
 

 

 

Discontinuity, Nonlinearity, and Complexity 

https://lhscientificpublishing.com/Journals/DNC-Default.aspx 

 
Universal Principles of Perfect Chaos 

  Sergey Kamenshchikov† 
Physical Department, Moscow State University of M.V.Lomonosov, Moscow, 119991, Russia 

Submission Info

Communicated by 

Received 

Accepted 

Available online

Keywords

Chaos

Description relativity

Nonlinear dispersion

Attractor

Uncertainties relation

 Abstract 

The purpose of this work is to introduce strict comprehensive 
definition of perfect chaos, to find out its basic properties in terms of 
phase transitions and to give connections for uncertainties, lying in 
the base of perfect chaos concept. The one as nondeterministic 
description was introduced based on two formalized necessary and 
sufficient conditions: finite resolution of phase space and instability 
of phase space trajectories. The properties of Kolmogorov system, 
including phase mixing, turned out to be consequences of chaotic 
state but not its comprehensive and sufficient conditions. Description 
relativity was defined as a mandatory property of perfect chaos – the 
same areas of phase space may show regular or chaotic properties 
depending on description of space - time accuracy. Also it was found 
out that for chaotic state with uniform diffusion nonlinear dispersion 
law is a mandatory property. In its turn nonlinear dispersion 
necessarily leads to space – time instability of probability density and 
appearance of probability cavities in phase space – so called phase 
space attractors where particles density grows up. The case of chaotic 
state with fixed boundary and constant diffusion was considered in 
this paper. It was proved that Fourier decomposition allows deriving 
relations between coordinate – momentum and time - energy 
definition uncertainties. The chaos diffusion factor is the only 
parameter, limiting product of corresponding uncertainties, which 
was proved in this paper.  

© 2012 L&H Scientific Publishing, LLC. All rights reserved.

1. Perfect chaos and relativity 

Several scenarios of turbulence transition have been proposed since 1883 year when turbulence concept 
was introduced through experiments of English engineer Osborne Reynolds. He has noticed dynamic 
phase transition in liquid stream, characterized by unstable vortex appearance and introduced two limit 
states of motion: laminar and turbulent. Since, several scenarios of turbulence transition have been 
developed. Among them Landau – Hopf instability mechanism [1], Lorenz attractor mechanism [2], 
scenario of Poincare – Feygebaum [3] and scenario of Kolmogorov - Arnold – Moser [4]. Each of 
outlined mechanism has its individual area of application and basic assumptions. For this reason none of 
them is universal, moreover unambiguous connections between them are not stated yet.  
Since introduction of turbulence concept its properties were investigated and generalized. For now 
concepts of dynamic limit states themselves were generalized and transformed into states of regular 
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motion and perfect chaos state. Therefore determined motion corresponds to laminar stream while perfect 
chaos – to turbulent motion state. Let us consider second limit state - the concept of perfect chaos. One is 
defined as undetermined description in given phase space resolution. Unpredictability of motion is 
consequence of two conditions realization: a) finite resolution of generalized phase space; b) instability of 
phase space trajectories.  
Concept of generalized phase space may be explained through system model consisting of M particles 
which have independent phase trajectories. If motion of each particle is determined in N dimensional 
phase space, then generalized phase is M∙N dimensional and corresponding vector will be system 
characteristic vector in Hilbert space. If connections are introduced dimension of generalized space will 
be equal to P=M∙N-d, where d is number of connection equations. Then resolution finiteness in at least 
one direction of generalized phase space then leads to uncertainty in initial dynamic system state. 
Formally this condition may be represented in the following way: 

    0min ii         Pi ,1                                                   (1) 

Here    minii x   is element of describing generalized phase space while  ix  is characteristic vector 
projection, corresponding to i direction of Hilbert phase space. If we assume that minimal uncertainty is 
isotropic,    imin  then elementary cell volume of generalized phase space is expressed in the 

following way:  
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Let’s consider second condition of perfect chaos state under suggestion that first one is satisfied. If initial 
any two system parts (particles) have instable trajectories, diverging in phase space, determined dynamic 
description of their motion comes impossible and perfect chaos state is reached. Instability requirement 
may be expressed through sum of positive Lyapunov factors 

i  for each dimension of generalized phase 
space: 
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Undetermined characteristic trajectory is basic property of perfect chaos system which leads to two 
consequences. First one regards auto correlation function of dynamic value ))(( txf 

. Here system 
evolution is defined by characteristic generalized function )(tx  - reverse mapping )(xt  is not single 
valued in general case. According to Eq.1 and Eq.2 ))((1 txg 

=  ))((lim 1 txf
t




 and ))((2 txg 
=

 ))((lim 20
txf

t




 are independent functions ( 1f and 2f  are arbitrary dynamic functions), then auto 

correlation characteristic function  )),(( txfR 
 satisfies Eq.3: 

 


)),((lim txfR 


=0                                                           (3) 

This relation reflects called property of mixing according to terminology, introduced by G.M. Zaslavsky 
[5]. In fact realization of Eq.3 leads to execution of Slutsky criterion for ergodic system: 

     01)),((lim
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Here  is delay time between start and the end of system evolution observation. According to (4) system 
becomes ergodic for  . For physical systems this condition can be following expression: 

 instt  min       
))((

1)(
txh

txtinst 


                                               (5)    

Here mint  is finite time resolution while instt is instability increment for )(tx , that may be expressed 
through integrated Lyapunov factor (Eq.2). Satisfaction of third chaos condition allows receiving 
following equations for any dynamic function in frame of ergodic description: 
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In given relation )(tГ  and )(tT  are phase space volume, occupied by phase trajectory during 
observation time and observation time itself. For integrated Lyapunov factor given property allows to 
outline consequence of Eq.2.  

   0dh     dhtxhtxh  ))(())(( 
                                                 (7) 

Here dh  is dynamic entropy of Kolmogorov – Sinai that may be expressed through entropy of system in 
given phase space representation [5]:  
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Quantity ))(ln( tГS   is Gibbs entropy of chaotic system with account of finite phase space resolution 
and condition Eq.5. Satisfaction of chaos conditions (1) and (2) leads to mandatory growth of Gibbs 
entropy even in case when correspondent deterministic description is conservative. 
Consequences Eq.3, Eq.6 and Eq.7 for relations Eq.1 and Eq.2 in fact correspond to definition of 
Kolmogorov system [6] state (K – system) under condition that instt  min . However we have to notice 
that K – system requirements are necessary but not sufficient for perfect chaos state (PCS) observation.  
It may be useful to state another qualitative property of PCS – description relativity. As it was shown PCS 
is limit state of dynamic system, characterized by properties, outlined below: 

                                                                0min ii         Pi ,1                                                 (9) 
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Satisfaction inequality depends on the description parameters  imin  and ))(( txh 
. According to Eq.9 

and Eq.10 magnitude of these parameters may lead to opposite limit states. They are perfect chaos state 
(PCS) and regular state (RS). Let’s consider example of physical system. Then finiteness of  imin  is 

provided by quantum uncertainty relations. In general case  imin  is function of time resolution:               
 imin = )( mintf  . Finite magnitude of  imin  allows to leave one control parameter - integrated 
Lyapunov factor. Therefore regular state of system will be represented by group of Eq.10 and Eq.11: 

                                                               0min ii         Pi ,1                                                (10) 
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Second relation contains time as parameter. In such a way generally transition between two limit states 
may occur at any instant of time. If evolution of physical system in given generalized phase space is 
represented by consequence of regular states and corresponding transitions, it can be defined as 
quasiregular state of motion (QRS). Transition between two regular trajectories (limit cycles) is realized 
through chaotic states. According to terminology of G.M.Zaslavsky [7] in phase space such type of 
motion is represented by ”stochastic sea with stability islands”. Time delay of two consequent transitions 

1 jj RR  and 21   jj RR , also called bifurcations, jjj tt  1  in general is function of time 

parameter and min :  ),( min tjj .  

Let’s consider phase trajectory in three generalized phase spaces 1 , 2 and 3  such that
min

3
min

2
min

1    . Then the same phase trajectory 3 , represented through 1  and 2 , will have 
different fractions of regular state (stability islands) and transitional state (perfect chaos). Phenomenon of 
description relativity is explained by Fig.1 (a) and Fig.1 (b), where two dimensional phase spaces are 
supposed to have uniform resolution.  
Each system dynamic state is represented as point inside corresponding cell, which limits phase space 
uncertainty. Transitions between enumerated states are symbolically designated as straight line – we don’t 
take into account phase ways of corresponding bifurcations. 
In given figure the same segments 3 and 5 of phase trajectories are defined as chaotic motion - Fig.1 a) or 
quasiregular motion - Fig.1 (b) - with finite life time – quasi regular trajectories symbolically shown in 
Fig.1 (b) inside large cells. In general, duration of system existence, i.e. life time 0i (i=1,2,…,8), in 
any macroscopic dynamic state is arbitrary. Regular motion appearance may lead to space - time 
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stabilization of system. If stabilization occurs for i state, then i . In other case current stabilization 
is temporary and quasi capture is realized [7]. In this case regular trajectory is stable during finite time 
length i . After this time quasi regular torus comes unstable, deforms and may finally disappear. 

 

Fig.1. (a) 
1 phase space representation. Chaotic phase trajectory 1→2→3→4→5→6→7→8; (b) 2  phase space representation. Quasi 

captures in segments 3 and 5 – regular motion areas with finite life            time – quasi regular stability islands. Hollow circles duplicates 
state points in 1  phase space representation.  
 
Increase of generalized phase space resolution may lead to appearance of new quasi regular areas or 
overall space - time stabilization of trajectory. In first case some portion of particles in cells 
(representation of coarsened resolution) turns out to transform into toruses with finite or infinite life time. 
One is defined by total time of system observation – “infinite” life time will correspond in this case stable 
existence of regular area during all observation time. As we can see space – time relativity allows 
receiving qualitatively different chaotic (regular) properties for the same part of given dynamic system. 

2. Nonlinearity as mandatory property of perfect chaos 

In equation (3) deriving we used property of independence for arbitrary dynamic functions 1f and 2f  if

instt  min . Let’s assume that considered system consists of M subsystems – particles, characterized by 

corresponding probability densities )( kk x , Mk ,1  (k=1,…,M). Then, if )( kkk xf 
 , for perfect 

chaos system we have generalized Eq.3: 
  0),(),(lim 




 llkk xxC 
   kl                                              (12)      

Here C is correlation function. Eq.12 may be called correlation decay or system memory loss. One of 
approaches applied for characterization of transitional properties in given frame is based on Fokker - 
Plank - Kolmogorov model [8]. One allows obtaining basic equation of transport from Chapman - 
Kolmogorov Eq.13. 
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Integration is made for phase volume occupied by system phase trajectory. Upper indexes of 
characteristic vector )(tx  correspond to consequent time moments 1t , 2t , 3t : 123 ttt  . Function 

),,( 1
1
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  ( 3,2,1r ) is conditional probability density with fixed initial condition 1
1, 


r
r tx . 

Let’s recall basic assumptions made for derivation of Fokker - Plank – Kolmogorov equation [8]. 
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 . Given condition means that probability of 

bifurcation doesn’t depend on absolute magnitude of initial time point: instt  min . This limitation is 
satisfied if Eq.1, Eq.2 and Eq.5  for chaos are valid. Eq.5 is realized necessarily if we speak about formed 
instability; 
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  - final conditional probability density doesn’t depend on the initial 
coordinate vector. In terms of characteristic generalized function )(tx  this condition is valid as well for 
the reasons given in Point 1; 
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 . For finite phase space cell and time 

account this expression can be realized for rtt  min and minxxd 
 ; 

 
4. Initial distribution density is defined by Dirac delta function: )(x  )0( , i.e. initial coordinate can 
be defined accurately (in frame of phase space finite resolution Dirac delta function corresponds to 
rectangular function); 
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 . Here for 

existence of second derivative of Dirac function it is necessary for rt  to satisfy following condition: 

min2 ttr   in frame of certain resolution phase space (1). Coefficients ),( 1
r
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  and ),( 1
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defined by relations (14) and (15): 
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On basis of relation (15) second transport coefficient can be introduced: 
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Given assumptions allow to formulate known, not parametric form of Fokker Plank Kolmogorov equation 
(FPK equation): 
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It can be shown that in Eq.16  and Eq.17 time is hidden parameter [8]. Let’s represent energy of system 
mass unit: 
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According to Eq.17 second transport factor can be expressed in the modified form of Eq.19 - superscripts 
are omitted.  
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In Eq.18 tx,  are generally independent arguments for energy expression. Indeed, because of phase 
trajectory mixing (Eq.3) specific energy and coordinate may not have mutual correspondence.  
Then for conditional probability density we have modified equation: 
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At the same time derivative of probability ),( tx  can be represented, using Chapman Kolmogorov Eq.21 
in the following way: 
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In this equation ),,( 1
r

rr txx 


  is transitional probability density. Substitution of Eq.20 into Eq.21 gives 
extended FPK equation (EFPK) [8]: 
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Variation of t  such that mintt    allows representing equation (19) in asymptotic form for  t
and receiving abnormal transport equation: 

  )(),('),(2 0
2 tttxBttxBx  



                                             
(23) 

Root extraction of equation both parts leads to law of abnormal diffusion [9]:  

0),( tttxDx 
                                                       (24) 

In this relation ),(2),( txBtxD 
  is anomalous diffusion factor. Traditionally abnormal diffusion 

law is explained, artificially introducing fractal FPK equation – FFPK [9].  
Let’s consider uniform state for averaged characteristic energy of chaotic system: )(),( tftx 


 . 

Eq.19 allows receiving correspondent form of transport coefficient: )(2)( min tfttB   . In this case 
Fourier decomposition of one dimensional local EFPK  Eq.22 may be represented in the following way: 

   jjjjj
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Here )(
2
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0
tBtB jj   is corresponding modified transport coefficient for j dimension. Amplitudes of 

Fourier decomposition are outlined through Eq.26 and Eq.27: 
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Second Fourier decomposition gives relations Eq.28 and Eq.29 with equivalent operator’s kernels
),('  jk : 
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Integrals limits are defined according to Kotelnikov theorem:
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Substitution of Eq.28 and Eq.29 into equation Eq.25 gives wave packet form:   
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General arbitrariness of integration limits finally allows representing )( ik law: 
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As it follows from outlined expression nonlinear dispersion law of Eq.31 is mandatory property of 
uniform chaotic state. Allocation of )( ik  real part leads to Eq.32: 

             jj
j

jj
j

j kktBkktBk ReIm)(ReIm)(2)(Re 0                      (32) 

Positiveness of physically measured quantities  Re  and  kRe  allows receiving following property of 
complex wave number:   0Im jk . Here positiveness of specific energy ),( tx  and consequently 

transport coefficient )(tB j  are taken into account. First Fourier decomposition of probability density then 
can be given by Eq.33: 

 
       jjjjjjj dkxkixktktx ReexpImexp),(),( 1                            (33) 

Here  jkIm  as positive space increment shows existence of space instability for probability density 

amplitude ),(1 tk j . Let’s consider the imaginary relation for both parts of Eq.31:  

         )(ReIm)()(Im 22
0 tkktBk jj
j

j                                      (34) 
Positiveness of time increment shows time instability of probability density: 

       jjjjj dkxkitxtx Reexpexp),(),( 2                                     (35) 

As we see space – time instability of probability density is defined by mandatory nonlinear dispersion law 
of Eq.32 of chaotic system. Given instability leads to appearance of probability cavities in phase space i
- phase space attractors where particles density grows up. This process continues up to the moment when 
specific energy and transport factor achieves space inhomogeneity: ),()( txt 

  ,

),()( txBtB jj 
 . Since that local EFPK equation has to be considered in general form of Eq.22.                                  

3. Uncertainty relation of phase state 

It was mentioned above, that two possible types of phase trajectories are possible in frame of 
characteristic vector description: bijection tx  and multivalued mapping. Each type is characterized by 
specific energy in form of ))(( tx and ),( tx  correspondingly. Given division allows 
introducing qualitative properties of dynamic system basing on transport parameter

),(2),( min txttxB 
  . We shall designate phase states as bijection states of constant averaged 

energy )(x , i.e. energy without explicit time dependence. Then multivalued mapping corresponds to 
transitional motion with phase trajectory mixing. Appearance of transitional state is defined by first return 
of characteristic vector. Phase transitions are described by EFPK Eq.22. In terms of diffusion factors 
given types of motion are also designated as normal and abnormal diffusion [9].  
Let’s consider case of uniform phase state with fixed boundary: constx )(  , const . This 
phenomenon appears under condition of phase space time stability of probability cavity, as it was shown 
in Section II. Description of corresponding system state can be realized in frame of normal diffusion FPK 

Eq.17 for life time of phase state:  ff ttt 21 , . For selected dimension j we can represent Eq.17 as uniform 
linear diffusion equation: 
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Solution can be searched in form of Fourier expansion series (Eq.37, Eq.38) which satisfies boundary 
condition and initial state: ),(),0( tLt j  , )()0,( 0 jj xx   . 
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Substitution of (37) into (36) gives Eq.39, Eq.40 for Fourier coefficients: 
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Corresponding values of transport factor are represented by Eq.41: 
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According to Eq.41 coefficients )(tc l
j satisfies following condition: const
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Taking into account Eq.19 for averaged specific energy we have got following expression for discrete 
energy spectrum: 
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Let’s designate
min
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 , then for energy derivative we have Eq.43, given below. 
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Under conditions of finite phase space and time resolution Eq.1, Eq.5 for chaotic system we can modify 
given relation into form of Eq.44: 
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For dynamic description with perfect accuracy initial probability density is represented as Dirac function 
(Section II, Item 4): 

       00 txtxtx jjj                                                     (45) 

In vicinity of 0t  ( 0tt  ) projection of characteristic vector  0tx j  is bijection tx j  . Normalization 

condition for   0tx j  then can be represented in the following way: 
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Dirac functional is represented here through time argument. Index k corresponds to zeros of function
 tx j . In considered case we have only one value of argument, corresponding to zero - 0t . Then Eq.46 

can be modified in the following way: 
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As we can see in vicinity of 0t  ( 0tt  , )( 0txx jj  ) space - time bijection allows introducing 
probability density correspondence:   

        ttxsigntttxtx jjj  /)(00                                     (48) 
Finite space - time resolution allows substitution of Delta function by its discrete alternative – rectangular 
pulse. Without loosing of generality we may assume that 00 t : 
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According to normalization condition coefficients 1C  and 2C  can be expressed in the following way: 

 
min

1
1

jx
C



 ,  min
2

1
t

C


 .  

For given video pulse relation, connecting characteristic width of spectrum and pulse width can be written 
in the following way: 

  2 t                                                               (50) 
Substitution of Eq.44 into Eq.50 gives Eq.51. 
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One allows receiving connection between energy and time resolution – Eq.52. 
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Expression for auxiliary function is represented below: 
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Then relation (52) can be modified in following way: 
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Here  
min

l
jB  is minimal transport factor for j dimension. In frame of diffusion representation Eq.54 can 

be represented in given form (lower indexes are omitted): 
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Here 0D is minimal diffusion factor for j dimension of phase state.  
Let’s receive connection between space and time uncertainties. Satisfaction of ergodicity condition for 
chaotic state allows gives ability to modify Eq.19: 
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Upper underscore here means time averaging. Space – time independence of phase state leads to space 
independence in ),,( 1 txx rr 

 . For arbitrariness of integration time this means that relation (56) can be 
simplified in the following way:  

),(),( txtx rr 
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Finite differential for energy then can be expressed through momentum:
),(),(2),( txptxptx rrr 




 . Substitution of given relation in Eq.55 allows receiving differential 

equation for momentum: 
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Momentum is expressed in finite form:
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. Substitution of this expression in Eq.58 gives 

connection between lp  and lx :  
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Less strict form of relation (59) allows uniform representing of Eq.59 and Eq.55, given below. 
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Eq.60 and Eq.61 show connections between uncertainties of coordinate – momentum and time - energy 
definition correspondingly. It may be useful to note that any of given uncertainties may be determined as 
corresponding standard deviations: lp

lp  , lx
lx  , l

l


  , tt  . 

 
REFERENCES 

 
1. Landau, L.D and Livshits, E.M. (2007), Hydrodynamics, Fismatlit Russia: Moscow, 155-162. 
2. Lorentz, E. (1981), Deterministic nonperiodic motion, Strange attractors: Moscow. 
3. Feigenbaum, M.J. (1979), The universal metric properties of nonlinear transformations, Journal of Statistical Physics, 21, 

669—706. 
4. Moser, J. (1962), On invariant curves of area preserving mappings on an annulus, Nachr. Akad. Wiss. Goettingen Math. Phys. 

1, 1-20.  
5. Zaslavsky, G.M., Sagdeev, R.Z. (1988), Introduction to nonlinear physics: from the pendulum to turbulence and chaos, 

Nauka: Moscow, 99-100. 
6. Zaslavsky, G.M., Sagdeev, R.Z. (1988), Introduction to nonlinear physics: from the pendulum to turbulence and chaos, 

Nauka: Moscow, 100-104. 
7. Zaslavsky, G.M. (2007), The physics of chaos in Hamiltonian systems, Imperial College Press: London, 63-88. 
8. Kamenshchikov, S.A. (2013), Extended foundations of stochastic prediction, Communications in nonlinear science and 

numerical simulation, CNSNS-D-12-01496, under review, submitted on Aug. 20, 2012. Original paper in Arxiv - 
http://arxiv.org/abs/1208.3685. 

9. Zaslavsky, G.M. (2007), The physics of chaos in Hamiltonian systems, Imperial College Press: London, 250-25. 


