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Abstract 

The goal of this investigation was to derive strictly new properties of chaotic systems and their 

mutual relations.   The generalized Fokker-Planck equation with a non stationary diffusion has 

been derived and used for chaos analysis. An anomalous transport turned out to be natural property of 

this equation. A nonlinear dispersion of the considered motion allowed to find a principal 

consequence: a chaotic system with uniform dynamic properties tends to instable clustering. 

Small fluctuations of particles density increase by time and form attractors and stochastic islands 

even if the initial transport properties have uniform distribution. It was shown that an instability 

of phase trajectories leads to the nonlinear dispersion law and consequently to a space instability. 

A fixed boundary system was considered, using a standard Fokker-Planck equation. We have 

derived that such a type of dynamic systems has a discrete diffusive and energy spectra. It was 

shown that phase space diffusion is the only parameter that defines a dynamic accuracy in this 

case. The uncertainty relations have been obtained for conjugate phase space variables with 

account of transport properties. Given results can be used in the area of chaotic systems 

modelling and turbulence investigation.   
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1 Introduction 
 

Several scenarios of a turbulence transition have been proposed since 1883 when the turbulence 

concept was firstly introduced by an English engineer Osborne Reynolds. The dynamic phase 

transition in a liquid stream was remarked by Reynolds – it was characterized by an unstable 

vortex appearance and two limit states of motion: laminar and turbulent types. Since an 

introduction of a turbulence concept its properties have been generalized and transformed into 

properties of a chaos state.  

Several scenarios of a turbulence transition have been developed. Among them the Landau – 

Hopf instability mechanism [1], the Lorenz attractor mechanism [2], the scenario of Poincare – 

Feigenbaum [3] and Kolmogorov - Arnold – Moser [4]. Each of the outlined mechanisms has its 

basic assumptions and an individual area of its application. For this reason none of them suggests 

some universal approach - moreover unambiguous connections between the given mechanisms 

are not stated yet. Let’s try to highlight common points for the formulation of chaos concept.  

Consent has been obtained that an unpredictability of chaos is consequence of two conditions: a 

finite resolution of generalized phase space, instability of phase trajectories and mixing of phase 

trajectories [5]. Formally these conditions can be defined in the following way – (1), (2) and (3): 

 0min ii xx                                                                   (1) 

Here min
ix  is an element of the Hilbert phase space while )(tx is the characteristic vector – each 

dynamic state corresponds to a given x . For the case of independent agents a dimension of the 

phase space is defined according to a number of agents and Euclidean dimension. 
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A second condition can be expressed through the sum of positive Lyapunov factors 

i  for an 

each dimension of phase space:  
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Here P corresponds to a number of a phase space dimensions. A realization of these chaos 

conditions leads to another basic consequence.  Under the condition of a phase space mixing 

reverse mapping for time )(xt


is not single valued in general case. Mixing property can be 

expressed through the auto correlation function  ),(xfR


, where f is an arbitrary dynamic 

function (for example momentum):    
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Here  is a delay time between the start and the end of a system evolution observation. Condition 

(3) is naturally satisfied for random walks. A realization of this condition automatically leads to 

an execution of the Slutsky criterion for an ergodic system: 
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According to (4) system becomes ergodic for  . For real physical systems ergodicity 

corresponds to the following relation: 
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Here mint  is an available time resolution and instt is the instability increment expressed through 

the integrated Lyapunov factors. Andrey Kolmogorov has shown that an averaged h corresponds 

to the Gibbs entropy production: 
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In such a way positive h necessarily leads to the positive dynamic entropy. Finally we may 

define complex portrait of chaotic system – it is a complex dynamic system that corresponds to 

given obligatory properties: a finite resolution of phase space, instability of phase trajectories, 

mixing of phase trajectories and a positive entropy production. In next sections we shall discuss 

relative and nonlinear properties of chaos in details. However all properties that have been 

shown above are assumed to be satisfied. 

 

2 Nonlinear dispersion and clustering 

 

Let’s consider one of possible approaches to the description of chaos - the partial differential 

equation of Fokker-Planck. This model has been modified and finalized by Kolmogorov in 1938 

[5]. The basis used for its formulation is Chapman - Kolmogorov equation. If we consider a one 

dimensional case then a transitional probability for random walks 3311 ,, txtx   formally satisfies 

the following markovian relation: 

),,(),,(),,( 1122223321133 txtxWtxtxWdxtxtxW                                  (7) 

In the above formula x(t) is a system coordinate, while ),,( 00 txtxW  is a probability density of 

)(tx  location subject to the initial coordinate is )( 00 tx . Fokker – Planck – Kolmogorov (FPK) 

equation has been received based on following assumptions: 

A1. ),,'()',,'(),','( txxWttxxWtxtxW  . A transitional probability doesn’t depend on the 

initial time point. This demand implies that condition of C   is satisfied, where  C  is an 

effective width of auto correlation function for x(t);   
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A2. ),,'(),'( txxWtxP  . A final probability doesn’t depend on the initial coordinate. This 

restriction implies с  as well;  

A3 The initial distribution density is defined by Dirac delta function: )(xW  )0(  - we assume 

that the initial coordinate can be defined quite accurately in relation to the general size of a 

considered system; 

A4. According to A3 assumption an approximation of the second order may be received for the 

transitional probability: 

 )(''),(
2

1
)('),()(),,( 0000 xxtxbxxtxaxxtxxW                     (8) 

Factors ),( txa 
 and ),( txb 

 are defined by relations (8) and (9): 

      xdxtxxWxxtxa    000 ),,()(),(                                     (9) 

2

00

2

0 ),,()(),( xdxtxxWxxtxb                                            (10) 

A substitution of expansion (8) into Chapman - Kolmogorov equation [6] gives us the following 

form for ),,'(),'( txxWtxP  - standard Fokker-Planck equation:  
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Now we may extend this model to the phase systems with phase mixing. Let us define a specific 

energy of a complex system: 
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A second transport factor can be expressed then through this quantity in the following way: 

          ),(),,(),(),( min00min
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For a conservative case an averaged specific energy is presented as: )(),( xtx   . 

According to relation (11) this means that transport factor doesn’t depend on time explicitly and 

standard FPK is valid. However this expression is not satisfied if )()( ttx  mutual 

correspondence is absent. According to (13) the averaged specific energy conservancy may be 

violated in this case. A mutual correspondence is distorted because a phase trajectory mixing 

occurs - several system states are possible for the same phase space location. A second transport 

factor )(xB in fact expresses diffusion in phase space, as it was remarked by G.M.Zaslavsky [6]. 

For the considered type of motion it has explicit time dependence: ),( txB . According to the 

introduced division we shall consider two types of phase space behavior. First one corresponds 

to )(),( xtx    and can be designated as phase conservative state. Then the second one 

),( tx  relates to a phase mixing – we shall call it transitional state. It is more general and 

includes phase state as the particular case.     

Taking into account the non stationary properties we may modify the assumption A4 in the 

following way: 

)(''),,(
2

1
)('),,()(),,( 0000 xxttxBxxttxaxxtxxW                   (14) 

Derivative of a given probability ),'( txP  is represented according to the Chapman Kolmogorov 

equation in the usual form: 
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Substitution of (14) into (15) gives non conservative FPK: 
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In the given relation ),(2),( txBtxD   corresponds to an anomalous diffusion factor. We 

have extended the approach of Kolmogorov to an arbitrary class of systems that takes into 

account obligatory mixing properties.  

Let’s consider the simplest case of the uniform diffusion: )(),( tDtxD  . This problem in fact 

relates to the simplest transitional case. It can be used as first approximation of chaotic 

description as well. A Fourier decomposition of the equation (16) then gives us following 

relation: 

   dkxiktkPktBdtixPi k )exp(),()()exp(),(
2

                      (17) 

Here 2)()( tBtB   is a modified transport factor. Second decomposition gives relations (18) 

and (19) with Fourier operator’s kernel ),( kP


: 
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Here spectral amplitudes are finite according to the normalization condition for the probability. 

Integrals limits are defined according to the Kotelnikov theorem:   1

min2


 t ,   1

min2


 xK . 

Substitution of (18) and (19) into equation (17) gives wave packet form of FPK:   
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A general arbitrariness of integration limits allows representing of )( ik dispersion law: 

  2)()( ktBik                                                            (21) 

As it follows from outlined expression nonlinear dispersion law of Eq.31 is mandatory property 

of uniform chaotic state. Allocation of a real part leads to the relation (22): 

)Re(

)Re(
)()Im(



k
tBk          0Im k                                              (22) 

A first Fourier decomposition of the probability density then can be given by the equation (23): 

 
       dkxkixktkPtxP k ReexpImexp),(),(                              (23) 

The imaginary part of (21) corresponds to the relation (24):  

  )()(Im
2

tktB         0)( t                                           (24) 

A first Fourier decomposition of the probability density can be expressed then in the following 

way: 

        dtitxPtxP ReexpImexp),(),(                             (25) 

According to the relations (23) and (25) a chaotic system with uniform dynamic properties, 

defined by factor )(tD tends to instable clustering – small fluctuations of particles density 
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increase by time and form attractors, repellers and stochastic islands. This process leads to 

destruction of dynamic uniformity and finally this approximation comes incorrect – we need to 

solve a general form of extended FPK (16). However it is important to notice that clustering is a 

natural property of chaotic systems - it relates to the first approximation of any transition. In fact 

we have shown how instability of phase trajectories leads to the nonlinear dispersion (21) and 

consequently to a space instability.  

3 Uncertainty relations 

In the previous section we have proved logically that clustering is a sufficient property of a 

simplest transitional state. In this section we will consider a trivial case - a phase state with a 

fixed boundary. However, nontrivial uncertainty relations will be derived basing on a standard 

one dimensional Fokker-Planck equation.     

Let’s consider a conservative problem of the fixed boundary: 
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                0),(),0(  tLPtP       Lx ,0  

                  )()0,( 0 xPxP                                

The equation (26) mathematically corresponds to a uniform linear diffusion PDE. Here 

constB   according to the condition of an energy conservancy – we consider the system’s 

equilibrium phase state: 

consttdxtxxWttxB

L

   min

0

00min ),,(),(                                (27) 

A solution of (26) may be searched in a form of the Fourier expansion:          
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A substitution of (28) into (26) gives the following superposition of modes: 
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For an arbitrary L  a second factor has an obligatorily zero value: 
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Then, possible values of a transport factor B  may be expressed in the following way:                                             
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Let’s consider the instability of the particles density:  tctc jjj  exp)0()( . It leads to a 

clustering of particles, considered in the previous section, and finally to the non stationary 

regime when )(tBB  .  
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Here )0(0

jj cc   corresponds to an initial density probability, defined by the third relation in 

group (26). Factors j characterize modes instability increments and depend on nonlinear 

properties of the complex system media. They are assumed to be constant in the given 

approximation for the given complex system. Here we consider the states in the vicinity of a 

conservative condition. A normalization condition for ),( txP  can be represented in the 

following way: 

  1sinexp
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We can remark that satisfaction of this condition is possible only if both relations 0j  and 

0j  are valid for the different modes of the spectrum. It means that increasing and decreasing 

of quasi regular fluctuations of particles density occur in the media of a complex system.  

According to the relation (31) we have discrete spectrum of phases that can be realized for this 

considered case: 
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Let’s introduce a circular frequency
min
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 . Then the relation (33) can be modified:   
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It is known that a perfect accuracy substitution for the initial coordinate of particle can be 

represented by Dirac function: 

       00 txtxtxP j                                                 (35) 

Normalization condition for   0txP j  then can be represented in the following way: 
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Dirac functional is represented here through the time argument.  

Index k corresponds to zeros of function  tx . In considered case we have only one value of 

argument, corresponding to zero - 0t . Then relation (36) can be modified in the following way: 
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As we can see in a vicinity of 0t  ( 0tt  , )( 0txx jj  ) space - time correspondence allows 

introducing of a probability density:   

                         ttxsigntttxtx  /)(00                                  (38) 

Real physical systems correspond to a finite space and time resolution: 0 t  and 0 x  in 

fact correspond to min2 tt    and min2 xx   .  
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Limitations of our observance qualities lead to a discrete alternative of Delta function:     
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Here we assume without a loss of a generality that 00 t . According to a normalization condition 

for the probability, coefficients 
1C  and 

2C  can be expressed in the following way:  
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Relations (39) correspond to a rectangular function. Its Fourier spectrum is expressed through 

the equations (41): 
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A central maximum of the second Sinc – function is limited by the interval min/2 tt   

between two first zeroes. This interval includes the biggest part of Sinc – a function integral 

value. In such a way min/2 tt    can be used as a characteristic width of the probability 

spectrum. In the same way we obtain a space frequency width:     
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A substitution of the first relation into (34) gives us the following expression: 
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Here the wave number 
L
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k j





 is introduced. If we express an increment j  through the 

diffusion factor and according to the equation (33) we may derive a final uncertainty relation:  

jj Bt  min                                                         (54) 

A minimal spectral diffusion  
min0 jBB  allows us to simplify this equation in the following 

way: 

0min Btj                                                          (55) 

Let’s express an energy and momentum through the coordinate in a standard way: 
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Then the energy increment jjj pp    can be substituted in the relation (55): 

0Bpx jj                                                         (56) 

Equations (55) and (56) connect uncertainties of the dynamic state definition. If we omit the 

“min” and “j” indexes in the relation (55) these uncertainties may be represented in the following 

way: 

0Bpx      0Bt                                                   (57) 

It was shown that a fixed boundary system has a discrete number of the phase states. Each of 

these states is characterized by its own phase diffusion jB . In such a way the diffusive spectrum 

depends on the selected scale
L

j
k j





. This property is well known for the case of a turbulent 

motion, when each scale corresponds to its own turbulent diffusion value [1]. In this case a 
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standard molecular diffusion is only the minimal value for the molecular space scale. We have 

shown that for the considered case phase diffusion is the only parameter that defines a dynamic 

accuracy – that is why dynamic properties and a resolution in fact are scale dependent. Besides, 

according to the relation (33) small scales correspond to low diffusion and higher resolution 

abilities. Finally we come to the conclusion that the smaller scale we consider the more 

information we get about the motion.  

 

 

4 Conclusions 

 

In this paper uncertainties and clustering, lying in the basis of chaos have been investigated. It 

was obtained that a chaotic system with a non stationary diffusion satisfies a nonlinear dispersion 

law. This law leads to instabilities in a phase space and to the appearance of the clustering 

properties for the initially uniform system. 

The generalized Fokker-Planck equation with a non stationary diffusion has been derived. It has 

been applied to the analysis of a fixed boundary problem. An anomalous transport turned out to 

be a natural property of this equation under the considered conditions. This trivial law of 

diffusion led to a non trivial output: relation of the coordinate – momentum uncertainties has 

been stated. We have shown that for the considered case phase diffusion is the only parameter 

that defines a dynamic accuracy – that’s why dynamic properties and a resolution in fact are 

scale dependent.  

Formulation of a generalized Fokker-Planck (GFP) equation, given in this paper, allows defining 

of an anomalous diffusion without complex fractal PDE. A data about the conservative spectrum 

of GFP may help to find stable states of real complex systems and avoid their destruction. A 

clustering formal explanation helps to define and anticipate attraction areas in the real phase 

spaces. At the same time derived uncertainty relations allows us to understand limits of the 

possible forecast efficiency through the connection of the accuracy with transport properties. The 

author believes that represented results can be used in the area of complex systems modelling 

and forecast.   
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