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Abstract 

It is shown that the recently observed 125 GeV resonance energy believed to result from the spin 0 Higgs 
boson of the standard model might without a violation of the averaged null energy condition as well be 
explained by a spin 2 graviton, assuming the existence of negative masses. With this assumption the 125 
GeV resonance energy can be explained by the positive gravitational interaction energy of a positive mass 
particle of ~1013 GeV with a likewise negative mass particle. The existence of particles with this energy 
can perhaps be confirmed by cosmic ray data, where the Greisen-Zatsepin cut-off at 5 x 1013 GeV is of 
the same order of magnitude. 

1. Introduction 

The recent discovery of the 125 GeV resonance energy with the large Hadron Collider (LHC), believed to 
be a sign of the spin 0 Higgs boson of the standard model (SM), has raised more questions than answers. 
In the non-supersymmetric standard model, the Higgs particle mass should be infinite, that is, equal to the 
Planck mass of 1019 GeV if gravity is included. It is only in the minimally supersymmetric standard 
model (MSSM) that the Higgs particle mass can be in the electroweak energy range, but only if 
suppersymmetry is not broken above an energy much higher than the electro-weak energy scale of ~100 
GeV. Also, if supersymmetry is only broken at a much higher energy it would bring disorder into 
cosmology, because it would lead to a large cosmological constant which is not observed. 

According to Planck (1899) the fundamental equations of physics should contain only Planck’s constant
= , Newton’s constant G, and the velocity of light c, in addition to Boltzmann’s constant k, expressing the 
fundamental importance of entropy as a constraint imposed on these laws. Under Planck’s doctrine, a 
comparison and evaluation of three proposals made for the formulation of such laws is made. These are 
Heisenberg’s nonlinear spinor theory, supersymmetric string theories, and the Planck mass plasma theory.  

The latest data from the Large Hadron Collider (LHC) speak against the existence of supersymmetry, a 
crucially important ingredient of supersymmetric string theories, raising the question of whether or not 
string theory will survive as a candidate of a theory unifying general relativity with quantum mechanics. 
Because of this still uncertain outcome, I have first chosen Heisenberg’s failed attempt to arrive at a 
unified theory of elementary particles by a nonlinear spinor field theory, and supersymmetric string 
theories, as two examples with regard to Planck’s doctrine that the fundamental equations of physics 
should only contain Planck’s constant = , Newton’s constant G and the velocity of light c, supplemented 
by the second law of thermodynamics. 

2. Heisenberg’s Nonlinear Spinor Theory 

It was Heisenberg’s idea that the spectrum of elementary particles could be derived from a spinor 
field equation with a nonlinear self-interaction term of the form [1] 

 ( )2 † 0l
xμ
μ

ψγ ψ ψ ψ∂
+ =

∂
 

(1)

In collaboration with Pauli, Heisenberg settled on the equation [2] 
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 ( )2 0l
xν μ ξ μ ξ
ν

ψγ γ γ ψ ψγ γ ψ∂
± =

∂
(2)

The nonlinear term in (1) and (2) is multiplied by the square of a fundamental length l. It must be of 
the order 10-13 cm, if the theory shall reproduce the masses of the baryons. But because of Planck’s 
doctrine, the length should rather be of the order of the Planck length ≈ 10-33 cm, derived from = , G, and 
c, Heisenberg’s theory fails Planck’s doctrine. The quantization of (1) leads to further insurmountable 
problems. If quantized, not only have the smooth analytic solutions of (1) there to be taken into account 
for the intermediate virtual states, but also the much larger number of non-analytic—that is non-smooth—
functions, including the function which is equal to one for all rational numbers and zero for all other 
numbers. These functions have “normally” no meaning in physical reality. To avoid this problem, 
Heisenberg postulates the existence of two types of Hilbert spaces: Hilbert space I, where the total mass 
of all intermediate virtual states is smaller than a very large mass Mg, and a Hilbert space II, containing all 
the other states. But for this kind of regularization a high price has to be paid, because it implies a Hilbert 
space with an indefinite metric. As it was shown by Lehmann [3], for a relativistic theory with an 
interaction and a positive definite metric of the Hilbert space, the singularities on the light cone have to be 
δ and δ’ functions. The suppression of the δ and δ’ functions on the light cone then leads with necessity to 
an indefinite metric in Hilbert space. In quantum mechanics, a Hilbert space with an indefinite metric 
leads to negative probabilities, not possible in a theory describing physical reality.  

As a first step to “correct” Heisenberg’s theory to be in line with Planck’s doctrine, the large mass Mg 

should be set equal to the Planck mass pm c / G= = , and the length l equal to the Planck length 

3
pr G / c= = . Such a theory could be used as a model to describe massive particles, with a mass of the 

order of the Planck mass, but it would not solve the problem of its quantization with an indefinite Hilbert 
space as in Heisenberg’s theory. Actually, this problem is here worse, because near the Planck energy 
special relativity must be replaced by general relativity, and the Minkowski space-time by the solutions of 
Einstein’s gravitational field equation, which also would have to be quantized. This, of course, is the 
unsolved problem of quantum gravity. 

But as it was the case for Bohr’s quantization of the electron orbits in the hydrogen atom, where one 
did not have to wait for quantum electrodynamics to get from it the Coulomb potential as a low energy 
approximation, the correct energy levels could there be already obtained by using the Coulomb potential 
of classical electrodynamics, and the same may be true to obtain the mass spectrum of elementary 
particles with a solution of Einstein’s non-quantized classical gravitational field theory. 

For the hydrogen atom, a departure of the Coulomb potential from its classical e/r dependence, occurs 
at the high energies where quantum electrodynamics must be taken into account. In analogy, to obtain the 
mass spectrum of the elementary particles, high energy means there the Planck energy of 1019 GeV, 
which is small in comparison to 100 GeV, the energy of the electroweak scale. The effect of gravity on 
the mass spectrum of the elementary particles, can very well be significant, but can be taken into account 
by solutions of classical general relativity, and without quantum gravity.  

3. Supersymmetric String Theories 
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Supersymmetric string theories satisfy the = , G, c part of Planck’s doctrine, but not its dS/dT > 0 
constraint, where S = k·logW, because the theory is formulated in ten space-time dimensions (with one 
dimension for time), not the four space-time dimensions of every physics laboratory. The higher 
dimensions make it possible for entropy to flow from the three dimensions of the natural space into the 
higher dimensions, making it possible that dS/dt < 0 in the three-dimensional sub-space of nature, in 
disagreement with the laws of classical thermodynamics. No wonder that with the higher dimensions one 
can construct cyclic models of pulsating universes, with an infinite number of successive expansions and 
contractions [4]. But as Tolman [5] had shown a long time ago, general relativity predicts the steady 
growth of the entropy in successive cycles, with the cycles growing larger and lasting longer.  

But string theories provide a hint what a correct theory of three space and one time dimensions 
might be. Prior to the discovery of quantum chromodynamics it was known that the strong interaction 
between the quarks could be modeled by a 26 dimensional boson string theory. As the author had shown 
[6], in fluid dynamics the interaction of vortices is quite similar. The observation by Krisch [7] showing 
for polarized proton collisions a strong angular dependence which cannot be easily explained with 
quantum chromodynamics, supports the idea that strings are misinterpreted vortices in some medium 
occupying the vacuum of space.  

4. Negative Masses and the Energy Condition 

To be in agreement with physical reality, solutions of Einstein’s gravitation field equations must obey the 
energy condition. It is imposed to exclude causality-violating closed timelike world lines. Unlike the 
“averaged null energy condition,” the “strong energy condition” excludes negative masses, but 
interestingly not matter fields described by the Dirac equation. The experimentally established Casamir 
effect is in violation of the strong energy condition, which for that reason has been criticized by Steven 
Hawking, Kip Thorne and others [8, 9, 10, 11, 12], as an example that negative energies are possible in 
nature. And it was Hund [13] who had shown a long time ago that the strong energy condition is violated 
in solutions of Einstein’s gravitational field equations through the occurrence of negative masses of the 
gravitational field itself, but with the solution not violating the averaged null energy condition. 

The averaged null energy condition also permits the introduction of negative besides positive Planck mass 
particles. In the context to explain the 125 GeV resonance by a graviton, there is no violation of the 
averaged null energy condition. 

5. Negative Masses in Einstein’s Gravitational Field Equation 

For Hund’s proof that Einstein’s gravitational field equations lead to the existence of negative masses, it 
is sufficient to consider the gravitational field outside a spherical symmetric mass distribution. For 
Schwarzschild’s solution one can there set for the line element in spherical coordinates 

 2 2 2 2 2 2 2 2 2 2= θ + θ φds f c dt - h dr - r ( d sin d ) (3)

 expressing the components of the metric tensor gik in space-time by two functions h(r) and f(r). Inserting 
these given components of the metric tensor given by (3) in Einstein’s vacuum field equation 
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 0=ikR  (4)

one obtains 

 0
2 0

′ =

′′ ′ ′ ′+ − =

( hf )

h( f f ) h f
r

 
(5)

For the gravitational field F, if measured in eigen-time fdt, and eigen-length hdr, one obtains for the 
acceleration, and hence the force F in the radial direction: 

 2 ′⎛ ⎞
= = −⎜ ⎟

⎝ ⎠

d h dr c fF
fdt f dt hf

 
(6)

With F given by (6) one can write for the second equation (5): 

 2
2

2 2

1 0′ − =
F( r F )

hr c
 

(7)

The first term in (7) is identical to the definition of the divergence of a radial vector F = Fr/r, defined by 
the increase d(4πr2F) of the flux of F through a spherical surface of radius r, divided by the increase in the 
volume of this sphere 4πr2hdr. One therefore can write for (7) 

 2
2

1 0− =F Fdiv
c

 
(8)

Comparing this result with Newtonian gravity where (G is Newton’s constant) 

 4= − π ρFdiv G  (9)

one concludes that the gravitational field F has a negative mass density 

 2

24
ρ = −

πg
F
Gc

 
(10)

One can test this result for  

 
2= −F GM

r
 

(11)

the gravitational field of a spherical mass of radius R, for r > R. One there finds 

 
2 44

ρ = −
πg
GM

c r
 

(12)
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To obtain the total amount of negative mass mg outside the mass M, we integrate and obtain 

 2
2

24g g
R

GMm r dr
c R

∞

= ρ π = −∫  
(13)

or  

 2
2

g pot
GMm c E

R
= − =  

(14)

where Epot is the negative gravitational potential energy of a spherical shell of radius R and mass M. This 
example shows, that to obtain the gravitational field mass mg, one simply has to equate the gravitational 
potential energy with mgc2. 

According to Planck’s doctrine, Einstein’s gravitational field equation of gravitation cannot be 
fundamental because it is derived from the Einstein-Hilbert Lagrangian which does not contain Planck’s 
constant. It is given by 

 3

16
c g R

G
= −

π
L  

(15)

It appears the most obvious way to introduce =  into (15) is by a modification of the Einstein-Hilbert 
Lagrangian. A way how this can be done is suggested by an analogy drawn between the ideal gas 
equation and the Van der Waals equation. In the ideal gas equation the pressure diverges if the density 
becomes infinite. In the Van der Waals equation the pressure diverges when the density reaches a 
maximum ρ = ρ0, where in the ideal gas equation one makes the substitution: 

 

( )0

p p
1 /

→
ρ ρ −ρ ρ

 
(16)

Making an analogy with the Van der Waals equation then suggests replacing (15) by [14] 

 3

216 1 p

gRc
G r R

−
=

π −
L  

(17)

where rp ≈ 10-33cm is the Planck length. There then, the curvature invariant is limited by R ≤ 1/rp
2. But the 

inclusion of negative masses would rather suggest that 

 

( )( )
3

2 216 1 1p p

gRc
G r R r R

−
=

π − +
L  

(18)

such that R ≤ ±1/rp
2, with L → ∞ for R = ±1/rp

2. In the weak field limit one has 2 2R (1/ c )∇ Φ� , where 
Φ is the gravitational potential, one therefore has 
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 2 2 2
pc / r∇ Φ = ±  (19)

Comparing this with 

 2 4 G∇ Φ = π ρ  (20)

and setting ρ = ±mp/rp
3, one obtains (19) and  

 
p

p

Gm
r

Φ = ± ,   r = rp 
(21)

6. Negative Masses in Dirac’s Equation 

While Einstein’s gravitational field equation cannot be final, because it does not contain Planck’s 
constant = , the Dirac equation can likewise not be final since it does not contain G. Following 
Schrödinger’s Zitterbewegung analysis [15, 16] and the work by Hönl and Papapetrou [17, 18, 19], it is 
possible to consider a Dirac particle to be made up of a positive and negative mass, with the positive mass 
larger than the absolute value of the negative mass.  

It is therefore possible to introduce the gravitational constant into Dirac’s equation, by assuming that 
the surplus in positive mass over the absolute value of the negative mass comes from the positive mass of 
the gravitational field energy of a positive mass gravitationally interacting with a negative mass [20, 21, 
22]. If the positive gravitational field mass is added to the positive mass of the mass dipole, obe obtains a 
pole-dipole mass configuration from which one can derive the Dirac equation. It is the small residual 
mass m of the gravitational field which is the mass of a Dirac particle.  

While without the mass of the gravitational field a mass dipole would lead to the self-acceleration, a 
pole-dipole configuration leads to a helical motion, along the helix reaching the velocity of light. It is 
from this configuration that one can derive the Dirac equation [12, 13, 14]. We therefore call this 
configuration a spinor roton, and suggest that the non-baryonic cold dark matter is made up of it. 
 The much lighter elementary particles of the standard model are in a likewise way made up from 
much smaller pole-dipole configurations of lower energy quantized vortex configurations of the Planck 
mass plasma [20, 21, 22]. 
 

It was shown by Bopp [23] the presence of negative masses can be accounted for in a Lagrange 
function, ( )k k kL q ,q ,q= � �� , which also depends on the acceleration. The equations of the motion are there 
derived from the variational principle: 

 ( , , ) 0k k kL q q q dtδ =∫ � ��  (22)

or from 

 ( , , ) 0a a ax u u dsδ Λ =∫ �  (23)
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where / ,a au dx ds=  / ,a au du ds=�  2 /2(1 ) ,tds dtβ= −  v / ,cβ =  1 2 3( , , , ),ax x x x ict=   and where 
2 1/2(1 )L dtβ=Λ − . With the subsidiary condition 

 2 2
aF u c= = −  (24)

One obtains from (23) 

 ( ) 0
a a a

Fd d
ds u ds u x

λ∂ Λ +⎛ ⎞∂ ∂Λ
− − =⎜ ⎟∂ ∂ ∂⎝ ⎠�

(25)

where λ is a Lagrange multiplier. In the absence of external forces, Λ can only depend on 2
au� . The 

simplest assumption is a linear dependence 

 2
0 1(1/ 2) ak k uΛ = − − �  (26)

whereby (25) becomes 

 ( )12 0a a
d u k u
ds

λ + =��
 

(27)

or 

 
12 2 0a a au u k uλ λ+ + =� � ��  (28)

Differentiating the subsidiary condition one has 

 
  0,a au u =�  

2 0,a a au u u+ =�� �  3 0a a a au u u u+ =��� ��  (29)

by which (28) becomes 

 2
1 1

32 3 2 0
2a a a

dk u u k u
ds

λ λ− − = − − =� �� �� � (30)

It has the integral (summation over ν ) 

 2
0 1 ν

32
2

k k uλ = − �  
(31)

where k0 appears as a constant of integration. By inserting (31) into (27) the LaGrange multiplier is 
eliminated and one has 

 
2

0 1 1
3( ) 0
2 a a

d k k u u k u
ds ν

⎡ ⎤− + =⎢ ⎥⎣ ⎦
� ��  

(32)

Writing (32) as follows: 
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0,adP

ds
=   2

0 1 ν 1
3( )
2a a aP k k u u k u= − +� ��    

(33)

where Pa are the components of the momentum-energy four-vector. For k1=0 one has pa=k0ua, which by 
putting k0=m is the four-momentum of a spinless particle with rest mass m. The mass-dipole moment is 
therefore given by 

 1a ap k u= − �  (34)

As can be seen from the conservation of angular momentum 

 
0d J

ds αβ =  
(35)

where 

 [ , ] [ , ]Jαβ αβ αβ= +x P p u  (36)

and where [ , ] x P x Pαβ α β β α= −x P , that for a particle at rest (Pk=0, k=1, 2, 3) one has 

 [ , ] ,kl kl k l l kJ p u p u= = −p u   k,l=1, 2, 3 (37)

which is just the spin angular momentum. 

 The energy of a pole-dipole particle at rest, and for which u=icγ, is determined by the fourth 
component 

 2
4 0 1 ν

3( )
2

imc i k k u cγ= = −P �  
(38)

 For the transition to quantum mechanics one needs the equation of motion in canonical form. 
There we separate the space and time derivative, whereby / ( , , )L ds dt L= −Λ = r r r� �� . Setting c=1 we 
have 

 2 2 1/ 2
0 1

2
2 2

4 2 1/ 22 1/ 2

1( )(1 v )
2

1
(1 v )(1 v )

a

a

L k k u

u

= − + −

⎡ ⎤⎛ ⎞⋅
= +⎢ ⎥⎜ ⎟−⎢ ⎥⎡ ⎤ ⎝ ⎠− ⎣ ⎦⎣ ⎦

v vv

�

�� �

 

 

(39)

From 

 
,L d L

dt
∂ ∂

= −
∂ ∂

P
v v�

  L∂
=
∂

s
v�

 
(40)

one has to compute the Hamilton function 
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 H L= ⋅ + ⋅ −v P v s�  (41)

From /L= ∂ ∂s v�  one obtains 

 ( )
( )

1
3 2

2

v vks = v +
1+v1-v

⎡ ⎤⋅
⎢ ⎥
⎢ ⎥⎡ ⎤ ⎣ ⎦⎣ ⎦

�
�  

( )

3
2

1

1 v
v s v s v

k

⎡ ⎤−⎣ ⎦= − − ⋅⎡ ⎤⎣ ⎦�  

 

 

(42)

by which together with (39) v s� i

 

can be expressed in terms of v and s. In these variables the angular 
momentum conservation law (35) assumes the form 

 × ×r P + v s = const  (43)

with the vector s is equal the mass dipole moment. For the Hamilton function (35) one then finds 

 2 1/2 2 3/2 2 2
0 1(1 v ) (1 / 2 )(1 v ) ( )H k k ⎡ ⎤= ⋅ + − − − − ⋅⎣ ⎦v P s s v  (44)

Putting  

 

2 1/ 2
4(1 v )

i

α

∂
=

∂
=

− =

P
r

v a

=

 

 

(45)

where 4{ , }α α= a  are the Dirac matrices, one finally obtains the Dirac equation 

 
0H

i t
ψ ψ∂

+ =
∂

=  
(46)

where  

 
1 1 2 2 3 3 4

2v v v

H P P P m

β β β

α α α α
α α α α δ

= + + +
+ =

 
(47)

with the mass given by 

 2 2 2
0 1(1 / 2 )(1 v ) ( )m k k ⎡ ⎤= − − − ⋅⎣ ⎦s s v

m = k0  for v = c  
 

(48)
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Fig. 1: Pole-dipole particle configuration. 

 Following Hönl and Papapetrou [17, 18, 19], we analyze the simple classical mechanical two 
body pole-dipole model shown in Figure 1. It consists of a positive mass m+ and a negative mass m-. In a 
two body problem with both masses positive and with an attractive force in between, the two bodies can 
execute a circular motion around their center of mass. In case one of the masses is negative, but with both 
together having a positive mass pole m0=m+-|m-|, the circular motion persists, except that the center of 
mass is no more in between the masses, even though it is still located on the line connecting m+ and m-. 
As a consequence, the pole-dipole particle executes a rotational motion which causes the spin. This 
motion has the same property as the “Zitterbewegung” derived by Schrödinger from the Dirac equation 
[6]. 

If |m+| > |m-|, the distance of m- from the center of mass is larger than for m+, and we assume that 
m+ is at a distance rc, with m- at a distance rc+r. Furthermore, if m0<<m+~|m-|, one has r<<rc. Defining

2 2 ~1/2(1 v / )cγ + += − , with v crω+ =  where ω is the angular velocity around the center of mass, and
2 2 1/2v (1 v / )c −

− −= − . With v ( )cr r ω− = + , momentum conservation leads to 

 | | ( )c cm r m r rγ γ+ −
+ −= +  (49)

For r<<rc and henceforth putting γ γ+ = one can expand: 

 2 2

2(1 .....)cr r
c
ω γγ γ− = + +  

(50)

For the mass dipole moment one has 

 | |
| | c

m m
p m r m r r

γ γ
γ

+ −
+ − −

−

−
= = =

(51)

With the help of (50) and for γ>>1 one finds  

 2
0/cr p mγ≈  (52)

and for the energy  
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 2/ | | / cE c m m m p rγ γ γ+ −
−= = − ≈ (53)

and finally, for the angular momentum (putting ωrc~c): 

 2 2| | ( )c c cJ m r m r r p c mcrγ γ ω γ+ −
−⎡ ⎤= − + ≈ − ≈ −⎣ ⎦

(54)

 The correct spin angular momentum is obtained from the Dirac equation for / 2cr mc≈ = . From 
(52) and (53) one has 

 
0 /m m γ=  (55)

In a co-rotating reference system of the pole-dipole particle the gravitational interaction energy is 
positive, and for | | | |m m m+ − ±− << , given by 

 2
2

0
| |Gm m G mE m c

r r

+ − ±

= = − ≈
(56)

According to (34) the mass in a system at rest is 

 2
2 | |G mmc

rγ

±

=  
(57)

With | |p m r±� , equation (47) and / 2cr mc= = , one obtains 

 2 | | cm rγ ± = =  (58)

which can be used to eliminate r from (51), with the result that 

 3 3 22 | | / 2 | | / pm G m c m m± ±= == (59)

where /pm c G= =  is the Planck mass. 

This is the gravitational field mass of a positive mass interacting with a likewise negative mass. 

Equation (59) can also be written as follows: 

 3

2
p p

mm
m m

±⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

 
(60)

or 

 1 3

1 32
/

/

p p

m m
m m

±
−

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 

(61)
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Eq. (60) shows how G enters the Dirac equation through the positive gravitational field mass of a positive 
mass gravitationally interacting with a likewise negative mass of the same absolute value.  

7. The justification of the interaction-assumption of a positive with a negative mass by low 
energy quantum gravity 

The gravitational field mass equation, eq. (59), was obtained making the assumption that the Newtonian 
expression for the potential energy of two masses remains valid if one of the masses is negative.  The 
justification for this assumption is obtained by the weak field approximation in quantum gravity, which 
gives for the potential energy of two masses m1 and m2 [24]. 

 ( ) 2
1 21 2

2 2

411 3
2 10

prG m mGm mE
r rc rπ

⎡ ⎤+
= − + +⎢ ⎥

⎢ ⎥⎣ ⎦
(62)

For m2  =  - m1, the second term in the bracket on the r.h.s. of (74) vanishes, and one has 

 2 2
2

2

411
10

p
g

G m r
E m c

r rπ

± ⎡ ⎤
= = +⎢ ⎥

⎢ ⎥⎣ ⎦
(63)

8. Bosons from fermions or fermions from bosons and Planck’s doctrine 

There is agreement that bosons can be composed of fermions, but it is not so obvious that the reverse 
is true as well, because it requires to assume the existence of negative masses. As it was shown by Hönl 
and Papapetrou [17, 18, 19], the admixture of negative masses to a positive mass gives the total positive 
mass the “Zitterbewegung” typical for a Dirac spinor particle.  

In the standard model, fermions are massless and obtain their mass through the coupling to the Higgs 
boson. Without the coupling, the Zitterbewegung radius 2cr / mc= = would diverge and with it the 
Zitterbewegung caused by the admixture of negative masses. It was Planck’s idea that the units named 
after him would enable man to communicate with extrasolar, even non-human civilizations. This would 
be different with the 18 parameters of the standard model, and less with its supersymmetric extension 
requiring more than 100 parameters. Because of it, one would not easily give up the simple idea of 
Planck, unless there are compelling reasons. 

To preserve Planck’s doctrine, it is assumed that a standard model fermion obtains its mass from the 
positive gravitational field mass of a large positive with a likewise large negative mass, and is given by 
eq. (60), with the magnitude of the large positive (negative) mass m± given by (61). Setting in (61) m 
equal to the mass of the electroweak scale m ≈ 100 GeV, then with the Planck mass mp ≈ 1019 GeV, one 
obtains 135 10m± ≈ × GeV. Because m± c2 << mpc2, quantum gravity effects can be ignored, very much 

as quantum electrodynamics can be ignored in the Bohr atom model. The question still remains where 
does this large intermediate mass come from. 

9. Planck mass plasma vortex model 

The modified Einstein-Hilbert Lagrangian leads for energies small to the Planck energy to the 
classical Einstein-Hilbert Lagrangian, but in the other limit to a spectrum of positive and negative Planck 
mass particles. 



14 

 

For this reason, the Planck mass plasma hypothesis makes the assumption that the vacuum is densely 
occupied with an equal number of positive and negative Planck mass particles, in the average one Planck 
mass particle for each Planck length volume. In its ground state, the Planck mass plasma is superfluid, 
with each mass component having a phonon-roton spectrum. As a superfluid, each component can have a 
variety of quantized vortex configurations in low lying excited states. For a line vortex, the quantization 
condition is 

 dpm nh⋅ =∫ v sv ,    n = 1, 2… (64)

 

For the lowest state with n = 1, one finds in setting v = vφ 

 
v

pm rϕ =
=

 
(65)

or with p pm r c== that 

 v pcr / rϕ = ,  r > rp 

= 0,    r < rp 

 

(66)

 If a line vortex is deformed into vortex ring of radius R, it can be excited to undergo elliptic 
oscillations with the frequency [25] 

 2
v pcr / Rω =  (67)

 The quantization of this oscillation has the energy vω= . We now make the hypothesis that this 
energy is equal to the energy of the large positive and negative mass of which a Dirac spinor is composed. 
We thus put 2

vm c ω± = = or 

 ( )22 2
p pm c m c r / R± =  (68)

 If, in its ground state, the Planck mass plasma is made up of a lattice of such vortex rings, then 
the distance of separation 2l R= in between two adjacent vortex rings determines the energy 2m c± . For 

a two-dimensional vortex lattice, the distance l between two line vortices had been determined by 
Schlayer [26], by computing the stability of the Karman vortex street. Schlayer found the configuration to 
be stable for 

 33 4 10or . l−= ×  (69)

where ro is the radius of the vortex core. Setting ro = rp and l = 2R, one obtains from (69) that  
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 147pR / r =  (70)

It seems that no likewise stability calculation seems to have been made for a three-dimensional lattice of 
vortex rings, but with Schlayer’s result a guess can be made. For line vortices, the stability apparently 
arises from the fluid velocity of adjacent vortices. But for a ring vortex, the fluid velocity is larger by the 
factor log(8R/rp), compared to the velocity of a line vortex [27]. 

 With 147pR / r = for a line vortex, a better value for a ring vortex should be obtained by solving 
the equation 

 ( )147log 8p pR / r R/r=  (71)

with the result that 

 1360pR / r =  (72)

Accordingly, we obtain from (68) that 

 1310m± ≈ GeV (73)

By inserting this value for            into (60) one obtains m ≈ 102 GeV which is the standard model mass. 

The existence of this resonance can perhaps be verified in the cosmic ray data, where the Greisen-
Zatsepsin cut-off at of 135 10× GeV is of the same order of magnitude. 

 The vortex model can even explain the leptonic mass scale as follows: If the two quasiparticles of 
mass m±± are with relativistic velocities counter-rotating, their gravitational attraction is reduced by the 
factor 2 2 21 v / cγ − = −  [28]. The γ-factor can there be obtained by the uncertainty relation 

 
p pm Rc m r cγ ± = ==  (74)

with the result that 

 2
2 pr

R
γ − ⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 
(75)

or that 2 610γ − −≈ . With the proton mass at ≈ 109 eV, the lepton mass scale would be ≈ 103 eV, and for 
the 100 GeV electroweak scale about 100 MeV. These estimates cannot be quantitatively trusted, because 
of the electromagnetic contribution to the masses. 

 More detailed calculations for the quantized internal motion of the positive and negative mass 
dipole (pole-dipole) particles, suggest a maximum of four particle families [29]. 

10. Conclusion 

It has been shown that the 125 GeV resonance energy observed in the proton-antiproton collisions at the 
large Hadron collider, assumed to come from the hypothetical spin 0 Higgs boson of the standard model, 

ห݉േห 
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can as well be explained to come from a spin 2 graviton, assuming that large negative mass particles exist. 
With the resonance decaying into two short wavelength gamma ray photons, a decision between both 
assumptions can be made by measuring the polarizations of the two gamma ray photons, which for the 
spin 0 Higgs boson should be in opposite, and for the spin 2 graviton in the same direction. 

With the Higgs spin 0 boson replaced by a spin 2 graviton, which has an energy equal to the positive 
gravitational binding energy of a +1013 GeV resonance with a -1013 GeV resonance, which could be 
explained as stable hydrodynamic solutions of the hypothetical Planck mass plasma, this conjecture is in 
line with the conjecture by Heisenberg and Duሷ rr [30] that the spectrum of elementary particles should be 
analogous as the stable fluid dynamic vortex structures. 
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