-1} s^{-1}\right)$ [16] and more
recently, graphene $\left(20 \mathrm{~m}^{2} V^{-1} \mathrm{~s}^{-1}\right)$ [17]. It is known that the mobility μ_{d} is related to the drift velocity v_{d} by means of the following equation:

$$
v_{d}=\mu_{d} E
$$

where E is the electric field. Thus, based on this equation, we can relate the mobility of free electrons of the Soul, μ_{e}, with the typical mobility of conductors, $\mu_{\text {cond }} \approx 10^{-1} \mathrm{~m}^{2} V^{-1} \mathrm{~s}^{-1}$, by means of the following expression:

$$
\begin{equation*}
\mu_{e}=\frac{v_{d(p e)}}{v_{d(c o n d)}} \mu_{c o n d} \tag{27}
\end{equation*}
$$

where the typical drift velocity in conductors is $v_{d(\text { cond })} \approx 10^{-4} \mathrm{~m} / \mathrm{s} \quad[18]$, and the drift velocity in perispirit is $v_{d(p e)} \approx c$ (since there are no collisions among the imaginary electrons). Thus, we get

$$
\mu_{e} \approx 10^{12} \mathrm{~m}^{2} V^{-1} \mathrm{~s}^{-1}
$$

Consequently, we can write that the electrical conductivity of perispirit is given by

$$
\begin{equation*}
\sigma_{p e}=n_{e} \mu_{e}+n_{i} \mu_{i} \approx 10^{21} S \cdot m^{-1} \tag{28}
\end{equation*}
$$

By substitution of this value into Eq. (22), we get

$$
\begin{equation*}
\delta_{p e} \cong 10^{-7} / \sqrt{f} \tag{29}
\end{equation*}
$$

By substitution of $\sigma_{\text {HB }} \approx 0.1 \mathrm{~S} / \mathrm{m}$ (conductivity of human body) into Eq. (22), we obtain

$$
\begin{equation*}
\delta_{H B} \cong 10^{4} / \sqrt{f} \tag{30}
\end{equation*}
$$

Substitution of the values of $n_{p e}, \sigma_{p e}$, $\rho_{p e}, D_{p e}, \phi_{m}=1.55 \times 10^{-10} m$, (average "diameter" of the molecules), $S_{m}=\pi \phi_{m}^{2} / 4=1.88 \times 10^{-20} m^{2}$ and $S_{\alpha} \cong 1.1 m^{2}$ into Eq. (24), gives

$$
\begin{equation*}
\chi_{s}=\left\{1-2\left[\sqrt{1+\frac{\sim 10^{39} D^{2}}{f^{2}}}-1\right]\right\} \tag{31}
\end{equation*}
$$

In this expression, the minimum value of D is limited by the uncertainty principle, i.e., by the amount of energy ΔE that can be detectable by our instruments. According to the uncertainty principle, $\Delta E \Delta t \geq \hbar$. Thus, $\Delta E \geq \hbar\left|\Delta t \rightarrow \Delta E_{\min }=\hbar\right| \Delta \Delta_{\text {max }}$. Since we can write that $D=\Delta E / S_{\alpha} \Delta t \geq \hbar / S_{\alpha} \Delta t^{2} \rightarrow D_{\min }=\hbar / S_{\alpha} \Delta t_{\text {max }}^{2}$, we obtain $\quad D_{\text {min }}=\Delta E_{\text {min }}^{2} / \hbar S_{\alpha}$. Here, $\Delta E_{\text {min }}=k T$, because if $<k T$, then the action of the incident radiation will be hidden by the action of the thermal radiation $(k T)$. Consequently, we can write that $D_{\min }=k^{2} T^{2} / \hbar S_{\alpha}$. Therefore, for $T=300 K$ and $S_{\alpha} \cong 1.1 m^{2}$, we get

$$
D_{\min } \cong 1.5 \times 10^{-7} \mathrm{~W} / \mathrm{m}^{2}
$$

Based on Eq.(31), we can write that the Soul imaginary energy $E_{g(S) i m}=m_{g(S) i m} c^{2}$ can be expressed by

$$
\begin{align*}
& E_{g(S) i m}=m_{g(s) i m} c^{2}=\chi_{s} m_{i(S) i m} c^{2} \cong \\
& \cong\left\{1-2\left[\sqrt{1+\frac{10^{39} D^{2}}{f^{2}}}-1\right]\right\} m_{i(s) i m} c^{2} \tag{32}
\end{align*}
$$

This energy varies along the time, having a minimum value at the beginning of life and a maximum value, $m_{g(S) i m}^{\max } c^{2}$, in a specific instant of the life of the person. After this maximum value, the energy decreases progressively down to the instant of the death of the person. This means that the average variation of this energy along the time can be expressed by the well-known bell curve (probability curve [19]), in the following form

$$
\begin{equation*}
m_{g(S) \text { im }} c^{2}=m_{g(S) \text { im }}^{\max } c^{2} e^{-4 \pi^{2} b^{2} t^{2}} \tag{33}
\end{equation*}
$$

where b is a time-constant to be defined. Since $m_{g(S) i m}=\chi m_{i(S) i m}$ and $m_{g(S)}^{\max }=\chi m_{i(S) \text { im }}^{\max }$ Eq. (33) can be rewritten as follows

$$
\begin{equation*}
m_{i 0(S)}=m_{i 0(S)}^{\max } e^{-4 \pi^{2} b^{2} t^{2}} \tag{34}
\end{equation*}
$$

Fig. 4 - The variation of the gravitational mass of the Soul (Soul energy $m_{\mathrm{gS}} \mathrm{c}^{2}$) along the life of a person, and Quantum Reversal from the current energy level to a previous energy level.

Making $t=t_{a}$ (current time in the life of the person), and after $t=t_{R}$ (reversal time ${ }^{*}$, see Fig.4) into Eq. (34), we obtain the following expressions

$$
\begin{equation*}
m_{i 0(S)}^{a}=m_{i 0(S)}^{\max } e^{-4 \pi^{2} b^{2} t_{a}^{2}} \tag{35}
\end{equation*}
$$

and

$$
\begin{equation*}
m_{i 0(s)}^{R}=m_{i 0(S)}^{\max } e^{-4 \pi^{2} b^{2} t_{R}^{2}} \tag{36}
\end{equation*}
$$

By dividing Eq.(35) by Eq. (36), we get

$$
\begin{equation*}
m_{i 0(S)}^{a}=m_{i 0(S)}^{R} e^{-4 \pi^{2} b^{2}\left(t_{a}^{2}-t_{R}^{2}\right)} \tag{37}
\end{equation*}
$$

Positive values of the Soul energy express the progress of the energy levels and obviously, a given positive value cannot to cause reversion. Thus, in order to occur the reversion it is necessary that $\chi_{s}<0$, When

[^0]this occurs, the energy of the Soul $\left(m_{g(S) i m}^{a} c^{2}=\chi_{S} m_{i(S) i m}^{a} c^{2}\right)$ becomes positive and returns to the corresponding value $\left(m_{i(s) i m}^{R} c^{2}=\left|\chi_{s}\right| m_{i(S) i m}^{a} c^{2}\right)$. Thus, we can write that $m_{i 0(s)}^{R}=\left|\chi_{S}\right| m_{i 0(s)}^{a}$. Substitution of this expression into Eq. (37) gives
\[

$$
\begin{equation*}
m_{i 0(s)}^{a}=\left|\chi_{S}\right| m_{i 0(s)}^{a} e^{-4 \pi^{2} b^{2}\left(t_{a}^{2}-t_{R}^{2}\right)} \tag{38}
\end{equation*}
$$

\]

or

$$
\begin{equation*}
\left|\chi_{S}\right|=e^{4 \pi^{2} b^{2}\left(t_{a}^{2}-t_{R}^{2}\right)} \tag{39}
\end{equation*}
$$

Note that the time-constant b^{-2} must be a very big number, because the values of $e^{\left(t_{a}^{2}-t_{R}^{2}\right)}$ are enormous in the case of $0 \ll t_{a}<3.1 \times 10^{9} \mathrm{~s}$ (100 years). Thus, if the value of b^{-2} is not very big then the values of χ_{s} lose their meaning. A very big number related to the time is, certainly, the age of the Universe. Thus, we will define the time-constant b^{-2} as follows

$$
b^{-2}=4.26 \times 10^{17} s=\text { current age of Universe }
$$

For example, if a person is exactly 62 years old ($t_{a}=1.928 \times 10^{9} \mathrm{~s}$), and wants to revert its Soul energy to the energy that it had at 5 years ago (57 years old, $t_{R}=1.774 \times 10^{9} \mathrm{~s}$), then the value of χ_{s}, according Eq.(39), must be given by

$$
\begin{equation*}
\left|\chi_{S}\right|=e^{4 \pi^{2} b^{2}\left(t_{a}^{2}-t_{R}^{2}\right)} \cong e^{51.32} \cong 1.9 \times 10^{22} \tag{40}
\end{equation*}
$$

Equation (31) shows that, in order to obtain $\chi_{S}=-1.9 \times 10^{22}$, is necessary to apply on the Soul (body) an electromagnetic radiation with frequency f and power density D, given by

$$
\begin{equation*}
D \cong 300 f \tag{41}
\end{equation*}
$$

Maximum Permissible Exposure (MPE) levels have been established by ANSI Z136.1 [20] for various laser wavelengths and exposure durations. The MPE is the level of laser radiation to which a person may be exposed without hazardous effect or adverse biological changes in the eye or skin. This limit is $\sim 1000 \mathrm{~W} / \mathrm{m}^{2}$. Here, considering this limit, we can conclude that, according to Eq.
(41), the maximum value for the frequency is about 3.3 Hz .

Now, we can verify the effect of the ELF radiation upon the gravitational mass of the human body. By substitution of $n_{\text {HB }}=n_{p e}, \quad \rho_{\text {Нв }}=\rho_{\text {рe }}, \quad \sigma_{\text {НВ }} \sim 0.1 \mathrm{~S} / \mathrm{m}$, $\phi_{m}=1.55 \times 10^{-10} \mathrm{~m}, \quad S_{m}=\pi \phi_{m}^{2} / 4=1.88 \times 10^{-20} \mathrm{~m}^{2}$ and $S_{\alpha} \cong 1.1 m^{2}$ into Eq. (18) we obtain

$$
\begin{equation*}
\chi_{H B}=\left\{1-2\left[\sqrt{1+\frac{\sim 10^{23} \sigma_{H B} D_{H B}^{2}}{f^{3}}}-1\right]\right\} \tag{42}
\end{equation*}
$$

The expression of $D_{H B}$ can be obtained from the following relation

$$
\begin{equation*}
\frac{D_{H B}}{D_{p e}}=\frac{\delta_{p e}}{\delta_{H B}} \tag{43}
\end{equation*}
$$

where $\quad D_{p e} \cong 8 \times 10^{-14} \sqrt{f \sigma_{p e}} D \quad$ (Eq. 23). Thus, Eq. (43) can be rewritten as follows

$$
\begin{equation*}
D_{\text {HB }} \cong 10^{-14} \sqrt{f} D \tag{44}
\end{equation*}
$$

Substitution of this equation into Eq. (42), gives

$$
\begin{equation*}
\chi_{H B}=\left\{1-2\left[\sqrt{1+\frac{\sim 10^{-6} D^{2}}{f^{2}}}-1\right]\right\} \tag{45}
\end{equation*}
$$

Substitution of Eq. (41) into (45) yields $\chi_{\text {нв }}>0.9$. This corresponds to a weight decrease of less than 10%, which shows that, here, in the case of $D \cong 300 f$, the effect of the ELF radiation upon the gravitational mass of the human body is negligible.

Quantum Physics shows that the energy is quantized, i.e., it has discrete values that are defined as discrete energy levels that correspond to all positive integer values of the quantum number $n,(n=1,2,3, \ldots)$. Thus, along the life of a person, the energy of its Soul is characterized by several quantum levels of energy. Then, we can say that, when occurs a reversal of soul energy, it carries out a quantum reversal to a previous level of energy.

Any action once performed leaves an impression on the Soul (its energy). Thus, each energy level of a Soul expresses, at the corresponding moment, the human being in its totality. This means, for example, that our current human shape results from the current energy level (spectrum) of our Soul. Imagine
that a person break a leg when it is 50 years old. If he is subjected to an electromagnetic radiation flux with $D \approx 300 \mathrm{~W} / \mathrm{m}^{2}$ at 1 Hz , then its Soul carries out a quantum reversal to the energy level that he had 5 years ago. At this energy level the leg was not broken in the human body. Consequently, we can expect that the broken part disappears, and the leg returns to the form that it had in this energy level. By means of this process it seems possible the immediate cure of any wound, any kind of disease, and also the resuscitation of persons who have died some seconds ago (before the spirit leaves the human body).

It is known that the brain is able to generate electromagnetic waves with frequencies smaller than 100 HZ . The brainwaves of lowest frequencies are the Delta waves. Delta waves are defined as having a frequency between 0.5 and 2 hertz. They are the highest amplitude brainwaves. In adults they are radiated from their forehead [21]. Also, it is known that the total electromagnetic power (all the frequencies) generated by the brain can reach up to 25 Wor more [22]. This means that at a distance of 1 m from the brain a maximum power density is about $2 \mathrm{~W} / \mathrm{m}^{2}$. Substitution of this value and $f=1 \mathrm{~Hz}$ into Eq. (31) gives

$$
\begin{equation*}
\chi_{S}=-1.265 \times 10^{20} \tag{46}
\end{equation*}
$$

Comparing with Eq. (40), yields
$\left|\chi_{S}\right|=e^{\left.4 \pi^{2} b^{2} 2 t_{a}^{2}-t_{R}^{2}\right)} \cong e^{46286} \cong 1.265 \times 10^{20}$
whence we obtain

$$
\begin{equation*}
t_{R}=\sqrt{t_{a}^{2}-4.994 \times 10^{17}} \tag{48}
\end{equation*}
$$

For $t_{a}=1.928 \times 10^{9} s=62$ years, we obtain

$$
\begin{equation*}
t_{R} \cong 1.794 \times 10^{9} \mathrm{~s} \cong 58 \text { years } \tag{49}
\end{equation*}
$$

This means a return of approximately 4 years in the Soul energy level. Note that, while it is necessary $2 \mathrm{~W} / \mathrm{m}^{2}$ at 1 Hz to return 4 years, it is necessary $300 \mathrm{~W} / \mathrm{m}^{2}$ at 1 Hz to return 5 years.

However, only a small part of the 25 W is due to the delta waves. This means that the return is yet smaller. It obvious that the power densities of the delta waves radiated from the brains vary of persons for persons. Possibly, for most the persons the power
densities of delta waves radiated from its brains are negligible (smaller than the critical value $D_{\text {min }} \cong 1.5 \times 10^{-7} \mathrm{~W} / \mathrm{m}^{2}$). Since we can relate the radiation density, D, with the intensity of the electric field, E, by means of the following expression $D=n_{r} E^{2} / 2 \mu_{0} c$ [23], then, considering that the value of electric field in the forehead of a person (when emitting delta waves) is $E=V / r$, where V is the local electric potential (for ordinary persons $V \approx 150 \mu V$ [24]), and r is the radius of the sphere with the same volume of the brain $(r \approx 0.1 m)$, then we can write that

$$
D=\frac{E^{2}}{2 \mu_{0} c}=\frac{V^{2}}{2 \mu_{0} c r^{2}} \approx 10^{-9} \mathrm{~W} / \mathrm{m}^{2} \ll D_{\min }
$$

This shows why the ordinary persons cannot to produce immediate cures. Equation above shows that to produce $D>D_{\min }$ is necessary that $V>1 m V$ (approximately 10 times greater than that of ordinary persons).

Note that, if $t_{a}=1.866 \times 10^{8} \mathrm{~s}=6$ years, and we want to return 1 year, then for 1 Hz the necessary value of χ_{s}, according to Eq. (39) is $\left|\chi_{S}\right|=e^{0.986} \rightarrow \chi_{S}=-2.68$. Thus, according to Eq. (31) the value of D is $8.4 \times 10^{-20} \mathrm{~W} / \mathrm{m}^{2}$. However, as we have already seen, the value of D is limited to $D_{\text {min }} \cong 1.5 \times 10^{-7} \mathrm{~W} / \mathrm{m}^{2}$. This means that the return of 1 year, in the case what $t_{a}=1.866 \times 10^{8} s=6$ years, is impossible. Also, note that for $D \geq D_{\text {min }}$ the values of t_{R} become imaginaries. What means that it is impossible to return the soul energy of a child with 6 years old. In general, it is impossible to return the soul energy of any person with $t_{a}<\sqrt{\ln \left|\chi_{S}\right| / 4 \pi^{2} b^{2}}$.

Since $D_{\text {max }} \cong 10^{3} \mathrm{~W} / \mathrm{m}^{2}$ and $f_{\text {min }} \cong 0.1 \mathrm{~Hz}$, we obtain from Eqs. (31) and (39) the following expression:

$$
\begin{equation*}
t_{R}^{\max }=\sqrt{t_{a}^{2}-5.914 \times 10^{17}} \tag{50}
\end{equation*}
$$

For $t_{a}=1.928 \times 10^{9} s=62$ years, we get $t_{R}^{\max }=1.768 \times 10^{9} s \cong 56.8$ years. This means a maximum return of ~ 5.2 years in the soul
energy level. $t_{a}=9.330 \times 10^{8} s=30$ years, Eq. (50) gives $t_{R}^{\max }=5.282 \times 10^{8} s \cong 17$ years. Therefore, a return of approximately 13 years, in the soul energy level. Note that, the maximum return possible, ~ 13.8 years, occurs for $t_{a} \cong 29$ years .

Fig. 5 - The immediate Cure or Resuscitation. Delta waves are defined as having a frequency between 0.5 and 2 hertz. They are the highest amplitude brainwaves. In adults they are radiated from their forehead.

The building of ELF transmitters is very difficult because the length of the antenna is enormous. In the case of 1 Hz the antenna length must be of the order of 100.000 km . However, by using the process of gravitational redshift at laboratory scale, shown in a previous paper [25] it is possible for example, to reduce frequencies $f \cong 1 \mathrm{GHz}$ down to $\sim 1 \mathrm{~Hz}$. In order to produce a power density $D \cong 10^{-6} \mathrm{~W} / \mathrm{m}^{2}$ at $\sim 1 \mathrm{~Hz}$, by the mentioned redshift process, it is necessary an initial flux with $D \cong 10^{3} \mathrm{~W} / \mathrm{m}^{2}$ at $\sim 1 \mathrm{GHz}$, what corresponds to the minimum frequency band of MASERS. These devices were invented before the laser, but have languished in obscurity because they required high magnetic fields and difficult cooling schemes. Hydrogen masers oscillate at a frequency at around 1.42 GHZ and have a typical power of $\sim 10^{-13} \mathrm{~W}$ [26]. They are very complex and expensive devices.

Recently, it was discovered a roomtemperature solid-state maser, which oscillates at frequency of 1.45 GHZ . Basically, it is a simple crystal called pterphenyl. This new device is very simple to
build and operate, and removes totally the masers' complexity. When configured as an oscillator, this solid-state maser's measured output power density of around $1 \mathrm{~mW} / \mathrm{mm}^{2} \cong$ $1000 \mathrm{~W} / \mathrm{m}^{2}$ (approximately 100 million times greater than that of an atomic hydrogen maser) [27].

Fig. $6-$ Schematic diagram of a system, using solidstate masers, to produce an ELF radiation flux with $\mathbf{1 0}^{-6}$ W / m^{2} at 1.45 Hz .

Considering that each one of these masers radiates $1 \mathrm{~mW} / \mathrm{mm}^{2}$, then it is necessary a set of 10^{6} masers placed inside an area of 10 mx 10 m (See Fig.6), and after concentrated into an area of $1 \mathrm{~m}^{2}$ (by means of the process of deflection of electromagnetic waves at laboratory scale [28]), in order to obtain a flux of $10^{3} \mathrm{~W} / \mathrm{m}^{2}$ at 1.45 GHz , which is posteriorly redshifted to a flux of $10^{-6} \mathrm{~W} / \mathrm{m}^{2}$ at 1.45 Hz $\left(D_{\min } \cong 1.5 \times 10^{-7} \mathrm{~W} / \mathrm{m}^{2}\right)$. Substitution of these values into Eq. (31) gives $\chi_{S} \cong-4 \times 10^{13}$. By substitution of this value into Eq. (39), we get

$$
\begin{equation*}
t_{R}=\sqrt{t_{a}^{2}-3 \times 10^{17}} \tag{51}
\end{equation*}
$$

This equation shows that the system will only be useful to produce short returns in the soul energy of persons with $t_{a}>18$ years. Similar systems with higher power densities can provide higher returns, for persons with $t_{a} \gg 18$ years.

Probably all human brains are able to generate delta waves. But, only few brains can generate fluxes of this kind of radiation with the necessary power density to return
the energy of the Soul to a previous energy level, sufficient to carry out the immediate cure of any wound, any kind of disease, or the resuscitation of persons. The history shows the existence of several persons who have realized immediate cures, and someone that has carried out even resuscitations. Among them, the most known is Jesus of Nazareth.

As we have already shown, the ordinary persons usually are not able to produce fluxes of delta waves with power densities sufficient to carry out immediate cures ($D>D_{\min } \cong 1.5 \times 10^{-7} \mathrm{~W} / \mathrm{m}^{2}$). Also, we have shown that, in order to carry out these cures is necessary power densities about 100 times more intense then those produced by the ordinary persons $\left(D \approx 10^{-9} \mathrm{~W} / \mathrm{m}^{2}\right)$. In addition, it is very rare to remain conscious during the emission of delta waves. Thus, the persons who, at conscious state, are able to radiate fluxes of delta waves with power densities 100 times more high than those produced by the ordinary persons - which just radiate delta waves at sleep state - are really extraordinary persons.

What is necessary for the brain of a person acquire this capacity? A special diet? Specific physical exercises? Or the persons only acquire this capacity by means of the evolution? That is, all persons have this capacity on a latent stage, but it is only awakened at a specific evolution level.

Recently, it was proved that the state of mature cells, with a specific disease, can be reverted to a previous state (pluripotent stem cell state), where the cells become healthy ${ }^{\dagger}$ [29,30]. This is in agreement with the process of quantum reversal of the soul energy, proposed in this work, which shows that it is possible to revert the current state of a human body to a healthy previous state.

This matter is unprecedented in the literature. It is necessary more than one paper to deepen it. We will return to this matter in a future work.

[^1]
References

[1] Falk, G. D., (2004) The Science of the Soul, Blue Dolphin Publishing, Inc. , USA.
[2] Huxley, J. (1969) Essays of a Humanist, Penguin Books, UK, pp. 82-83.
[3] De Aquino, F., (2012) Beyond the Material Universe, Journal for Interdisciplinary Research on Religion and Science, No. 10, pp.83-128.
[4] Schiff, L. I., (1981) Quantum Mechanics, McGraw-Hill, third edition, pp.39-41.
[5] De Aquino, F. (2010) Mathematical Foundations of the Relativistic Theory of Quantum Gravity, Pacific Journal of Science and Technology, 11 (1), pp. 173-232.
[6] Quevedo, C. P. (1977) Eletromagnetismo, McGrawHill, p. 270.
[7] Schwartz, H. M. (1968) Introduction to Special Relativity, chaps. 3, 4, 8, McGraw-Hill, NY.
[8] Bergmann, P. G. (1946) Introduction to the Theory of Relativity, pt I, Prentice-Hall, N.J.
[9] Kardec, A., (1954) Le Livre des Espirits, Éditions de L’U.S.K.B., q. 187
[10] Squire, Tom (2000), "U.S. Standard Atmosphere, 1976", Thermal Protection Systems Expert and Material Properties Database (NASA), retrieved 2011-10-23.
[11] Quevedo, C. P. (1977) Eletromagnetismo, McGraw-Hill, p. 270.
[12] G. Cristoforetti, A. De Giacomo, M. Dell'Aglio, S. Legnaioli, E. Tognoni, V.Palleschi and N. Omenetto (2010) Local Thermodynamic Equilibrium in Laser-Induced Breakdown Spectroscopy: Beyond the McWhirter criterion, Spectrochimica Acta Part B: 65, 86-95.
[13] N. Omenetto, EMSLIBS TALK, Rome 2009
[14] E. O. Knutson and K. T. Whitby (1975). "Aerosol classification by electric mobility: Apparatus, theory, and applications". J. Aerosol Sci. 6 (6): 443-451.
[15] Harris, J. J.; Foxon, C. T.; Barnham, K. W. J.; Lacklison, D. E.; Hewett, J.; White, C. (1987). "Twodimensional electron gas structures with mobilities in excess of $3 \times 106 \mathrm{~cm} 2 \mathrm{~V}-1 \mathrm{~s}-1$ ". Journal of Applied Physics 61: 1219.
[16] Dürkop, T., Getty, S. A., Cobas, E., Fuhrer, M. S. (2004). "Extraordinary Mobility in Semiconducting Carbon Nanotubes". Nano Letters 4: 35.
[17] Bolotin, K., Sikes, K., Jiang, Z., Klima, M.,Fudenberg, G., Hone, J., Kim, P., Stormer, H., (2008). "Ultrahigh electron mobility in suspended graphene". Solid State Communications 146: 351.
[18] Knutson, E. O. and Whitby, K. T. (1975). "Aerosol classification by electric mobility: Apparatus, theory, and applications". J. Aerosol Sci. 6 (6): 443-451.
[19] Casella, G., Berger, R. L. (2001) Statistical inference (2nd ed.). Duxbury; Patel, J. K.; Read, C. B., (1996) Handbook of the normal distribution(2 ${ }^{\text {nd }}$ ed.) CRC Press.
[20] Laser Institute of America - Secretariat and Publisher of the ANSI Z136 Series of Laser Safety Standards. http://www.lia.org/publications/ansi/Z136-1
[21] H. Aurlien, I.O. Gjerde, J. H. Aarseth, B. Karlsen, H. Skeidsvoll, N. E. Gilhus (March 2004). "EEG background activity described by a large computerized database" Clinical Neurophysiology 115 (3): 665-673.
[22] Kandel, E. R., and Schwartz, J, H., (1985) Principles of Neural Science, 2nd edition, Elsevier.
[23] Halliday, D. and Resnick, R. (1968) Physics, J. Willey \& Sons, Portuguese Version, Ed. USP, p. 1124.
[24] Pilon M; Zadra A; Joncas S et al. Hypersynchronous delta waves and somnambulism: brain topography and effect of sleep deprivation. SLEEP 2006;29(1): 77-84.
[25] De Aquino, F., (2012) Gravitational Blueshift and Redshift generated at Laboratory Scale, http://vixra.org/abs/1208.0239
[26] Klepper, D., Goldenberg, H.M., Ramsey, N.F., (1962) Properties of the hydrogen maser, Appl. Opt., 1,55-60.
[27] Oxborrow, M. et al., (16 August 2012) Room- temperature solid-state maser, Nature 488,353-356.
[28] De Aquino, F., (2012) Artificial Gravitational Lenses, http://vixra.org/abs/1208.0221
[29] Takahashi K., Yamanaka, S. (2006).Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.Cell126:663-676.
[30] Gurdon JB (1962). Developmental Capacity of Nuclei Taken from Intestinal Epithelium Cells of Feeding Tadpoles. J Embryol Exp Morph 10: 622-640.

[^0]: * This is not a return in time. It is only return to energy level that the Soul had at a specific time of its life.

[^1]: ${ }^{\dagger}$ This work, initiated by Gurdon (1962) and concluded by Yamanaka (2006), has been awarded with the 2012 Nobel Prize in Medicine.

