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Abstract. The paramount British-Led May, 29, 1919 Solar Eclipse Result of Ed-
dington et al. has had tremendous if not an arcane effect in persuading scientists,
philosophers and the general public, to accept Einstein’s esoteric General Theory of
Relativity (GTR) thereby “deserting” Newtonian gravitation altogether, especially in
physical domains of extreme gravitation where Einstein’s GTR is thought or believed
to reign supreme. The all -crucial factor “2” predicted by Einstein’s GTR has been
“verified” by subsequent measurements, more so by the most impressive and precision
modern technology of VLBA measurements using cosmological radio waves to within
99.998% accuracy. From within the most well accepted provinces, confines and domains
of Newtonian gravitational theory, herein, we demonstrate that the gravitational to in-
ertial mass ratio of photons in Newtonian gravitational theory where the identities of
the inertial and gravitational mass are preserved, the resulting theory is very much
compatible with all measurements made of the gravitational bending of light. Actu-
ally, this approach posits that these measurements of the gravitational bending of light
not only confirm the gravitational bending of electromagnetic waves, but that, on a
much more subtler level; rather clandestinely, these measurements are in actual fact
a measurement of the gravitational to inertial mass ratio of photons. The significant
20% scatter seen in the measurements where white-starlight is used, according to the
present thesis, this scatter is seen to imply that the gravitational to inertial ratio of
photons may very well be variable quantity such that for radio waves, this quantity
must – to within 99.998% accuracy, be unity. We strongly believe that the findings
of the present reading demonstrate or hint to a much deeper reality that the gravi-
tational and inertial mass, may – after all; not be equal as we have come to strongly
believe. With great prudence, it is safe to say that, this rather disturbing (perhaps
exciting) conclusion, if correct; may direct us to closely re-examine the validity of Ein-
stein’s central tenant – the embellished Equivalence Principle (EP), which stands as
the strongest and most complete embodiment of the foundational basis of Einstein’s
beautiful and celebrated GTR.

Keywords: general: history and philosophy of astronomy – Sun: general – Astrome-
try and celestial mechanics: eclipses

1 Introduction

The General Theory of Relativity (GTR) – which was published by the then 37 year old Albert
Einstein (1916) after he had submitted his finished manuscript to Germany’s Prussian Academy of
Sciences on November 25, 1915, this theory; is held and hailed as the best paradigm of gravitation
that we have at our disposal. This theory was propped to prominence by the pre-eminent British
astronomer, mathematician, physicist and philosopher, Sir Prof. Dr. Stanley Arthur Eddington’s
esoteric Solar eclipse results of May 29, 1919. Einstein’s GTR predicts that a ray of light that
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just barely grazing the limb of the Sun will suffer a deflection of about 1.75′′ from its otherwise
straight path. The two Edinginton-led expeditions gave the result 1.98 ± 0.18′′ and 1.61 ± 0.11′′

(Dyson et al. 1920). This result was and has been taken as the first clearest indication yet, of the
GTR’s supremacy over Newtonian gravitation and for this reason, Eddington’s Solar expedition is
ranked amongst one of the single most important, esoteric and touchstone scientific measurements
of 20th century physics (see e.g. Kennefick 2009).

In its modern form, and popular understanding, the idea that a gravitational field could alter
the path of light is an Einsteinian idea (see e.g. Overbye 2000, Pais 1983). However, in the
strictest sense of the word strict itself, this idea does not originate from Einstein or Einstein’s
GTR, it originates from the great Sir Isaac Newton. For example, in Query 1 to be found, in
Book III, of his great work “Treatise of the Reflections, Refractions, Inflections & Colours of
Light”; in print-record at least, the then 62 year old great Sir Isaac Newton was perhaps the first
man to scientifically excogitate and ponder about these matters when he contended:

“Do not Bodies act upon Light at a distance, and by their action bend its Rays, and is
not this action (ceteris paribus) strongest at the least distance?”

Given that Newton thought of light as composed of “tiny billiard balls”1, it is clear from this query
that Newton had the idea that massive gravitating bodies may very well bend the path of light.
He never made the attempt to calculate how much the gravitational field would bend a ray of
light. Judging from his own words, it strongly appears that the great Sir Isaac Newton no longer
had the time he needed to perform this task because when he made his 31st Query in Book III, he
lamented that; he felt these matters should be tackled by others that will come after him because
he was interrupted, and would no longer think of taking these matters into farther consideration.
In his own words:

“When I made the foregoing Observations [outlined in his Book II and III], I design’d
to repeat most of them with more care and exactness, (...) But I was then interrupted,
and cannot now think of taking these things into farther Consideration. (...) I shall
conclude with proposing only some Queries, in order to a farther search to be made by
others.”

Surely, the great Sir Isaac Newton should have had in mind the idea to calculate the expected
gravitational bending of light by a massive gravitating object. It was the German astronomer and
mathematician, Johann Georg von Soldner (1804) that made the first calculation on the bending
of light by a gravitational field 2.

Soldner (1804) used Newton’s theory of gravitation to make his calculation because Newton’s
gravitational theory was the only theory of gravitation available at the time. What he obtained is
the result that for a light ray grazing the Solar limb, this ray must undergo a deflection of about
0.87′′. This calculation assumes that light particles have a mass m, and they move at the speed
c = 2.99792458 × 108ms−1, so that the total kinetic energy of the light particle is mc2/2 just as
would be the case for an ordinary particle travelling at the speed of light.

The next to calculate the bending of light by a gravitational field was Einstein (1911). In 1907,
Einstein laid down the foundations of his GTR when he formulated the Principle of Equivalence,
a principle upon which the GTR is founded. Independently of the work of Soldner (1804), using
this principle in 1911 in his paper entitled “On the Influence of Gravitation on the Propagation
of Light”, Einstein deduced that a gravitational field must be capable of bending a ray of light.
Though the reasoning and the calculation differ markedly, his [Einstein] result was essentially the
same as that of Soldner (1804), that is, a light ray grazing the limb of the Sun must undergo a
deflection of about 0.87′′. Einstein (1911)’s calculation did not take into account the curvature

1Query 29 found in Book III of Netwon’s works – pristinely demonstrates that Newton envisaged light as small
hard spheres. This query reads: “Are not the Rays of Light very small Bodies emitted from shining Substances?”

2Soldner’s calculation is based on Newton’s corpuscular theory of light thus this calculation was perhaps not
taken serious because of the fact that Newton’s corpuscular theory slowly faded as the wave theory of light gained
ground. The wave-particle nature of light only began to be understood in the 20th century.
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of space but included only the effects of mass on the time dimension of the four dimensional
spacetime continuum.

Using his influence which he had gained from his earlier works made in 1905 (the Special
Theory of Relativity etc), the year commonly referred to as Einstein’s Miracle Year, and his
ever growing reputation and influence in the scientific circles, Einstein wrote to a number of
leading astronomers3 of the day urging and persuading them to measure this effect (Kennefick
2009). Heeding to this call, several attempts (notably by Erwin Finlay Freundlich) to measure the
deflection of starlight grazing the Solar limb during Solar eclipses were made between the years
1911 and 1915. Fortunately for Einstein and as-well for his GTR, all these attempts were thwarted
by cloudy skies, logistical problems, the outbreak of the so-called First World War, amongst others.

Impatient and eager to see his result (0.87′′) corroborated, a confident Einstein became very
exasperated over the repeated failures of the experimentalists to gather-up any useful data. In his
typical style-of-confidence that one can easily mistake for arrogance of the first kind – without an
iota of doubt, Einstein was very certain that his prediction would positively be verified – all he
had in his confident mind was that these experiments would confirm his result. After the 1919
Solar eclipse measurements were announced by the Eddington team, Einstein was asked by one of
his students Ilse Rosenthal-Schneider, what he would have felt if his revised result (1.75′′) had not
been corroborated; disguised in a joke-like form, a very confident Einstein replied “I would have
felt sorry for the Good Lord . . . the theory is correct all the same.” (see e.g. Soars 2011). This is
how confident Einstein was on his ideas, even his earlier result of 0.87′′.

As is now common knowledge, legend and lore of Eddington’s 1919 Eclipse Expedition, iron-
ically, if any of the early experimental efforts (between the years 1911 − 1914) had succeeded in
collecting any useful data, they would have cast a serious dark-cloud on Einstein’s future attempts
on his GTR as he [Einstein] would have, on this occasion, been proven wrong! It was not until
late in 1915, after he had completed the GTR, that he realized that his earlier prediction was
incorrect by a factor of “2”. This factor would prove to be decisive as it now would act as a clear
landmark separating the Newtonian and Einsteinian Worlds of gravitation.

So, had the so-called First World War not intervened, it is very much likely that Einstein
would never have been able to claim the 1.75′′ bending of light (at twice the Newtonian value) as
a prediction of his GTR – he would have been cast into the defensive rather than the offensive.
At the very least and at best, he would have been forced to explain why the observed deflection
was actually consistent with the completed GTR. Surely, despite its exquisite beauty and esoteric
elegance, the GTR would have then become nothing more other than an ad hoc and impromptu
theory designed to explain this unfortunate state of affairs between experience and theory. Which
ever the way one may see this or may want to see this, one thing that is clear to all is that, it was
really lucky for Einstein that the corrected light-bending prediction was made before any Solar
expeditions succeeded in making any real and meaningful measurements.

In 1919, after the so-called First World War had ended, scientific expeditions were sent to
Sobral in South America and Principe in West Africa to make observations and measurements of
the Solar eclipse. The reported results were deflections of 1.98 ± 0.16′′ and 1.61 ± 0.40′′ respec-
tively. As already stated earlier, these results were taken as clear confirmation of Einstein’s GTR
prediction of 1.75′′. This success, combined with the shear mathematical complexity of Einstein
non-linear equations together with the esoteric appeal to the general public of the bending light
and the seemingly romantic adventure of the eclipse expeditions themselves (i.e., men catching
light bending under a dark sky in the day), all but contributed enormously to making Einstein a
World celebrity on scale never before witnessed by any scientist in the entire history of humanity.
As the last edition of the popular United States of America’s Time Magazine of the past century
graphically put it, “It were as though humanity is now divided into two, Einstein and the rest
of us.” The name Einstein become a household name synonymous to genius of the very highest,
esoteric and rare order. To the mundane and ordinary, Einstein’s almost arcane genius could only
be approached asymptotically in the same manner the scientist approaches the truth. For better
(or for worse), this state of affairs remains to the present day.

3Notably German’s Erwin Finlay Freundlich (1885− 1964).

3



However, the actual combined measurements (from 1919 to 1973) of the bending of starlight
show a slight but significant scatter (∼ 19%) about the predicted value of 1.75′′. The scatter
has been taken as indication of the experimental difficulty in the measurement process. In this
reading, we suggest very strongly that this scatter may very well be a result of the variation of
the gravitational to inertial mass ratio of photons. The present work comes as nothing short of a
scientific exegesis to the 1919 Eddington Eclipse Result. We are in complete agreement with the
fact that Eddington et al.’s efforts did prove for the first time, that the path of light is altered by
a gravitational field. Our bone of contention is whether the factor “2” vindicates Einstein’s GTR
and eternally puts Newtonian gravitation on the scientific crucifix?

Here in the penultimate, to cement our confidence in what we are about to present, allow us to
say once more that, we herein demonstrate beyond any shadow or shred of doubt that, Newtonian
gravitation actually explains this factor “2”. That is, in accordance with the ideas set-forth herein,
if this factor “2” emerges from the observations, it is to be interpreted as a measure of the photon’s
gravitational to inertial mass ratio. Further, from this same interpretation were the factor “2” is
interpreted as a measure of the photon’s gravitational to inertial mass ratio; applying this same
interpretation to the eclipse results from 1919− 1973, one comes to a very interesting conclusion
that the gravitational to inertial mass ratio of photons may very well be a variable quantity. In
all scientific modesty, honesty and prudence, it is safe to say that, to all that seek nothing but
the truth, the present reading calls for nothing short of a rethink of the 1919 Eddington Eclipse
Result and as-well the very foundations of Einstein (1916)’s GTR.

2 Weak Equivalence Principle

As is well known, there is at least two distinct and important kinds of mass that enter Newtonian
mechanics. The first is the inertial mass (mi) which enters in Newton’s second law of motion. As
it was first stated by the great Sir Isaac Newton, this law states that the resultant of all the forces
(F res) acting on a body is equal to the rate of change of motion of that body, i.e.:

F res =
dp

dt
where, p = miv. (1)

By motion, Newton meant the momentum p of the body in question. Momentum (p) is the product
of inertial mass (mi) and the velocity (v) of the body in question. In most cases considered in
natural systems, the inertial mass of the object is a constant of motion, so this law is often stated
as:

F res = mia where, a =
dv

dt
. (2)

The vector quantity a is the acceleration of the body in question.
The second kind of mass enters Newtonian mechanics in Newton’s law of universal gravitation

which states that the gravitational force drawing together two objects of gravitational mass Mg

and mg that are separated by a distance r is:

F g = −GMgmg

r2
r̂, (3)

where (G > 0) is Newton’s constant of universal gravitation and r̂ is the unit vector along the line
joining the centres of mass of these objects and the negative sign is there to denote the fact that
the gravitational force is a force of attraction.

As afore-stated, the weak equivalence principle due to Galileo states that test bodies fall with
the same acceleration independent of their internal structure or composition: in other words, the
gravitational mass appearing in (3) and inertial mass appearing (2) are the same i.e. mi ≡ mg.
Throughout this reading, in order to distinguish between gravitational and inertial mass, we shall
use the subscripts “i” and “g” respectively i.e. mi and mg. If by any chance the hypothesis
mi ≡ mg is true, then, this fact must and will come out clean from the resultant equations.
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If we are to denote the ratio between the gravitational and inertial mass:

mg

mi
= 2γ =⇒ γ =

1

2

mg

mi
, (4)

then, the acceleration of an object in a gravitational field which is obtained by setting F res = F g

and then dividing the resultant equation throughout by mi, i.e.:

mia = −GMgmg

r2
r̂ =⇒ a = −2γGMg

r2
r̂. (5)

The factor 1/2 (or 2) in (4) has been inserted for convenience purposes. Written with this factor
1/2, numerically speaking, γ has the same meaning as it has in Post-Parametrised Newtonian
(PPN) gravitation. For example, if we are to set ζ = mg/mi, then, a comparison of this ζ-
factor with PPN gravitation’s γ-factor requires that ζ = 2γ. So, in order that we have a direct
comparison without the hindrance of this factor 2, one can deal with this once and for altime by
inserting the factor 1/2 as has been done in (4) .

Now, as already stated, under the Newtonian scheme γ ≡ 1/2. This is a fundamental assump-
tion of Newtonian mechanics. Although he made the first attempts to verify this from experience,
Newton never bothered to explain this important and crucial assumption. Judging from his writ-
ings as recorded in his great master piece “Philosophiae Naturalis Principia Mathematica”, Newton
(1726) was a very careful man who believed in facts derived from experience. His famous state-
ment “Hypotheses non fingo . . . ”4 captures very well Newton as a man that strongly believes in
facts of experience. Perhaps, because this fact was a fact of experience, he saw no need to explain
it, but to simple take it as experience dictates. It was Einstein (1907) that made the first attempt
to explain this. He [Einstein] used this as a starting point to seek his GTR. Here in, we shall drop
this assumption i.e. γ ≡ 1/2.

To test the weak equivalence principle, one meticulously compares the accelerations of two
bodies with different compositions in an external gravitational field. Such experiments are often
called Eötvös experiments after Baron Ronald von Eötvös (1813− 1871), the Hungarian physicist
whose pioneering experiments with torsion balances provided a foundation for making these tests
(von Eötvös 1890). These tests are assumed to vindicate Einstein’s ideas on general relativity.
The best test of the weak equivalence principle to date has been performed by Eric Adelberger
and the Eöt-Wash collaboration at the University of Washington in Seattle, who have used an
advanced torsion balance to compare the accelerations of various pairs of materials toward the
Earth (see e.g. Will 2009). As afore-stated in the introductory section, their accuracy is one part
to about 1013. This accuracy is taken as the clearest indication yet, that γ should be unity, or
equal for all material bodies in the Universe. In this case, the equivalence principle is not just
a Principle of Nature, but a true Law of Nature. However, as will be seen herein, these Eötvös
experiments actually measure whether or not bodies of the same mass but different compositions
will have different accelerations in a gravitational field.

3 Newtonian Bending of Light Under the Assumption (γ ≡
1/2)

It is only for instructive purposes that we go through this exercise of deriving the equation of
orbit for a test particle in a Newtonian gravitational field. This derivation is found in every
good textbook dealing with Classical/Newtonian Mechanics. In polar coordinates [see Figure (1)
for the (r, θ, φ)-coordinate setup], the acceleration a for a two dimensional surface is given by
a = (r̈ − rφ̇2)r̂ + (rφ̈ + 2ṙφ̇)φ̂, so that equation (5) under the assumptions (γ ≡ 1/2), gives two
equations, i.e.:

d2r

dt2
− r

(
dφ

dt

)2

= −dΦ

dr
= −GM

r2
, (6)

4This is a Latin statement which translates to “I feign no hypotheses”, or “I contrive no hypotheses”
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Figure (1): This figure shows a generic spherical coordinate system, with the radial coordinate denoted
by r, the zenith (the angle from the North Pole; the colatitude) denoted by θ, and the azimuth (the angle
in the equatorial plane; the longitude) by φ.

for the radial component. In this equation, because of the assumption that (γ ≡ 1/2), we have
doped the subscript “g” from the mass “M” since the gravitational and inertial mass are here
identical. For the φ̂-component we have:

r
d2φ

dt2
+ 2

dr

dt

dφ

dt
= −1

r

dΦ

dθ
. (7)

Now, taking equation (7) and dividing throughout by rφ̇ and remembering that the specific
angular momentum J = r2φ̇, we will have:

1

φ̇

dφ̇

dt
+

2

r

dr

dt
= − 1

J

dΦ

dφ
=⇒ 1

J

dJ

dt
= − 1

J

dΦ

dθ
, (8)

hence:

dJ

dt
= −∂Φ

∂φ
. (9)

Since Φ = Φ(r), ∂Φ/∂φ = 0, hence:

dJ

dt
= 0. (10)

The specific orbital angular momentum is a conserved quantity.
Now – moving on, we proceed to solve the radial component i.e. (6). To do this, we shall – as

is usual; make the transformation u = 1/r. This will require us to find the expression for ṙ and r̈.
Doing so, one finds that:

ṙ =
dr

dt
= −J

du

dφ
and r̈ =

d2r

dt2
= −dJ

dt

du

dφ
− J2u2 d

2u

dφ2
. (11)

Inserting these into (6) and then dividing the resultant equation by −u2J and remembering (14)
and also that dr = −du/u2 and rφ̇2 = u3J2, one is led to:

d2u

dφ2
+ u =

GM
J2

. (12)
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A solution to this equation is given by u = (1 + ϵ cosφ)/l, i.e.:

l

r
= 1 + ϵ cosφ, (13)

where l = (1 + ϵ)Rmin is a constant and is twice the distance when or the particle in orbit when
φ = 90◦, ϵ is the eccentricity of the orbit and Rmin is the perigee distance of the orbit. Substituting
(13), into (12), one obtains that the specific orbital angular momentum is given by:

J2 = GMl. (14)

Since J is a conserved quantity, we can evaluate it at any given point of the orbit, the usual and
more convenient point is the perigee point. At the perigee J = vmaxRmin. With this given as
as-well that l = (1 + ϵ)Rmin, it follows from (14) that:

ϵ =
v2
maxRmin

GM
− 1. (15)

Now, we have to apply all the above ideas to the gravitational bending of light as is usually
done or as has been done by past researchers. There is nothing new so far. In this application,
light is treated as a beam composed of a stream of massive particles called photons. These photons
move inside the gravitational field at a constant speed (vmax = c). The path taken by light is a
hyperbola [see schematic diagram (2)]. For the eccentricity of this hyperbolic orbit (ϵ ≫ 1) such
that we can drop the “−1” appearing in (15), so that:

ϵ =
c2Rmin

GM
. (16)

On grazing the Solar limb, the distance of the ray of light is Rmin = R⊙ and the angle of the
asymptote to the hyperbole of eccentricity obtain by setting r = ∞ in (13). This implies that this
angle is given by:

Ψ = arccos

(
1

ϵ

)
. (17)

The angle of deflection of the light ray δ, is shown in the Figure (2) and is such that:

δ = π − 2Ψ. (18)

From (17) and (16), it follows that (18) can be written as:

δN = π − 2 arccos

(
GM⊙

c2R⊙

)
. (19)

Now, a Taylor expansion of the function arccos(x) gives:

arccos(x) =
π

2
−
(
x− 1

2

x3

3
+ . . .+ . . .

)
. (20)

If x ≪ 1, then the following approximation holds:

arccos(x) ≃ π

2
− x. (21)

Because (GM⊙/c
2R⊙ ≪ 1), it follows from all the above that:

δN =
2GM⊙

c2R⊙
= 0.87′′. (22)

where the subscript “N” has been inserted on δ so as to identity this result as a Newtonian result.
This is the famous Newtonian result that is a factor “2” less that that obtained from Einstein’s
GTR.
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Figure (2): The light ray from a star follows an unbound hyperbolic orbit about the Sun. For deflection
on grazing incidence, R is the Solar radius. For illustration purposes, the bending is greatly exaggerated.

We have given a full exposition of the Newtonian derivation of the 0.87′′ gravitational bending
angle of the path of light by the Sun as it grazes the Solar limb. The sole purpose of this is that in
Section (5), when the assumption (γ ≡ 1/2) is dropped, the reader will see clearly for themselves
that Newtonian gravitation does say something about the equity of gravitational to inertial mass
ratio. We do not want our reader to quarrel with us, but to quarrel with the bare facts before their
agile and diligent eyes. So, we want (hope/wish) that this reading (to) be as lucid and as clear
as it possibly can, so as to avoid any misunderstanding with our reader because the conclusions
to be drawn thereof, have far reaching consequences and implications on the very foundations of
physics.

4 Einsteinian Bending of Light

As stated in the introductory section, Einstein applied his newly found Equivalence Principle to
the motion of light in a gravitational field. For light grazing the Solar limb, Einstein obtained the
same value as that obtained from Newtonian gravitational under the assumption (γ = 1/2). After
the completion of the GTR, he revised the same problem, and this time he obtained:

δE =
4GM⊙

c2R⊙
= 1.75′′. (23)

We are not – as we did in the Newtonian case; going to derive this result but simple state it as
we have done above. This value is twice the Newtonian value i.e. δE = 2δN . What this meant is
that now, it was possible to experimentally differentiate Newtonian gravitation from Einsteinian
gravitational. The factor two is now a very crucial arbiter.

Realizing this, (then) Professor (and not Sir) Arthur Eddington would set himself the task to
vindicate Einstein’s predictions. Thus, when Prof. Arthur Eddington and his Cambridge Team
set out to measure the bending of light rays by the Sun – with Prof. Arthur Eddington’s guidance;
they set the main purpose of their expedition to conclude the truth of one of three possibilities:

1. The gravitational field of the Sun does not bend light.
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2. The gravitational field of the Sun influences the bending of light according to Newtonian gravitation,
with the result being a deflection of light by 0.87′′.

3. The gravitational field of the Sun influences the bending of light according to General Relativity,
with the result being the deflection of light by 1.75′′.

On November 19, 1919, Eddington’s expedition reported their now world famous result that posted
Einstein into a scientific superstar on a scale never witnessed before for any scientist – i.e., both
living and dead. They reported that their observations had given the values 1.98 ± 0.12′′ for the
West African expedition, while the Principe observations yielded a value of 1.61 ± 0.30′′. These
measurements clearly showed that the first two initial possibilities could be rejected, leaving the
predictions of the GTR as the most plausible.

As shown in Table I, in the years that followed, i.e. from 1922 up to 1973, eleven similar
experiments were conducted. These measurements always recover Einstein’s 1.75′′ prediction in
the margins of error. Additionally, these values display a scatter in the range 1.61 ± 0.30′′ to
2.73±0.31′′. The value 2.73±0.30′′ measured in 1936 in the then United Soviet Socialist Republic
(USSR), is significantly larger than the Einsteinian value of 1.75′′. Einstein’s prediction is not even
recovered in the margins of error for this measurement. Even in Eddington’s West African result
i.e. 1.98 ± 0.12′′, Einstein’s prediction is not even recovered in the margins of error. The usual
explanation is that these experiments are very difficult to conduct. This “excuse” explains that
scatter and the reason why the Einsteinian 1.75′′ prediction is mostly recovered in the margins of
error. Is this really the reason? Soon, we shall suggest otherwise.

About the VLBA measurements that confirm convincingly the Einsteinian 1.75′′ prediction,
we say unto our reader, for now, behold. We shall come to this in Sections (8) and (9). In the
next section, we shall derive our major result that will cast some doubts on the way researchers
since 1919 have come to understand Eddington’s result and the subsequent sister experiments.

5 Newtonian Bending of Light Under the Assumption (γ ̸=
1/2)

As already stated earlier, the strongest reason for setting (γ ≡ 1/2) began with Galileo’s legendary
experiments at the Learning Tower of Pisa in Italy. He demonstrated – contrary to conventional
wisdom of his day; that different masses will take the same amount of time to fall the same distance
in a gravitational field. Aristotle’s wisdom, which was prevalent in that day, held that heavier
objects would take a shorter time while lighter objects will take a longer time to fall the same
distance.

In modern times, improved experiments have been performed in a vacuum where it has been
demonstrated conclusively that a light-feather and a heavier-rock will take the same amount of
time to fall the same distance in a gravitational field. In a vacuum, air resistance is absent and
thus has the least possible toll (if any) on the falling object. This has been taken to mean that
(γ = 1/2). More elaborate, sophisticated and precision experiments known as Eötvös experiments
have been performed to further test the hypothesis that (γ ≡ 1/2). These experiments find that
(2γ−1 = 10−12). Practically this means that (γ ≡ 1/2). This is the position taken by the majority
– if not by all physicists, that, gravitational and inertial mass are equal if not identical in nature.
Einstein used this fact of experience as a starting point to construct his enduring GTR.

Before the reader proceeds, s/he must once again ask themselves the question “Is there anything
wrong in writing the Newtonian gravitational equation of motion as?”:

mia = −GMgmg

r2
r̂. (24)

By so doing, all that we have done is merely preserve the identity of the gravitational and inertial
mass. Clearly, the most honest answer is that – if any at all; there is no reason whatsoever to
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reject the above equation because if (γ ≡ 1/2), this will emerge from the resultant equations of
motions upon weighing this equation against the test of experience.

Surely, if the afore-stated is the case, then, it follows that there should be is no reason what-
soever to reject the final equations of motion which predict that the gravitational bending of light
will depend on the γ-factor. This is about the only “modification” that we make to Newtonian
gravitation. We simple say to ourself, let us identify the gravitational and inertial mass of the
objects and thereafter preserve these identities as we derive the resulting equations of motion in
exactly the same manner as has been done since the time of Sir Isaac Newton’s derivation of the
equation of the orbit of a test particle in a Newtonian gravitational field.

The result that we obtain from the resultant equations of motion have a rich mean meaning
insofar as the WEP and the gravitational bending of light measurement are concerned. To dismiss
this meticulous observations that Newtonian gravitation has something significant to say about
γ is nothing-but justice denied. It is nothing but a deliberate denial of the truth emergent from
acceptable facts. Instead of rejecting this result, we must try to comprehend it, i.e. what does
it mean insofar as our present understanding of gravitation is concerned? This is the approach
that we take, we would like to understand this result in the light of our present understanding of
gravitational theories.

Now, the corresponding equation to (12) under the assumption (γ ̸= 1/2) is:

d2u

dφ2
+ u =

2γGMg

J2
, (25)

and a solution to this equation is the same as that to (12) i.e. u = (1 + ϵ cosφ)/l. The major an
all-important difference is the equation corresponding to (14). By substituting u = (1+ ϵ cosφ)/l
into (25), one interestingly and surprisingly, finds that:

J2 = 2γGMgl. (26)

This is the central result of the present reading as the main theme and conclusion to be derived
herein flows from this result.

First and most important of all, notice that; in (26) the γ-factor has just entered Newtonian
gravitational physics in a very significant way. This is were all the important difference comes
in. However trivial this result may appear, we are certain that it is found nowhere else in the
literature. It is the first time it is appearing. If not, then, its true significance has not been
understood or appreciated. This reading shall demonstrate that, indeed, this result brings a whole
new meaning to the equity of gravitational and inertial mass in Newtonian gravitational theory.
It is imperative that the reader takes note of this. We are certain the reader does not object
to the result (26). On that footing and pedestal, we do not expect the reader to object to the
final findings of the reading as these finding flow smoothly from the logic thereof. Yes, the results
are difficult to believe at first sight, but, they flow smoothly from the logic of the mathematics
whose nomothetic physical foundations are credible. Are we to go to war with logic in the hope
of emerging victorious? We think not, we must accept results deduced from logic.

The new finding (14), leads to the eccentricity now being given by:

ϵ =
v2
maxRmin

2γGMg
− 1. (27)

As before, for the eccentricity of the path taken by light (ϵ ≫ 1) such that we can drop the “−1”
appearing in (27), so that:

ϵ =
c2Rmin

2γGMg
. (28)

With the eccentricity now defined for the case γ ̸= 1/2, one can go through the same algebraic
exercises that lead to (19). So doing, they will arrive at a modified formula for the gravitational
deflection angle. This new formula now in-cooperates the γ-factor. This formula is:

11



δγ =
4γGMg

c2Rmin
. (29)

where the subscript “γ” has been inserted onto δ so as to highlight that this result now in-
cooperates the γ-factor. For electromagnetic waves grazing the Solar limb, we will have:

δγ =
4γGM⊙

c2R⊙
= 1.75′′γ = 4.84× 10−4γ. (30)

Thus, any deviation from Einstein’s 1.75′′ deflection can be attributed to the γ-factor being dif-
ferent from unity.

6 Plausible Criticism and Rebuttals

The approach we have used in arriving at our major result (29) can be subject two major criticisms.
However, this criticism can be rebutted and this is what we are going to do in this section. The
first is that of the constancy of the specific orbital angular momentum and as-well the constancy
of the speed of light. Combined, these two facts imply that light must orbit in circular orbits. The
second is that the vantage-point (i.e. the expressions 14 and 26) used to arrive at the eccentricity
is not the one that is traditionally used. Below, we elucidate these problems and subsequently
supply the necessary rebuttals.

6.1 Constancy of Light Speed and Specific Orbital Angular Momentum

6.1.1 Problem

For the gravitational bending of light results (i.e. 22 & 23), in all the cases [i.e., (γ = 1/2)
and (γ ̸= 1/2)], the results i.e. (22) & (23), have all been derived under the assumption that
dJ/dt ≡ 0, which implies that J = constant. Since J = rc where c = constant, it follows that
r = constant, i.e., light must orbit in circular orbits. Obviously, this is unacceptable as it is at
odds with physical and natural reality as we know it.

6.1.2 Rebuttal

A perfectly correct, legal and reasonable way out of these troubles would be to assume that
dJ∗/dt ≡ 0, i.e. J∗ = constant, where J∗ is the orbital angular momentum, not the specific orbital
angular momentum, i.e. J∗ = miJ where mi is the inertial mass of the photon. It is important
that we state that for as long as dJ∗/dt ≡ 0, the results thereof are not going to be altered.

Soldner (1804) and all subsequent researchers have applied the Newtonian result (22) without
pointing out that as derived in its bare form this result implies that light must traverse in a circular
orbit. As argued above, the final result is the same if one applies the correct reasoning that J∗ is
the conserved quantity and not J . The result that J∗ is a constant implied that we must now be
prepared to consider that mi should vary with distance from the central gravitating body.

6.2 Eccentricity of the Orbit

6.2.1 Problem

Typically, the eccentricity of the orbit of a photon is calculated from the formula:

ϵ2 = 1 +
2EgJ

2

G2M2
gmi

. (31)

This formula is arrived at by using the kinetic energy equation, and not equation (15). The
problem is that one may raise the question that in arriving at (16), we used a different formula
i.e. (15), thus, this may be a problem. However, as we shall demonstrate shortly, this is not a
problem at all.
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6.2.2 Rebuttal

Typically, with (31) as given, one proceeds by substituting for the total energy Eg: i.e., Eg =
miv

2/2 − GMgmg/r, but in the case where miv
2/2 ≫ GMgmi/r, the gravitational potential

energy term GMgmg/r can be neglected so that Eg = miv
2/2. For the specific orbital angular

momentum, one substitutes J = |v|Rmin. Putting all this information into (31), one obtains:

ϵ2 = 1 +
v4R2

min

G2M2
g

. (32)

Now, in the case of light |v| = c, the term v4R2
min/G

2M2
g, is much larger than unity, so much

that, the “1” on the right hand side of (32) can safely be neglected. So doing, one is led to exactly
the formula as (16). So, a just demonstrated, using either (15) or (31) leads to the same result.

We just said that using either (15) or (31) leads to the same result. The truth is that this is
not exactly true. In using (31), we have assumed that the kinetic energy of the photon is the same
as that of a classical particle moving at a speed |v| = c, that is Eg = mic

2/2. This is obviously
not correct. The correct approach would be to substitute Eg = mgc

2. So doing, one is led to:

ϵ =

√
2c2Rmin

GMg
. (33)

With the eccentricity given by this formula, the corresponding formula for the deflection angle of
the path of light in a gravitational field would be:

δ =
δN√
2
. (34)

Thus, for light grazing the limb of the Sun, we will have δ = 0.62′′. The actual Newtonian
deflection is were uses the “correct formula” for the kinetic energy of the photon, the deflection
is much smaller than 0.87′′. We are not going to enter into a debate on this matter of the two
deflection angles 0.62′′ and 0.87′′, we simple wanted to point this out and thereafter leave the
reader pondering on these matters.

Now, for instructive purposes, we are now going to derive the formula (31), albeit, with the
γ-factor included. It is necessary for the next section. To to this, we turn to the total energy
equation, namely Eg = K(r)+U(r), whereK(r) = miv

2/2 is the kinetic energy of the particle, and
U(r) = −GMgmg/r is the gravitational potential energy of the particle inside the gravitational
field and Eg is the total energy energy content of the particle. The square of the speed is given
by v2 = ṙ2 + r2φ̇2 = ṙ2 + J2/r2, so that written in terms of the transformation u = 1/r, we have:

K(u) =
miJ

2

2

[(
du

dφ

)2

+ u2

]
and U(r) = −GMgmgu. (35)

Inserting these into the equation K(u) + U(u) = Eg, and then dividing the resultant equation by
miJ

2/2, one is led to:

l2
(
du

dφ

)2

+ l2u2 − 2lu =
2Egl

2

miJ2
. (36)

Now, applying equation (14) to the right hand side of the above equation i.e. l = J2/γGMg, one
is led to:

l2
(
du

dφ

)2

+ l2u2 − 2lu =
2EgJ

2

G2M2
gmi

, (37)

and now adding “1” on both sides so that we can complete the square on the left hand side, i.e.
z2 = l2u2 − 2lu+ 1, we will have:
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l2
(
du

dφ

)2

+ l2u2 − 2lu+ 1 = 1 +
2EgJ

2

G2M2
gmi

= ϵ2. (38)

The right hand side of this equation is a constant, and is the eccentricity of the orbit. This is
what we wanted to achieve, that is, derive the eccentricity in terms of Eg, J and other physical
parameters.

Now, setting z = lu− 1, this implies ldu/dφ = dz/dφ, so that the above reduces to:(
dz

dφ

)2

+ z2 = 1 +
2EgJ

2

G2M2
gmi

= ϵ2. (39)

This is the same formula as (31). Strictly speaking, this equation, i.e. (39) or (31), apply only to
classical non-relativistic particle because we have used a result of classical non-relativistic physics
namely that the kinetic energy is given by K = 1

2miv
2. The advantage of using (15) is that one

does not need to know the kinetic energy of the particle in question, all they need to know is the
particle’s orbital angular momentum. Thus, the eccentricity formula that is derived from (15) is
not restricted to classical particles but also to relativistic particles for as long as the particle’s
orbital angular momentum is the same in the relativistic regime – of which it is.

Now, in the event that (γ ̸= 1/2) as we have done in Section (5), the same story goes. That
is, going through the same steps as has been done from (35) to (39), one is led to:

ϵ2 = 1 +
2EgJ

2

γ2G2M2
gmi

. (40)

Applying the same substitutions that led to the eccentricity formula in the case (γ = 1/2), one
obtains for the case (γ ̸= 1/2), the eccentricity formula (28).

7 The Scatter

If as in the cases (22) & (23), the new formula (30) is applicable to the motion of light, then,
the γ-factor brings in a new meaning to the bending of light measurements. There is no reason
whatsoever to reject (30) as it has been derived in exactly the same way as (22). The only
difference has been to drop the hypothesis mi ≡ mg. Dropping this hypothesis is not in any
way a modification of Newtonian gravitation but merely taking Newtonian gravitation in its bare
form without making any hypothesis about the equity of inequity of gravitational to inertial mass.
we have merely preserved the identities of these masses. What distinguishes our approach is
our observation that when the identities of the gravitational and inertial mass are preserved, the
specific angular momentum becomes dependent on γ as given in (26). We shall now make the
endeavour to associate the γ-factor with the scatter of the light bending measurements.

As a first step, let us define a measure for the deviation of the observational result (δjD) from

that expected from theory (δjth) as:

Dj = 1−
δjD
δth

. (41)

Further, let us define a measure for the scatter, that is, the overall deviation of the observational
result to that expected from theory as:

⟨S⟩ =

√∑N
j=1 D

2
j

N
. (42)

Now, with the above given, the new meaning brought in by the γ-factor in the bending of light
measurements is that these measurements actually measure the γ-factor for photons. That is to
say, for photons grazing the limb of the Sun, we will have:
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Figure (3): A scatter plot of the twelve Solar eclipse measurements presented in Table I. The scatter
is measured relative to the Einsteinian value 1.75′′. Of the twelve, seven measurements have a positive
deviation while five have a negative deviation. At about 56% deviation, the Japan (Sedul) measurement
has the largest deviation. On average, all the twelve measurements have a scatter of 12.00± 7.00%.

γ =
δγ

0.87′′
= 4.14× 103δγ . (43)

If the above proposal is accepted, then, the scatter seen in the bending of light measurements [see
column three of Table I] implies that γ is variable for these photons.

The mean in the twelve eclipse deflection measurements listed in Table I and as-well their
mean percentage error is 1.89± 0.11′′ and 10% respectively. For both Einsteinian and Newtonian
gravitation under the assumption that γ ≡ 1/2, one has the right to calculate the mean since
this value must be the same for all the twelve measurements. Judging from this mean value, the
Einstein value of 1.75′′ is recovered in the error margins. However, for Newtonian gravitation
where the assumption γ ≡ 1/2 has been dropped, there is no priori nor posteriori justification for
assuming that γ must be constant. We simple have to take it as is. From these results, one can
safely say that γ must be a variable quantity.

A value of 1.89± 0.11′′ certainly favours the Einsteinian result (1.75′′). But now, in the light
of the new proposal that the assumption that γ ≡ 1/2 be dropped, the eclipse measurements no
longer exclusively favour the Einsteinian result because under this new assumption, the eclipse
measurements – while they measure the gravitational deflection of light, the effective measurement
of these measurements according to (43), is that they measure the γ-factor for the light under
observation.

7.1 Statistical Analysis

In-order to obtain an objective view on the nature of the deviation of the 12-light bending measure-
ment presented in Table I, we shall submit these to some objective statistical analysis. Obviously,
underlying our statistical analysis are some basic and fundamental assumptions. The conclusions
draw thereof hinge on these assumptions.
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7.1.1 Best Value

In our statistical analysis, our first port-of-call is to ask, what is the best value of Solar light
bending can one derive from these 12-light bending measurement presented in Table I? The
best estimate can be obtained by taking the weighted mean of the two values. For example if
(x; xi + δxi : i = 1, 2, . . . n) is set of n measurements of a constant quantity x, where xi is
the best value of for the nth measurement and δxi is its accompanying error margin, then, the
best estimate of x from this set is xbest =

∑
wixi/

∑
wi where wi are the weights such that

wi = 1/(δxi)
2 and the best estimate in the error margin δxbest is δxbest = (

∑
wi)

−1/2 (see e.g.
Taylor 1982, p.150). Applying this prescription to the 12-light bending measurements in Table I,
we obtain:

δBest
⊙ = 1.92± 0.05′′. (44)

We shall hereafter adopt this value as the best value representing the mean value of the 12-light
bending measurements. This value 1.92 ± 0.05′′ is a significant 9.70 ± 0.30% higher than the
expected Einsteinian value of 1.75′′.

7.1.2 χ2 Statistical Analysis

If one has a sizeable set of n measurements where Ok is the kth observation and Ek is the corre-
sponding expected value, then, one can calculate χ2 as follows:

χ2 =
1

d

N∑
k=1

(Ok − Ek)
2

Ek
, (45)

where d ∈ N ≥ 1 is the number of degrees of freedom of the given dataset. The number of degrees
of freedom d = n− c∗ where n is the sample size and c∗ is the number of constraints required to
derive or compute Ok. If we are testing whether a particular hypothesis holds, then, if χ2 ≤ 1,
there is no reason to believe the hypothesis under probe does not hold. If χ2 > 1, we have reasons
to doubt our hypothesis. This is the so-called null hypothesis test or the χ2-test statistics (e.g.
Taylor 1982, pp.228–236). We shall apply this test to the 12-light bending measurements in Table
I.

7.1.3 Gaussian Statistical Analysis

Whether or not the scatter in the 12-light bending measurements is a reflection or indicator of
the level difficulty of the data procurement process, one fact that is clear is that, if the scatter
were due to random natural causes, the distribution of the 12 measurements would be normally
distributed. Inspection of Figure (4) reveals the measurements are not normally distributed. Yes,
75% of them fall within one standard deviation from the Einsteinian value 1.75′′ while 25% are
above this level. Below the one 1σ-level of the Einsteinian value 1.75′′, there are no measurements.
The distribution of the 12 measurements is not Gaussian. Applying a χ2-test to ascertain whether
or not the distribution is Gaussian, one finds that χ2 = 2.44 > 1, the answer of which is that the
distribution is certainly not Gaussian in nature.

The standard deviation σ was computed by taking the Einsteinian value 1.75′′ as the mean i.e.
X = 1.75′′ where-after, it was found that σ = 0.34′′. With this, the data was binned as shown in
Table II. Clearly, from this table and from Figure (4), the odds are against the Newtonian value
of 0.87′′ and very much in favour of the Einstein value of 1.75′′. Our major concern here is not
the 75% of the observations seem to support Einstein’s 1.75′′, but the 25% of the observations
that are significantly well in excess of this value. What is the cause of this? This is our borne of
contention. If the scatter was truly of a random statistical nature, we would expect some of the
observations to fall at least below the 1σ-level of the mean. From this, one can equanimity say,
there is reason to suspect that the 25% of the observations that are significantly well in excess of
this value of 1σ-level of the mean may very well be something inherent in the data and not of a
statistical random nature.
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Table II: Gaussian Statistical Analysis Table

Bin, k 1 2 3 4
Range (x < X + σ) (X + σ ≤ x ≤ X) (X < x ≤ X + σ) (x > X + σ)

(δ⊙ < 1.58′′) (1.58′′ < δ⊙ < 1.92′′) (1.92′′ < δ⊙ < 2.25′′) (δ⊙ > 2.25′′)

Probability, Pk 16% 34% 34% 16%
Expected Number, Ek = NPk 2 4 4 2
Observed Number, Ok 0 9 1 2
Percentage (%) 0 75 17 8

7.1.4 Conclusion

If the observed scatter in the data was truly of a random statistical nature, we would expect some
of the observations to fall at least below the 1σ-level of the mean 1.75%. However, this is not the
case. From this – with judicious equanimity, we draw the conclusion that there is reason to suspect
that the 25% of the observations that are significantly well in excess of this value of 1σ-level of the
mean may very well be due to something inherent in the data; the cause of the excess may not
be of a statistical random nature but systematic and inherent and due to a hitherto unbeknown
phenomenon.

8 VLBA Experiments with Radio Waves

Beginning in about 1991, radio-interferometric using the Very-Long-Baseline Interferometry (VLBI)
methods impressively determined that Einstein’s GTR was in excellent agreement with experience
to within 0.02% (Lebach et al. 1995). That is to say, if δD is the deflection angle from measure-
ments, and δE = 1.75′′ is the Einsteinian prediction, we can define the ratio γ = δD/δE ; then,
the said VLBI observations gave γ = 0.9996 ± 0.0017. This is an excellent agreement between
observations and theory. If observations are to agree 100% with Einstein’s theory, then γ = 1. The
value γ = 0.9996±0.0017 is obviously unprecedented. This γ-value for these VBLA measurements
can be given the same meaning as the γ-value as defined herein. The factor 1/2 (or 2: depends
on how one envisions this factor) that we inserted in (4) has been inserted so that the γ-value for
these VBLA measurements the γ-value as defined herein will have the same meaning – or at least
these two γ’s are comparable.

Lebach et al. (1995) obtained their impressive result by observing the gravitational deflection
of radio waves from the strong radio source – the Quasar, 3C279. Every year in early October,
the Sun passes in front of this strong radio source thus presenting interested observers with an
opportunity of catch the Sun bending the radio waves from this sources. With radio waves, one
does not need the eclipse to subtract the Sun from the background has happens in Eddington-type
eclipse observations. Thus, this sources can be observed every year in October.

Actually, several measurements using radio waves have been conducted to test Einstein’s grav-
itational bending of light (see e.g. Anderson et al. 2004, Shapiro et al. 2004, Bertotti et al. 2003,
Robertson et al. 1991, Fomalont & Sramek 1975, Shapiro 1964). All these measurements give
excellent results. They confirm Einstein’s prediction to better than 1 part in 105. In comparison
to measurements using white-light during Solar eclipses, the “improved accuracy” or the closeness
of the deflection angle to that expected from the GTR may very well be that radio waves and
visible light may have a different γ-values. These are matters that we will look at much more
closely in the section that follows. We shall find out that electromagnetic waves may very well
have different γ-values leading to a plausible explanation of not only why there is a 20% scatter
seen in the twelve measurements using white-light, but also why radio waves seem to yield better
results in the eyes of Einstein’s GTR.

17



Statistical Distribution of the Solar Bending of Light Measurements

Figure (4): A histogram showing the statistical distribution of the 12 Solar bending of light measurements
appearing in Table I. In the histogram, Series 1 is the expected Gaussian distribution if the scatter in the
measurements were a result of natural randomness while Series 2 is the actual distribution.

9 Inertial and Gravitational Mass

In this section, we are going to derive a relationship for γ for both matter and energy (light).
We will begin with that for matter and then latter for light (electromagnetic waves). We will
commence our endeavours here from Einstein’s relativistic energy relationship, i.e.:

E =
m0c

2√
1− v2/c2

= Γm0c
2, (46)

where E is the total energy of a particle, v is its speed and m0 is its rest mass and Γ =
1/
√

1− v2/c2. This energy E is the total energy of the particle were only two kinds of ener-
gies are considered, that is, the kinetic energy and the potential energy in the form of the rest
mass of the particle. If we have to consider all other forms of energy such as the thermal energy,
molecular binding energy etc, then, E 7−→ E − Eother where Eother represents all these other
various types of energies: in this case, we will have E = m0c

2/
√
1− v2/c2 + Eother. That said,

for none-relativistic speeds where v2/c2 ≪ 1, to first order approximation (46) is given by:

E =
1

2
m0v

2 +m0c
2. (47)

The term m0v
2/2 is the usual classical kinetic energy EK of the particle i.e. EK = m0v

2/2. This
means the rest mass m0 can be identified with the classical inertial mass of an object, i.e.:

m0 ≡ mi. (48)

From the forgoing, it means we can write (47) as:

E = EK +mic
2. (49)
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Now, the energy E is equal to mc2 i.e. E = mc2. The question is what is this m in the
formula E = mc2; is it the gravitational or inertial mass? If we have only two kinds of mass, the
gravitational or inertial mass, m can only be one of these two. If this mass is the inertial mass,
it would mean that the kinetic energy of any particle must be zero for all times and all situations
in life since: mic

2 = EK + mic
2 =⇒ EK = 0. This is obviously nonsense and must be rejected

forthwith without any further deliberations. This leaves us with no choice but to identify the m
in E = mc2 with the gravitational mass mg, i.e.:

Eg = mgc
2. (50)

In this case where Eg = mgc
2, the kinetic energy is the nothing but the difference between the

gravitational and inertial energy of a particle i.e. EK = (mg − mi)c
2. Therefore, written with

all the masses well labelled i.e. in-terms of the gravitational and inertial mass, (49) must sure be
given:

Eg =
1

2
miv

2 +mic
2. (51)

By substituting the correct term for the kinetic energy for light and for matter in (51), we are going
to derive an expression for γ for the two cases, light and matter. For a particle with gravitational
mass mg inside the gravitational field of a particle of mass Mg, the total energy of the particle
(51) isnow given by:

Eg = EK − GMgmg

r
+mic

2. (52)

Before we embark on main task of deriving the γ-factor for matter and radiation, we shall ask a
seemingly simple question which is considered by current thinking to be a settled question, that
is, “Can a photon have a non-zero rest mass i.e. m0 = mi ̸= 0?”. Prevalent and conventional
wisdom holds that for a photon m0 ≡ 0, and, in accordance with the foregoing, this means mi ≡ 0.
Simple: a photon is massless. Is that so?

9.1 Massive Photon

As stated above, generally, it is agreed (perhaps believed) that a photon has no inertial mass
i.e. mi = 0. This fact is deduced from two (seemingly) immutable facts. The first is Einstein’s
energy-momentum equation:

E2 = p2c2 +m2
0c

4. (53)

The second fact is that the energy of the photon has been found from experience to be given by
E = |p|c where p is the momentum of the photon under consideration. If (53) is applicable to the
photon, then, the fact that for the photon we have E = |p|c, it follows directly that m0 = 0. We
have already argued above that a comparison of non-relativistic classical physics and relativistic
classical physics leads us to the fact that mi = m0. From all this, it follows that light must have
zero inertial mass. If all these facts are correct, the path of light – in accordance with classical
mechanics; is not supposed to be altered by a gravitational field. This question brings some
contradictions. However, by applying Einstein’s GTR, one is able to deduce that a zero rest mass
photon will have its path altered by a gravitational field. From this fact, one might then argue
that the GTR is the only theory that answers this questions satisfactorily.

From the foregoing, it is thus accepted that if an object has zero rest mass, it will move at
the speed of light. Conversely, if a particle moves at the speed of light, its rest mass must vanish
identically. The hidden assumption in all this reasoning is that the energies (E) in the formulae
E = |p|c and E2 = p2c2+m2

0c
4 are identical. On a more fundamental level, there is no priori nor

posteriori justification for this clandestine assumption.
Further, by taking a closer look at the wave-particle duality of matter, we here question this

belief that the energies (E) in the formulae E = |p|c and E2 = p2c2 + m2
0c

4 are identical. Our
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analysis rests on the notion of particle and group velocity5 of a wave. We hold that – in principle;
a particle of non-zero rest mass can move at the speed of light. To see this, if one accepts (50)
and as-well that m0 = mi, then, equation (53) can be written as:

E2
g = p2c2 +m2

i c
4. (54)

If equation (54) is the energy equation for the wave-packet, then p is the momentum of the waving-
particle, it is the particle momentum and not that of the wave-packet. From this, it follows that the

particle velocity vp is given by vp = p/Γmi where Γ = 1/
√
1− v2

p/c
2 is the Einstein Γ-relativistic

factor. From these simple assertions, we can – as we shall do shortly, argue that a particle does
not need to have zero-inertial-mass in-order for it to move with a group velocity whose magnitude
is equal to the speed of light in vacuum.

To see this, we know that for a wave-packet whose total energy is Eg, the group velocity vg of
this wave-packet is given by:

vg =
∂Eg

∂p
. (55)

Applying (55) to (54) and talking into account the afore-stated assumptions, one obtains:

vg =

(
|p|c
Eg

)
c. (56)

Now, since for a photon E = |p|c, where the energy E is assumed to be equal to Eg, it follows
that |vg| = c. From all this, it follows immediately from (54) that mi = 0. This is not what we
want. We desire a scenario where for a photon mi ̸= 0 and |vg| = c.

To achieve our desired end, we will question the energy formula E = |p|c for a photon. For
example, we know that there are two kinds of momentums for a particle, the classical moment and
the relativistic momentum. The classical momentum is given by pcl = miv and the relativistic
momentum is given by p = Γmiv = Γpcl. So, our borne of contention in the photon energy
formula E = |p|c is what this the momentum |p| appearing in this formula? Is this the classical
momentum or the relativistic momentum? If it is the relativistic momentum, we are lead nowhere
into our sought for end. If we however set this momentum to be the classical momentum, we are
lead to our desired result. Let us write (54) with p = Γpcl, i.e.:

E2
g = Γ2p2

clc
2 +m2

i c
4. (57)

so that (56) becomes:

vg =

(
Γ|pcl|c
Eg

)
c. (58)

This group velocity formula applies to speeds |vg| < c. Now, if the energy6 E, of a photon is
such that E = |pcl|c = |mic|c = mic

2 (where |c| = c), then it is possible to have mi ̸= 0, such that
|vg| = c. What this means at the end of the day is that the velocity v in Γ = 1/

√
1− v2/c2 can

not be the group velocity, it can only be the phase velocity of the wave-packet since a wave has
only two associated velocities, the group and the phase velocity. From simple logic, if the velocity
is not one of the two velocities, it must be the other. We therefore conclude that the velocity v in

5The group velocity of a wave is the velocity with which the overall shape of the wave’s amplitudes – known as
the modulation, wave-packet or envelope of the wave – propagates through space. The phase velocity (sometimes
defined/referred to as the particle velocity) of a wave is the rate at which the phase of the wave propagates in
space. This is the velocity at which the phase of any one frequency component of the wave travels. For such
a component, any given phase of the wave (for example, the crest or trough) will appear to travel at the phase
velocity.

6Notice that this energy E is not the total energy Eg of the photon. This would mean, the energy ~ω of a
photon is not the total energy of the photon. It is most logical to think of or to identify ~ω with the kinetic energy
of the photon.
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Γ is the phase velocity so that Γ = 1/
√
1− v2

p/c
2. From all this, it follows that for a photon, we

must have E2
g = (Γ2 + 1)m2

i c
4, so that:

γL =
1

2

√
Γ2 + 1. (59)

For matter, we simple substitute pcl = mivg and Eg = mic
2 into (58), we obtain:

γM =
1

2

√
1−

v2
g

c2
=⇒ (0 < γM ≤ 1/2), (60)

where γL is the γ-ratio for electromagnetic waves and γM is the γ-ratio for matter (waves). In the
γ-value for matter vg, is the group velocity of matter, which in actual fact is the velocity that we
measure of the matter particle.

Now, to find the possible range of values of γ for electromagnetic waves, we know that Γ2 ≥ 1;
inserting this condition into (61) were one obtains:

γL ≥ 1√
2
≃ 0.71. (61)

This constraint places a lower limit on the possible range of the deflection angle (δγ) for any
gravitating object. In the case of the Sun, we will have:

δ⊙γ ≥
√
2

(
2GM⊙

c2R⊙

)
=

√
2δN =

1

2

√
2δE = 1.23′′. (62)

If the above ideas are correct, then, it must be possible to obtain sub-Einsteinian deflections as low
as 1.23′′ . Not only that, we must as-well be able to obtain super-Einsteinian gravitational deflec-
tions exceeding the 1.75′′ prediction of Einstein. From table I, seven of the twelve measurements
are super-Einsteinian deflections, while, five are sub-Einsteinian deflections.

In arriving at the above result, the phase and group velocity of a photon have been assumed
to be different (in magnitude) from each other. The phase and group velocity of a wave-packet
are two different physical quantities. When we talk of the speed of a photon, we basically mean
their group velocity. From wave theory, generally |vg| ̸= |vp|. Bellow we shall apply the result
(59) and (60) to light and matter in a gravitational field respectively. For light, it shall be seen
that |vg| ̸= |vp| while for matter we have |vg| = |vp|. It appears here as though the relationship
between group and particle velocity may very well distinguish between matter and waves in the
wave-particle duality picture of Nature.

9.2 γ-Factor for Light in a Gravitational Field

9.2.1 Derivation (|vp| ̸= |vg| = c)

If a photon is in a gravitational field, its energy-momentum relation is given by: (Eg − V )2 =
Γ2p2

clc
2 + m2

i c
4 where V = −GMgmg/r its gravitational potential energy of the photon in a

spherically symmetric Newtonian gravitational field, it follows that:

γL =
1

2

(
1 +

GMg

rc2

)−1 √
Γ2 + 1. (63)

For Solar gravitational deflections, GMg/rc
2 ≪ 1, we will have:

γL =
1

2

√
1 +

(
1−

v2
p

c2

)− 1
2

. (64)

Now, if we take Louis de Broglie’s wave-particle duality relation, that is |p| = ~/λ, we shall assume
that the momentum p in this relation is the classical momentum of the particle, then:
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Figure (5): A graph of the expected variation of the period of a simple pendulum over the course of
one year. On the x-axis, it is assumed that day 1 is the day January 1 and day 365 is December 31. In
units of 10−9, the y-axis represents the quantity (⟨T ⟩ − ⟨T0⟩)/⟨T0⟩ = γ−1/2 − 1. The expected regime of
sensitivity for the clocks required for the accuracy to measure this effect is at least better than 0.01ηs.
This sensitivity is well within the capabilities of current technology. In all its aspects, this experiment, if
conducted, it will have to be accurate on a level of at least 10−11%; for example, the length L and the
gravitational field strength gE , at the Earth’s surface will have to be known at this level of accuracy.

γL =
1

2

√
1 +

(
1− λ2

c

λ2

)− 1
2

=
1

2

√
1 +

(
1− f2

f2
c

)− 1
2

, (65)

where λc and fc are the Compton wavelength and frequency of the photon respectively. From
(65), it follows that γL = γL(λ, λc) = γL(f, fc).

9.2.2 Why the “Excellent” VLBA Measurements?

Before we go on to derive the γ-relationship for matter, we are going to take this opportunity to
give a plausible explanation for the excellent results obtained for radio waves and the seemingly
poor results from eclipse measurements. The first thing we should take note of that Eclipse
measurements make use of white-light while VLBA make use of nearly monochromatic radio waves.
For electromagnetic waves like radio waves which confirm Einstein’s GTR, according to the present
idea, these waves are such that γL ≃ 1, the magnitude of their phase velocity is approximately√
6c/3 ≃ 0.82c which leads to γL ≃ 1. As for white-light as is the case in Eclipse observations,

an explanation for a varying γL leading to a scatter in δ may very well be that this white-light
is coming from stars emitting at different wavelengths. Since their temperatures certainly varies,
their emitted wavelength must vary leading to a variable deflection angle as evidenced by the 20%
scatter.

9.3 γ-Factor for Matter in a Gravitational Field

9.3.1 Derivation (|vp| = |vg|)

Taking the equation (Eg − V )2 = p2c2 +m2
i c

4 to first order approximation in Eg, one finds that
for an ordinary classical particle:

Eg =
1

2
miv

2
p −

GMgmg

r
+mic

2. (66)

Now, given that v2
p = 2γMGMg/r, it follows that after dividing (66) throughout by mic

2 and
rearranging, one obtains:
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γM =
1

2

(
1 +

GMg

rc2

)−1

≃ 1

2

(
1− GMg

rc2

)
, (67)

One can show that (67) can be derived from (60) under the assumption that |vg| = |vp|. From
this we conclude that for matter we must have |vg| = |vp|. Since we have already argued that for
light |vg| ̸= |vp|, the relationship between the group and particle velocity must play a central role
in deciding the difference between matter and light.

9.3.2 Proposal to Measure γ for Matter

We put forward a proposal to test the hypothesis here set-forth that γ may vary depending on
the particle’s position in a gravitational field of a massive central gravitating body. Our proposal
is to use the very same experiment that the great Sir Isaac Newton used to measure this quantity
i.e., the simple pendulum experiment. The period of a simple pendulum of length L under and a
variable γM is given by:

T = 2π

√
L

2γMgE
≃ 2π

√
L

gE

(
1 +

1

2

GMg

rc2

)
, (68)

where gE is the gravitational field strength at the Earth’s surface. From the above, we can write
⟨T ⟩ = ⟨T0⟩+ ⟨δT0⟩, where:

⟨T0⟩ = 2π

√
L

gE
and

⟨T ⟩ − ⟨T0⟩
⟨T0⟩

=
1

2

GMg

rc2
. (69)

In the above, ⟨T ⟩ is the average value of the period of the pendulum as measured in the laboratory.
Likewise, the value ⟨T0⟩ is the average value of 2π

√
L/gE as measured in the laboratory. Now

given that 1/r = (1+ϵ cosφ)/l where ϵ is the eccentricity of the Earth’s orbit and l = (1−ϵ2)Rmin

is the semi-luctus rectum of this orbit: Rmin is the minimum radial distance of closest approach
of the Earth to the Sun. From the given information, it follows that:

⟨T ⟩ − ⟨T0⟩
⟨T0⟩

=
GMg(1 + ϵ cosφ)

2lc2
=

1
√
γ
− 1. (70)

If a seasonal variation in (⟨T ⟩ − ⟨T0⟩)/⟨T0⟩ is found as shown in figure (5), it would be a clear
indicator of the correctness of the present ideas. The greatest difficulty would be in the accuracy
of the measurements, one would require a clock that can measure time to an accuracy of 12
significant figures. To see this, lets make a crude but accurate calculation. We know that G =
6.667 × 10−11 kg−1m3s−2, on average l = 1.49 × 1011 m, c = 2.99792458 × 108 m/s and taking
Mg = Mg

⊙ = 1.99×1030 kg, so that ⟨δT0⟩/⟨T0⟩ = 5.00×10−9. It follows that in-order to measure
the period of the pendulum in a way that will yield results, one has to be able to measure this
period to the (9 + 3)th = 12th significant figure.

For example, let us take a simple pendulum of length L = 1.00000000000m and further, let us
assume that gravitational field strength at the Earth’s surface gE = 9.80000000000ms−2, such a
pendulum will have a period of:

⟨T ⟩ = 2.00708993310 s. (71)

In this time interval, the most important figures are the last three numbers in bold and with an
over-bar. These are the figures that will determine the correctness of our assertion because over
the course of a year (preferably from January to December), these three figures are expected to
vary in a way conforming to our assertion set-forth here-above. So, the proposed experiment must
have the capacity to measure time durations to an accuracy of at least 0.01ηs.This sensitivity is
well within the capabilities of current technology and thus it should be possible to conduct this
experiment.
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10 Status of Einstein’s Principle of Equivalence

At the very heart and nimbus of Einstein’s GTR is Einstein’s seemingly sacrosanct Equivalence
Principle (EP); this is an idea that came to Einstein in a melodramatic 1907 epiphany, that is, two
years after he had developed the STR (Einstein 1907). Einstein wanted to extend the successful
Principle of Relativity to include accelerated reference systems. The Principle of Relativity is a
principle upon which his STR is founded. This principle holds that Physical Laws hold good in
all inertial reference systems. To accomplish this, Einstein reasoned from the standpoint of the
well known and clearly evident fact that a person in free-fall in a gravitational field does not feel
their own weight. This idea led him to the melodramatic conclusion (hypothesis) that the inertial
and gravitational phenomenon are intimately linked. In Einstein’s own words in his 1907 review
article on his STR, his exact word read:

“... consider two systems S1 and S2 . . . Let S1 be accelerated in the direction of its x− axis,
and let g be the (temporally constant) magnitude of that acceleration. S2 shall be at rest,
but it shall be located in a homogeneous gravitational field that imparts to all objects an
acceleration −g in the direction of the x − axis. As far as we know, the physical laws with
respect to S1 do not differ from those with respect to S2; this is based on the fact that all
bodies are equally accelerated in a gravitational field. At our present state of experience we
have thus no reason to assume that the systems S1 and S2 differ from each other in any
respect . . . we shall therefore assume the complete physical equivalence of a gravitational field
and a corresponding acceleration of the reference system.”

Off cause, the great Sir Isaac Newton was the first to show a link between the gravitational and
inertial phenomenon, but Einstein was the first to go further and deeper than Newton on the issue
when he reasoned that the gravitational phenomenon was not only linked to inertial phenomenon,
but to the geometry of spacetime; in his conclusion – ultimately, mass curves spacetime and a
curved spacetime tells one of the amount and distribution of mass giving rise to this curvature.
What set Einstein apart from Newton on this issue is his seeming bizarre assertion that gravity
“does not exist” with respect to a freely falling system of reference; Einstein elevated this idea to
the status of a universal Principle of Nature applicable to all matter everywhere all the time, i.e.
across all spacetime. Einstein called this principle – which has been embellished over the years –
the Equivalence Principle.

Put in simple terms, the EP states that gravity and acceleration are equivalent physical phe-
nomenon. In an environment free from gravitation, one can generate a gravitational field by using
inertial acceleration, and conversely, the effects of gravitational acceleration are the same as those
generated from an inertial acceleration. Interwoven and intertwine in Einstein’s EP are three
separate principles (see e.g. Will 2009): that is, (1) The WEP, and (2) the principles of Local
Lorentz Invariance (LLI) and (3) Local Position Invariance (LPI). More explicitly:

1. WEP: Test bodies fall with the same acceleration independently of their internal structure or com-
position. This is the WEP first set into motion by Galileo’s famous experiment at the Learning
Tower of Pisa in Italy.

2. LLI: The outcome of any local non-gravitational experiment is independent of the velocity and
acceleration of the freely-falling reference system in which it is performed. This is the Local Lorentz
Invariance principle.

3. LPI: The outcome of any local non-gravitational experiment is independent of where and when in
the Universe it is performed. This is the Local Position Invariance.

The EP naturally casts the gravitational field into a metric theory (see e.g. Will 2009), thus
justifying Einstein’s GTR.
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Now, for as long as all material bodies have the same value of γ at a given point (r, θ, φ) in a
gravitational field, they will fall at the same rate, thus, Galileo’s falling bodies experiments at the
Learning Tower of Pisa in Italy, will hold exactly leading to the same conclusion everywhere in the
Universe. The present ideas suggest that for matter γ = γ(r) [or more generally γ = γ(r, θ, φ)],
so all material bodies have the same value of γ at a given point in a gravitational field. This
result comes about because we find that for matter, the group and the particle velocities lead to
material particles to have the same value of γ at a given point in a gravitational field. The same is
not true for light because for light the group and particle velocities are not equal thus leading to
photons to have different values of γ which depend on their wavelength. The consequence is that
the otherwise straight path of light of different wavelengths will suffer different bending angles in
a gravitational field.

For both matter and radiation, in the local neighbour of a freely falling cabin in a gravitational
field, the LLI and the LPI principles will hold exactly. For an observer in a closed freely falling
cabin, they will not be able to distinguish whether they are in a gravitational field or they are
experiencing an inertia generated acceleration. They will however be able to tell that their closed
freely falling cabin is undergoing an acceleration by measuring the deflection of light rays of
different wavelength.

Now, given the violation of the WEP by radiation, the question arises “Does this mean that
Einstein’s EP does not hold any longer?” Further, “Does this mean that Einstein’s GTR is not
correct?” We strongly believe that Einstein’s GTR requires the survival of only the LLI and the
LPI principles. These two principles i.e. the LLI and the LPI principles should be sufficient to
uphold the Principle of Relativity. In its depth and breath, the EP’s ultimate endeavour is to
uphold the LLI and the LPI principles, that is:

. . . for as long as the outcome of any local non-gravitational experiment is independent
of the velocity and acceleration of the freely-falling reference system in which it is
performed . . .

Einstein’s GTR is safe. Actually, in-order to in-cooperate the new development, there is a way
out. Einstein’s bare GTR will have to be transformed into a conformal theory of gravitation much
akin to Weyl (1918, 1927a,7)’s conformal theory of gravitation i.e., in Riemann geometry, the
metric gµν will have to be transformed into 2γgµν : gµν 7−→ 2γgµν , so that the line element of
spacetime ds now becomes:

ds2 = 2γgµνdx
µdxν , (72)

where xµ is the four position in spacetime. Under such a setting, γ is now a scalar field. The
geodesic equation in such kind of a spacetime is:

d2xλ

ds2
− 2γ

(
Γλ
µν +Wλ

µν

) dxµ

ds

dxν

ds
= 0, (73)

where Γλ
µν is the usual Christophel three symbol in Reimann geometry and:

Wλ
µν =

1

2

(
δλν ∂µ + δλµ∂ν − gµν∂

λ
)
ln γ, (74)

is the corresponding Weyl conformal affine connection. To first order approximation, in the weak
field approximation where the Weyl conformal affine connection Wλ

µν ∼ 0, (73) reproduces the
equation of motion (25) which leads directly to the main result (29) of the present work. Obviously,
there is need for more work than has been conducted here in-order to get these ideas on a firm
pedestal.
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11 Discussion, Conclusion and Recommendations

11.1 General Discussion

At any rate, we do not doubt that the path of light (or an electromagnetic wave) is altered by
a gravitational field nor do we doubt that experience as revealed by the gravitational deflection
of radio waves strongly and clearly favours Einstein’s GTR. Our bone of contention is what this
deflection really measures? As presented herein, other than a confirmation that gravity does indeed
alter the path of light, we have asked a rather disturbing question: “Are these experiments not also
a measure of the gravitational to inertial mass ratio of photons? Why do we have a scatter (∼ 20%)
that is one and half times the average margin of error (∼ 13%) of all the twelve experiments from
1919 to 1973?” If anything, these (seemingly) simple questions need solid answers. This is what
we have tried to provide herein.

The findings of this reading if correct, then, it is without doubt that they have serious impli-
cations on the foundations of physics, at the very least, they call for nothing short of a rethink on
our understanding of these foundations. For example, “Truly, does the all-embellished WEP hold
universally? That is, does it hold for all matter and radiation?” In the light of what has been
presented, this is just but one of the many deep, important foundational questions that come to
the deeply enquiring mind seeking understanding of the most fundamental Laws of Nature. In our
modest and humble of opinion, we strongly believe that we have shown herein that, from its own
internal logic and consistency, Newton’s gravitational theory strongly suggests that the WEP may
not hold, especially with electromagnetic radiation.

In short, the main thrust of this work has been to rise the point that the γ-factor (as defined
herein) may be used in Newtonian gravitation to furnish any deficiency that may arise from
measurements of the deflection of light by a gravitational field. Solar gravitational deflection of
light is not constrained to Einstein’s 1.75′′ deflection but any arbitrary amount depending on the
photon’s γ-value. Naturally, unwillingly and involuntarily, this rises the rather contentious and
polemical question of “What one is to make of Sir Professor Eddington’s efforts ... and as-well,
what one is to make of similar efforts?”

Are these efforts to be understood as confirming Einstein’s 1.75′′ deflection? or are they to
be understood as confirming the a gravitational field does alter the path of an electromagnetic
wave in such a manner that this deflection angle is a direct measure of the photon’s gravitational
to inertial mass ration γ as defined herein? Are we to be content with the 20% scatter about
Einstein’s 1.75′′ as reflective of the level difficutly in the measurements or are we to understand
this scatter as reflective of a variable γ that deviates from the expected γ = 1/2?

As tabled in Table I, the average value for the displacement of the stellar images from the
Sobral observations was 1.98±0.12′′, and the Principe observations yielded a value of 1.61±0.30′′.
These measurements clearly showed that two of the initial possibilities could be rejected, leaving
the predictions of the GTR as the most plausible. It is now common knowledge that this expedition
determined Einstein’s findings to be correct to within 8 to 34%. In 1995 the accuracy was greatly
improved. It was determined by radio-interferometric (Very-Long-Baseline Interferometry; VLBI)
methods that and these measurements indicated that Einstein’s GTR was correct to within 0.02%
(Lebach et al. 1995). The “improved accuracy” or the closeness of the deflection angle to that
expected from the GTR may very well be that radio waves and visible light may have a different γ-
values. These are matters that will require to be looked at much more closely in-order to establish
the truth.

If, truly, it occurs that γ ̸= 1/2, invariably, this means, once the WEP is found wanting, so
is Einstein’s GTR, it must be found wanting too. Is this the case? The answer is yes, Einstein’s
GTR will be found in a wanting-state. To see this, for a minute, imagine or suppose one is inside
a freely falling cabin and in this cabin, they hold two relatively small masses that have differing
γ’s. Further, the γ of the cabin itself is different from that of the two masses – lets suppose it is
much less than that of the two masses. Clearly, these two masses if let loose, they will not remain
at rest relative to the freely falling cabin, but will begin to move. The mass with a much higher γ
will be seen to accelerate toward the fall of the cabin much faster than the other mass with a lower
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γ. The freely falling cabin is no longer an inertial reference system. But, if the γ of the cabin
and the two masses are the same, the cabin will behave like an inertial reference system exactly
as Einstein (1907) imagined.

In the light of the present reading – unless off-cause one has sufficiently reasonable ground
to do so; one can not arbitrarily set (γ = 1/2), because, the very fact that the bending angle,
as procured from experience, is not compatible with the setting (γ = 1/2) as evidenced by the
significant scatter in the observational measurements of δD, this may very well be that the value
of γ that restores agreement between experience and theory is the γ-value of the photons under
observation.

In-closing, allow us to say that if we were asked whether or not the WEP holds, without
hesitation, our answer to this is that “. . . it is very possible that this principle – as commonly
understood i.e. were γ is the same for all material bodies everywhen and everywhere; may not
hold as we have come to believe . . . ” The justification is what we have presented herein. In
the light of this, we do not know what interesting answer our reader(s) would give to this same
question. As to whether Einstein’s GTR falls apart or not, we would say no, it does not fall apart
as it has been argued herein that the violation of the WEP in its popular understanding, this does
not translate nor entail a violation of the EP by matter. However, Einstein’s GTR will need to
be revisited if the γ-factor is accepted or shown to actually explain the scatter in the deflection
measurements because Einstein’s GTR will have to successfully stand to these data. This will
certainly require a modification of the GTR. In the final two subsections, we give in a succinct a
manner as is possible, our conclusions drawn thereof and recommendations.

11.2 Conclusion

Assuming the correctness (or acceptability) of the thesis set-forth herein, we hereby make the
following conclusions:

1. As is widely believed, the eclipse results of the Solar gravitational bending of light carried by
Eddington and his team in 1919 and all subsequent eclipse measurement results from 1922 to
1973; these measurements do not point to Einstein’s GTR being a superior theory to New-
tonian gravitational theory, because, according to the Newtonian gravitational theory under
the WEP violation, the eclipse results of the Solar gravitational bending of light actually
measure the γ-factor for light and the deflection angle. To predict the deflection angle, one
will need to know forehand that value of γ for light. There is no priori justification to set
this value to unity thus, from these eclipse measurements, one can safely say that is strongly
appears that γ varies markedly for white-light while for radio wave waves this ratio appears
to be constant.

2. The excellent results of the VLBA measurements leading to researchers to fervently claim
that these excellent measurements vindicate Einstein’s GTR; this may very well suggest that
for these waves |vp| ≃

√
6c/3; in this way, i.e. |vp| ≃

√
6c/3, we will have γ ≃ 1, which

would for the Sun mean δD ∼ 1.75′′.

3. The poor eclipse measurements leading to researchers to suggest that these poor results are
a reflection of the level difficulty in the measurement process itself; these results, may very
well suggest that the gravitational to inertial ratio of photons depends on the wavelength.
Since the white-light grazing the Solar limb comes from light sources emitting in varying
frequency range in the visible part of the electromagnetic spectrum, these photons will have
different γ-ratios, leading to varying deflection angles. The variation of the deflection angle
is perhaps what we observe as a 20% scatter in the twelve Eclipse measurements so far made
from 1919 right up to 1973. This scatter is a significant 1.46 times the average margin of
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error of the twelve Eclipse measurements.

4. It strongly appears that the WEP may very well not hold. However, its violation does not
lead to a violation of the Local Position Invariance which is necessary for the survival of
Einsten’s GTR. Consequently, Einstein’s GTR holds, albeit, it will have to be modified so
that is takes into account the hypothesised positional variation of γ. We have briefly shown
herein that a conformal metric theory of gravitation akin to that of Weyl can replace Ein-
stein’s GTR with relative ease. They resulting theory needs to be worked out properly to
put it on a firm footing and pedestal.

5. A crucial test to the present ideas is to measure the gravitational to inertial mass of the
Earth via the proposed pendulum experiment like that performed by Sir Isaac Newton.
These experiments will however have to be performed with a level accuracy of the order
of one part in one hundred billion. A positive result would mean the WEP does not hold
as currently understood that the ratio of the gravitational to inertia mass of all material
bodies in the Universe is identical. Expected to be observed in this experiment is a seasonal
variation of γ-ratio for material that is in-situ on Earth.

11.3 Recommendations

Assuming the correctness (acceptability/plausibleness) of the ideas laid down herein, we hereby
put forward the following recommendations:

1. There is need for renewed efforts to measure much more accurately the gravitational deflec-
tion of light at every eclipse opportune in the future in-order to ascertain for sure that Ein-
stein’s GTR exclusively explains this phenomenon. It must be demanded of these precision
measurements that the deflection angle must not vary markedly from Einstein’s prediction.
Any scatter in these results only support the thesis set-forth herein that γ is not unity and
that is varies depending on the light mixture.

2. In the light of the new ideas set-forth herein, the need for a thorough reanalysis of all the
available eclipse data can not be overstated. Such a study needs to treat the deflection of
each star individually and not what has been happening where the individually measured
deflections of stars belonging to a set of given a eclipse data set, one averages the deflection
of all the stars on the plate after which a single value for the deflection for that dataset is
given as representative of the overall Solar gravitational deflection of light. The thrust of
such a study would be to unearth the true nature of the scatter of these deflections about
the predicted Einsteinian value of 1.75′′.

3. To avoid and reduce – if not eliminate public scepticism; in the true spirit of science, raw data
from the eclipse measurements must be published so as to allow and afford able members of
the general public to verify for themselves the true nature and extend of Solar gravitational
deflection. Eddington – and some latter eclipse observers, have discarded some of the plates
with the simple remark that “these plates were bad, so bad that no useful data could be derived
from them”. The general public must be given the opportunity to judge for themselves
whether or not these plates are really bad such that no useful data can be derived from them.
This is important for the progress of science and as-well for progress on this matter of the
Solar gravitational bending of light vis whether or not these measurements vindicate 100%
Einstein and place his GTR on a distinctively superior pedestal to Newton’s gravitational
theory.
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Given that currently, Einstein’s GTR is an all-embellished and seemingly sacrosanct touch-
stone of gravitation – at this juncture in its history and development; could there be some-
thing Einsteinian gravitation can learn from its predecessor i.e. Newtonian gravitation? We
pause or ask this question to our dear reader because we solemnly hold that, in the light of
the new ideas presented herein, a thorough non-biased publishing of raw data will certainly
lead to a scenario where Einstein’s GTR may learn one or two things from Newtonian grav-
itation. As to ourself on this matter – i.e. on Einstein’s GTR learning one or two things
from Newtonian gravitation; confidently, without an iota or dot of doubt; we think, believe
and hold that:

“Yes, there is.”
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