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ABSTRACT: We study the relation between the Guzwiller Trace for a dynamical system and the 
Riemann-Weil trace formula for the Riemann zeros, using the Bohr-Sommerfeld quantization 
condition and the fractional calculus we obtain a method to define implicitly a potential 1( )f x− , 

we apply this method to define a Hamiltonian whose energies are the square of the Riemann 

zeros (imaginary part) 2
n nE γ=  , also we show that for big ‘x’ the potential is very close to an 

exponential function.
       In this paper and for simplicity we use units so 2 1m = = h
• Keywords: =  Riemann Hypothesis, WKB semiclassical approximation, Gutzwiller trace 

formula, Bohr-Sommerfeld quantization,exponential potential.

1. RIEMANN ZEROS AND TRACE FORMULAE

Given a Hamiltonian in one dimension plus  boundary conditions on the real line 
[0, )∞
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Can we recover the potential ( )f x  from spectral data ?, for example if we knew 

the Eigenvalue staircase of the problem (1.1)  
0

( ) ( )n
n

N E H E E
∞

=

= −∑  , then we 

could use the Bohr-Sommerfeld quantization condition, see [9]  for our problem 
as
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(1.2)

The number ‘a’ is a turning point where the momentum is 0p =  so ( )f a E=
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The idea of the Borh-Sommerfeld quantization condition (1.2) is the following, 
we equate the smooth part of the spectral staircase to an integer plus 1/2 
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= − = +∫∫h         
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H x
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
    (1.3)

Here , inside (1.2) we have used the definitions of the fractional derivative and 
integral of order ½. [10] (for fractional calculus)
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Also for our Hamiltonian we have imposed boundary conditions on the half line 
[0, )∞  so the Eigenfunctions ( ) ( )n nHy x E y x=  satisfy the boundary conditions 

(0) 0 ( )n ny y= = ∞ .

From (1.4) we obtain that the inverse of the potencial can be described implicitly 
in terms of the half-derivative of smooth part of the Eigenvalue  staircase as the 

function  

1
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1
1
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( ) ( )

d
f x N x

m
dx

π− = h
.

This result (4) can be improved with the aid of the Gutzwiller’s trace formula for 
the density of states [6] , formula (1.42) valid (it is assumed trough all the paper) 
in the limit  0→h  for the Planck’s constant.
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With ( ) 2 2
C

S E pdx mE mplγ γ= = =∫  being the action over the closed orbit for 

the momentum, lγ  is the length of the closed orbit , pγµ is a Maslov index and 

( )det 1
p

kM γ −  is the determinant of the Monodromy Matrix,  p
Aγ (see [6] for further 

references) are constants related to the orbits. Equation (1.5) is a better 
expression to evaluate the Eigenvalue staircase ( by integration) since 

( )
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dN x
x

dx
ρ=  , also from expression (1.5) we can obtain a trace formula
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∞  = −  ∫       (1.7)

Since the energy is related to the momentum of the particle by 2E p=  , then we 

must choose and even function of the momentum ( ) ( )h p h p= −  so this test 
function may be also defined for negative ‘p’ , in both cases the trace formulae 
(1.5) and (1.6) are real for real values of the Energy.

For the EXACT Eigenvalue staircase the half derivative can be evaluated 

formally as 
22
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∑h  if we insert this function inside (1.6)
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Where we have used inside (1.8) the representation for the zeroeth order 

Bessel function 
( )0

2 2
0

1 cos( )

2

x J uxdt ut

x tπ
=

−∫ . In order to study the limit x → ∞  inside 

(1.8) we can use the approximation for the Bessel function 
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If we took the fractional derivative operator  
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m d

dx
πh

 inside (1.8) we would 

obtain the trace formulae for the density of states (1.6)

Equation (1.8) defined the potential function for the Hamiltonian inside (1.8) 
which depends on the fractional derivative of the Smooth part of the Eigenvalue 

staircase ( )2

1
( ) ( , )

2 R
N E dxdpH E H qx p

π
= −∫∫h  plus a correction due to the 

closed orbits of the dynamical system, this correction will turn to be very 
important for the case of the potential and the Hamiltonian which yield to the 
Riemann zeros.

A good example of the Trace formula (1.5) is for the case of the Eigenvalue 

problem  (0) 0 ( )y y π= =   
2

2

( )
( )n

d y x
H E y x

dx
= − =  , in this case the density of 

states and the trace (1.5) is just the Poisson summatin formula 
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m m

e x mπ δ
∞ ∞

=−∞ =−∞

= −∑ ∑  , the smooth part of the Eigenvaue staircase is given by 

( )N E E=  , since the energies of the problems are 2
nE n=  , and the 

correction to the inverse of the potential due to the length of the periodic orbits 

is  (in terms of the Besssel function)  ( )0
1

2
m

J m xπ
∞

=
∑

o Riemann zeros and a potential:

There is exist an analogue of the Gutzwiller’s trace formula for the Riemann 

zeros, if we consider a dynamical system with the Maslov indices 2 1p
k

e
γ

π µ
= −  

and length of the periodic orbits ( ) log nS E pγ =  (prime numbers), see [7]
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Here, 
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= = −∫  h(x) and g(x) are test functions which 

form a Fourier transform pair and  
ln     

( )
0     otherwise   

kp n p
n

 =
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
 is the Mangoldt 

function , formula (1.9) gives the relationship between a sum over the imaginary 
part of the Riemann zeros and a sum over the primes and prime powers.

By analogy with the Trace formula  (1.5) the imaginary part of the zeros are not 
energies but rather the momenta of a certain Hamiltonian , the energies of the 
Hamiltonian will be the square of the imaginary part for the Riemann zeros 

2
n nE γ=  , if we do the same reasoning we did for the Gutzwiller trace and set 

2 1m= =h  , then the potential which yields to the imaginary part of the Riemann 
Zeros is given by
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∫

   x >0   (1.10)

We can see inmediatly how the expressions (1.6) and (1.10) are connected, 
they both have a correction due to the length of the periodic orbits which 
includes the Bessel function term, in the case of the Riemann zeros , from the 
definition of Von Mangoldt function we have that the lenghts of the orbits are 
equal to the log of prime numbers (with repetition).
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But what would happen for 0x < ?, due to the boundary condition (0) 0y =  there 
is a infinite potential well at x=0 so the potential would be

defined implicitly by formula (1.10) for x >0
( )

           for x 0
f x


=  ∞ ≤

      (1.11)

If we take the fractional derivative  
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π

 inside (1.10) and use the identities
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−
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We obtain the distributional Riemann-Weil trace formula, so the density of 
states of our Hamiltonian , with the potential defind implicitly inside (14) is just 
the Riemann-Weil trace formula (on the momentum variable) [7]
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Where we have used the Shokhotsky’s formula representation for the delta 

function ( )1 1
m x a

x i a
δ

π ε
 − ℑ = − + − 
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2

i
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In case 1x >>>  , the smooth density of states can be well approximated by 
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1 1

2 2
1

1 1

2 2

1 2 1 1
( ) ln arg

2 2

d x d
f x x i x O

e x
dx dx

ζ
ππ π

−
     ≈ + + +              

  (1.14)

We have used inside (1.14) the zeta regularization [ ] for the Dirichlet series 
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Unfortunately the expressions for the inverse of the potential (1.10) and (1.14) 
can not be analytically invert  ( we will study the asymptotic behaviour in the nex 
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section), however any function can be numerically inverted so the need only to 
reflect every point of 1( )f x−  through the line y x=  to get ( )f x

2. A TOY MODEL OF RIEMANN ZEROS WITH AN 
EXPONENTIAL POTENTIAL

For big energies  the Eigenvalue staircase for a Hamiltonian whose energies 
are the square of the Riemann zeros is given by

7 1 1 1
( ) ln arg
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         (2.1)

 Then the smooth part is given approximately by  ( ) ln
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E E
N E

eπ π
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To compute the half-derivative we use the representation for the logarithm 

1
ln( )   0

x
x

ε

ε
ε
−≈ → ,  

0

1

!n

e
n

∞

=

= ∑  in this case we get

( ) / 22 2 / 2

1
4 ( )

( )
e A x B

f x

ε επ ε

πε

−

−
−

≈       

2

2 2( ) 4
( )

x B
f x e

A

εε ππ
ε

 +≈    
       (2.2)

The constants are 
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the property of the half-derivative of powers of ‘x’  
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, 

(Nishimoto [10]) 

The last expression inside (2.2) is equal to an exponential , so for the case of a 
Hamiltonian with boundary conditions (0) 0 ( )y y= = ∞  and that gives only the 
‘smooth ‘ part  of the staircase of the zeros via the WKB approximation 

( )
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a a E
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E E
E e dx N E

e
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∫   the potential is the following
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Γ +

 . So our toy  model or approximate model for the 

Riemann zeros is given by the Hamiltonian on the half line [0, )∞

2
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λ= − + = = ∞  2
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1
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   (2.4)

And  216λ π≈  has been previously defined inside (2.3) .

An advantage of this model is that is exactly solvable ( Amore,[1]), if we impose 
boundary conditions on the half line [0, )∞  the quantization conditions for the 
energies are

1 20
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C J C Jµ µ
λ λ
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   − −= +         
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ni E

µ =      1 2,C C C∈      (2.5)

So the energies appear inside the index of a Bessel function, in general this 
problem may be generalized to arbitrary boundary conditons on the half line 

0[ , )u ∞  for some real 0u  so 0 ( ) 0 ( )y u y= = ∞  , if we choose also that 1 2C C= −  

then we may choose the 0u (if such 0u exists)  so
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4 2 24
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ζ
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λ ζ

−
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           (2.6)

Equation (2.6) is just the functional equation for the Riemann Zeta function on 

the critical line  
1

2
s ix= +  , this means that the quantization condition (2.5) may 

give the Riemann zeros and it is equivalent to the functional equation for the 
Riemann zeta function  

3. ZETA REGULARIZATION FOR FUNCTIONAL 
DETERMINANTS AND THE RIEMANN XI- FUNCTION ( )sξ
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Berry [5] has suggested the following Quantization condition for the Energies of 
a Quantum system 

( )( ) det 0E E H∆ = − =       (3.1)

Here ( )
0

( ) n
n

E E E
∞

=

∆ = −∏  is the functional determinant of the system , for 

example for the Harmonic oscillator and the infinite potential well we have 
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∏   (3.2)

Here 0.57721..γ =  is the Euler-Mascheroni constant.
In order to define a Functional determinant, one of the best method to use is the 
Zeta regularization  [8] the zeta regularized determinant  for an operator T 

having real eigenvalues { }nλ  is  
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Here Z(s) is the spectral zeta function associated to the operator T , in many 
cases we do not know this function so we need to use the representation

1
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1
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t e
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This Theta function is defined only for t >0 , for our case with the potential 

defined implicitly by the equation 
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use the Semiclassical approximation for the Theta function
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From the properties of the Laplace transform  
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 . If we take the Mellin 
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transform 
21
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∞
− −Θ
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0

1
( , )s

n
n
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∞

=
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∑  , 

and the sum is extended to the positive imaginary part of the Riemann zeros , 
from ths last expression we can define the Riemann Xi-function on the critical 
line as the quotien of 2 functional determinants
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0 0
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0

( ) 1/ 2det
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s s
n n
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H E ds ds

γ ξ

ξγ

∞

∞
=

= =∞
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∏
∏

∏
 

(3.6)

So, from the expression (3.6) one observes that the functional determinant of a 
Hamiltonian  2 ( )H p f x= +  with a potential defined implicitly by  

1 1
2 2 2

1
1 12

0 2 2

( ) ( ) 2 1
( ) 2 arg

2
n

n n

H x d N x d
f x i x

x dx dx

γ π ζ
πγ

∞
−

=

−  = = = +  −
∑    (3.7)

Is exactly to the Riemann Xi-function on the critical line, hence Riemann 
Hypothesis must be true
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