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Abstract 
                           

              The author introduces the concept of the primary eigen gas which is an abstract gas 

where the microstates are occupied successively in time unlike in the case of a real gas where 

the microstates are occupied simultaneously. He shows that the energy-momentum eigen state 

of a particle represented by a plane wave can be treated as a primary eigen gas which makes it 

possible to understand the dynamics of a particle in terms of the thermodynamics of such a 

gas. In this approach, time and space turn out to be the intrinsic properties of the primary eigen 

gas representing a particle and the quantum nature of time and space emerges from it in a 

natural manner. It is shown that the action (with a negative sign) of a particle can be identified 

with the entropy of the primary eigen gas and the principle of least action is nothing but the 

second law of thermodynamics. Besides, it is shown that the uncertainty relations of quantum 

mechanics can be derived directly from the equation for the fluctuations.  
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1 Introduction             
 

          We saw that an electron can be represented by a confined helical wave which is formed 

by the confinement of a plane polarized electromagnetic wave that acquires half spin. It is 

observed that such a confined helical wave not only acquires rest mass and the electric charge 

but also the half spin of a particle like electron. Such a confined helical wave representation of 

a particle is seen to be compatible with the Dirac equation and it directly leads to the Pauli 

exclusion principle [1],[2],[3]. It was suggested that the confinement of the helical wave may 

be effected by its interactions with the virtual helical waves created in the vacuum fluctuations 

[4]. The approach outlined above is based on the confinement of the helical wave created out of 

the electromagnetic wave and therefore, the particles created can only be leptons. However, we 

shall assume that such a confined helical wave representation will also hold good for particles 

like quarks. The only difference will be that instead of the electromagnetic wave, it may be 

some other composite wave having oscillations not only in the electromagnetic field but also in 

other appropriate fields, whose confinement creates these particles. But then whatever be the 

nature of the interactions, it will be reflected only in the amplitude wave which gets compacted 

into the internal coordinates. The time-dependent part of the confined helical wave created out 

of the composite wave will have the form of the plane wave. In other words, whatever be the 

internal structure of the particle, in the laboratory frame of reference they will always be 

represented by a plane wave [1]. In the proposed approach we are not interested in the internal 

structure of the particles, but only in their plane wave representation. We shall now onwards 

use the term confined helical wave (CH wave) in a more general sense to represent such 

confined composite waves.  

          It is now proposed that the states occupied by the CH wave in its interactions with the 

vacuum fluctuations can be treated as a primary eigen gas. The basic idea is to treat a particle 

as a thermodynamic system and to understand the dynamics of the particle in terms of the 

thermodynamic analogues. We know that a gas is one which is made up of millions of 

molecules moving randomly in all directions within a container having a definite volume. 

Statistically speaking, a gas is a system containing trillions of molecular states that exists at an 

instant with each molecule having a specific value of energy and momentum. We might as 
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well imagine an abstract gas which is formed by trillions of molecular states occupied by a 

single molecule in its successive interactions with the walls of the container. We know that 

statistically speaking these two gases are equivalent. The only difference is that in the first 

case, all the states are occupied simultaneously, while in the second case they are occupied 

successively. However, this will not be important if we are dealing with a system in 

equilibrium which by definition is time invariant. We know that the thermodynamics of a real 

gas can be understood in terms of the statistical properties of the molecular states forming it. 

Based on the statistical equivalence of the two gases, it appears reasonable to extend the laws 

of thermodynamics to the abstract gas also. We shall call this abstract gas “the primary gas” 

and study the thermodynamics of this gas in more detail. Later we shall show that the 

constituent of the primary gas need not be a molecule, it can as well be a CH wave. We shall 

now onwards use the term “primary eigen gas” only if it is constituted by CH waves.    

          The idea of a gas formed by a single molecule was first introduced by Leff a few 

decades back. He called it „model gas' and it was constructed by the states occupied by a single 
particle with certain mass and kinetic energy confined in a one-dimensional box [5]. His 

approach has been based on the kinetic theory and assumes the classical action function for the 

particle. In the entire analysis, it is presumed that the gas as a whole is stationary with regard to 

the observer. However, the approach we propose here involves the introduction of the 

additional thermodynamic coordinates like the translational velocity of the gas and the 

corresponding translational momentum.   

 

2 The Principle of the Statistical Equivalence  

 

          Let us take a real gas with N molecules contained in a vessel with conducting walls kept 

in a thermal bath. For the sake of generality, we shall use the term “microstates” to denote the 

state occupied by the molecules. We assume here that the molecular density of the gas is quite 

low and therefore for all practical purpose the molecules do not interact with each other; they 

interact only with the walls of the container. In short, we treat the gas as an ideal gas. Let this 

gas be in thermal equilibrium with the macro-setting. We shall also assume that the ensemble 

of this gas contains R copies, where R can be a very large number. 

          We may now imagine another identical container with only one molecule kept in it. It is 

possible to think of a very large number of states occupied by this single molecule in its 

successive interactions with the container walls. Note that the average energy of the molecule 

will be determined by the temperature of the container walls as the system is in thermal 

equilibrium. If we take L number of such micro-states and divide it into 'R' groups, each group 

being comprised of N successive micro-states, where R and N are very large then, our 

assumption is that for each group having a certain profile of occupation of micro-states we can 

identify with an ensemble copy of the real gas having the same profile of occupation of the 

micro-states. Such a group of states occupied by a single molecule in successive interactions 

can be treated as an abstract gas. Here the sequence of the occupation of micro-states is not 

relevant, only the frequency profile of the occupation of the micro-states is important. In other 

words, if there are two abstract gases whose micro-states do not tally sequentially although the 

frequency of occupation of the micro-states is the same, then the two abstract gas states may be 

treated as identical. In simple terms, what we are doing is analogous to comparing the 

outcomes of one die thrown thousand times with those of thousand dice thrown 

simultaneously. Obviously both results will be statistically equivalent and the sequence of the 

outcomes in the case of a single die is unimportant in this comparison. Let us call this "the 

principle of the statistical equivalence".                              

          We know that the thermodynamic relations of a real gas can be derived purely on the 

basis of the probability of occupation of different gas states using the concepts of canonical 

ensemble and grand canonical ensemble. For example, for a given equilibrium macroscopic 

condition determined by, say, constant temperature, pressure and chemical potential, the 

probability of occupation will have a sharp maximum like a delta function for states with a 
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particular value of energy, volume and number of molecules. The thermodynamic variables 

like energy, volume, number of molecules etc. of a  real gas can be identified with such average 

values. The thermodynamics of the gas can be understood based on the ensemble approach by 

suitably defining entropy as a statistical quantity [6]. The statistical equivalence of the 

ensemble of the primary gas with that of a real gas may lead us to the conclusion that 

thermodynamics of a real gas and that of a primary gas are equivalent.  

          However, we should keep in mind that on certain aspects there are differences between a 

real gas and a primary gas. We shall examine these aspects in detail shortly. With this purpose 

in view, we shall construct a primary gas with its micro-states occupied by a single particle and 

derive the thermodynamic relations. Subsequently, we shall introduce translational velocity 

and momentum as additional thermodynamic variables and generalize the thermodynamic 

relations.   

 

3  Thermodynamics of the Primary Gas   
  
          We assume here that the primary gas is formed by a single particle. Here the particle can 

be a single molecule or even an electron. The spread of the states occupied by the particle in 

time contributes to certain interesting properties. To avoid confusion regarding the 

identification of the particle state and that of the primary gas, we shall now onwards call the 

particle state as the micro-state of the primary gas. It should be noted that the number of micro-

states in the primary gas is not constant, but increases as the time interval within which it is 

defined increases.               

          Let us now take a real gas whose number of molecules and volume are fixed. If we treat 

the system as a quantum mechanical one with quantized values for energy, then the notation 

for the energy of the gas will be ξk where 'k' denotes a complete set of quantum numbers. We 

now propose to derive the thermodynamic relations of the primary gas based on its equivalence 

to the real gas [7].             

          Let  us consider L number of successive micro-states of the primary gas which are 

subdivided into R groups, each group being formed by N successive micro-states such that 
 

                                                   LRN     .                                                          (1) 

 

It should be noted that R represents the ensemble of the primary gas. L and R can be made as 

large as required. Let us denote by nk the number of the ensemble copies for which the energy 

is k. Then, the ratio, nk /R will give the probability for the gas to occupy the states with the 

specific values k. The logical foundations of the approach are based on the following. Let us 

consider a giant abstract gas formed by combining all of the R copies of the ensemble. Then 

the states with a given value k will play the same role as played by a box in the Boltzmann‟s 

method [8]
 
and the number of copies nk, the role of the number of balls in the boxes.  

          The number of ways in which the copies of the ensemble can be distributed among the 

boxes is equal to 
 

                                                                         !! kk nRM   .                                             (2)                      

                                                                                       

The copies of the ensemble will be assumed to be distinguishable as the primary gas state is a 

collection of micro-states, not an isolated micro-state. We shall later show that even if the 

states are taken as distinguishable, there will not be any change in the final result. We may 

assume that there exists a Gibbs micro-canonical distribution for the giant gas containing R 

copies. Therefore, the number of copies R and the total energy of all the copies  ̂ will be 

assumed to be fixed. These constraints may be expressed by the equations 
 

                   
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k
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The approach we propose to follow is based on the assumption that the most probable state of 

the gas can be identified with that particular gas state which recurs most often in the ensemble. 

For this purpose, we should find out the maximum of M in (2). Keeping this in view, let us 

define a function  given by                                                                        

                                                                             MK ln  ,                                                                                      (4) 

 

where K is the Boltzmann's constant. We know that  has a maximum when M has a 

maximum. So our effort boils down to finding the maximum of . On carrying out some 

simplifications (Annexure I) we obtain that 
 

                                                    FS    .                                               (5) 

 

where S is the entropy of the primary gas while ξ, θ and F are respectively its average energy, 

temperature  and free energy.  Further, we obtain the probability for the primary gas to occupy 

the state with energy ξ′ as (Annexure I) 
 

                                           ,)()( )(  KFegW                                        (6)   

 

Reverting back to the quantum number k, the above equation may be written as 

 
                                                    KF

kk egW


 k  .                                            (7) 

 

Here we should keep in mind that the free energy function, F is defined for a specific value of 

volume and number of micro-states. This is implicit in the steps we followed in the derivation. 

Taking summation over the entire range of values of k in (7), we obtain  

 

                                     K

k

KF egYe k   .                           (8) 

                                            
                                                                  

Note that the function 
KFe

 in (7) plays the role of the normalizing factor.     

 
4  Eigen State as a Primary Eigen Gas   
 

          In the earlier papers we discussed about the structure of an elementary particle 

[1],[2],[3],[4]. There we studied the case of the confined helical wave (CH wave). It was 

observed that the space-dependent part forming the amplitude of the CH wave is defined in the 

internal coordinates. On the other hand the time-dependent part of the CH wave defined in the 

laboratory coordinates appears as a plane wave. We also observed that the CH wave and the 

plane wave are always in phase. This means that by the time the confined wave travels one 

wave length between the mirrors, the plane wave would have traveled one wave length in the 

laboratory coordinates. We may use the term wavelet to identify a single plane wave. We shall 

now introduce the concept of wavelet which represents a single wave and identify it with the 

microstate of the primary gas. This would mean that the plane wave representation of a particle 

in quantum mechanics has to be treated as a wave train having finite number of wavelets in it. 

Note that in the conventional treatment the number of wavelets constituting the plane wave 

representing a free particle is left undefined. It is pertinent to note that a photon is usually 

represented by wave train having a certain spatial spread. 

 

         We shall now assume that a large number of wavelets, say N wavelets, occupied 

successively form the plane wave. Here N is left undefined. It can be taken as a large number. 

The veracity of this assumption can be confirmed only if it leads to a new self consistent 

picture where N comes out as a universal constant which gets factored out in any observation. 
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By the same logic, we may assume that the wave train of a photon contains N wavelets. In 

quantum mechanics the plane wave plays the role of the eigen state in coordinate 

representation. One should keep in mind that observation is a macroscopic process and it 

involves a large number of the microstates. We are assuming that the number of microstates 

involved is fixed and this group of micro-states taken together is treated as a primary gas. 

Since a CH wave is formed by its interactions with the vacuum fluctuations, the energy and the 

momentum states occupied by it will be randomly distributed with a sharp maximum close to 

the average value. Here we treat a plane wave state which is an eigen state as a primary gas 

state on this basis. Now onwards we shall use the term primary eigen gas exclusively for such 

a gas. 
 

          The properties of a primary eigen gas are similar to that of a real gas with which we are 

familiar. Let us take the state function represented by (6). One interesting property of W(ξ') is 

that for given large values of N, as ξ' increases it shows a sharp maximum for the value          

ξ' = ξav, where ξav may be taken as the average value of the energy of the primary eigen gas. 

The reason for the sharp maximum can be found in the fact that as ξ' increases, the exponential 

term in (6) decreases. However, the degeneracy of the state represented by g(ξ') increases 

exponentially with the increase in ξ'. As a result, the product of the two functions exhibits a 
sharp maximum at the average value (figure.1). The sharpness of W(ξ′) increases as the 

number of microstates increases. When the number of microstates is in the range of 10
21

, the 

function becomes so sharp that it can be taken as delta function. In such a situation practically  
 

 

                                             exp(-ξ'/K) 
                                     P               M                     S 
                                                       dW(ξ')  
                                                                         g(ξ') 

 

 
                                                                                  
                                       
                                              R                                                        Q       

                                                                    ξav                     ξ′         
              

                     PQ denotes the Boltzmann factor which decreases as ξ' increases while RS 

                             represents degeneracy, g(ξ') which increases exponentially as ξ' increases. 

                        The resultant curve RMQ has a sharp peak at M similar to a delta function.    
 

                                                                 Figure.1 
 

all states of the gas will crowd around the average value. This is the reason why it is possible 

to identify the thermodynamic values of energy, volume etc with the average values. On the 

basis of the probabilistic considerations, it is obvious that the same situation should hold good 

in the case of the primary eigen gas representing a particle. Note that g(ξ') represents the 

degeneracy of the state or the number of ways the microstates can be occupied for a given 

value of the extensive energy ξ'.  
 

          In the case of the primary eigen gas, the role of the molecular state will be taken up by 

the CH wave which we know [2][3][4] can be represented by the plane wave. To be precise, a 

single CH wave that can be taken as a micro-state will be represented by a plane wavelet. In 

other words, a plane wave constituted by a train of large number of waves will be equivalent to 

the primary eigen gas state. We use the term “primary eigen gas” keeping in mind that the 

plane wave represents an eigen state of the particle in the coordinate representation. On this 

basis, the confinement will be effected not by the walls of the vessel containing the gas, but by 

the two abstract mirrors confining the CH waves. An important property of the primary eigen 

gas so formed is that its energy (or momentum as they are linearly related) determines the 

distance between the mirrors. Note that in the rest frame, the distance between the mirrors is 
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λo while the energy of the CH wave is given by hc/λo. Therefore, once we fix the energy, the 

volume of the primary eigen gas gets fixed automatically. In other words, for the primary eigen 

gas volume is not an independent variable. Note that this holds good even when the system 

undergoes translational motion. 
 

          Let us now take up the case of the number of microstates contained in a primary eigen 

gas. Needless to say, for a given duration, the number of microstates, N of the primary eigen 

gas is not an independent variable. This is because the number of interactions undergone by the 

helical wave with the mirrors in one second is equal to its frequency which in turn is 

proportional to its energy. But we know that the time taken by the plane wavelet to complete 

one oscillation is exactly equal to the time taken by the CH wave to complete one to and fro 

motion. In other words, the number of plane wavelets formed in the laboratory coordinates will 

be exactly equal to the number of CH wave states. This shows that the number of CH waves 

formed in a given duration is not an independent variable and is completely defined by the 

energy of the CH wave states. 
 

          Here we should note that while the period of the CH wave and the plane wavelet are the 

same, their wave lengths are different. Note that the CH wave has a spread of  λo/, where λo 

is the wave length in its rest frame of reference whereas the wave length of the plane wavelet is 

much larger [1][2] and is given by 
 

               oo cEhh v)c()v(þ 2   .                   (9) 

 

Needless to say, in the rest frame of reference λ will become infinity. Since the corresponding 

phase velocity given by c
2
/v will also become infinity the frequency of the plane wavelet will 

continue to remain finite given by c/λo.   
 

          In the micro-canonical treatment followed for the primary eigen gas, it is implied that 

the volume and the number of states are fixed. However, we now have a situation where the 

spatial spread which is equivalent to volume is no more an independent variable. It is just half 

of the wave length which is inversely proportional to the energy of the plane wave. Likewise, it 

is obvious that the number of wavelets constituting the primary eigen gas state also is 

completely determined by the frequency or the energy of the plane wave. In other words, the 

primary eigen gas gets fully defined when we take only the energy of the micro-states into 

consideration. In other words, in the case of the primary eigen gas the concept of the grand 

canonical ensemble will not be required as the micro-canonical ensemble will fully define the 

system.  
  

          Here we should keep in mind that we are dealing with the primary eigen gas in its rest 

frame of reference and therefore it does not possesses translational velocity and translational 

momentum as its thermodynamic coordinates. We shall introduce them shortly. Since we are 

dealing with the CH wave remaining in equilibrium with the macro-setting (vacuum), we shall 

not consider the case where it undergoes expansion in its wave length and does work. 

Therefore, we may treat F to be a constant. We may now introduce a modified entropy S′ 

where S′  =  (S + F/). Accordingly we may express (5) as 
 

                                       NES    ,                                     

 

Dropping the prime from S′, we may re-express the above equation as 
 

                                        NES                                         (10)      

 

where E denotes the average energy of the microstate. Therefore (6) can be expressed as 
 

                                                .)()(  KegW
                                        (11) 
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Note that here 𝑔′( ′) actually stands for  𝑔( ′)𝑒𝐹/𝐾 

5  Primary Eigen gas in motion at relativistic velocities               
 

          If we study a thermodynamic system like a gas having translational velocity in the 

relativistic range [9], then it is observed that its heat content or enthalpy given by (+PV), will 

transform exactly the way the rest mass of a particle will transform. We may extent this 

property to the primary eigen gas also without any logical inconsistency (see annexure). 

However, in the case of the primary eigen gas, pressure and volume are not independent 

variables and therefore will not figure in the expression for enthalpy. In its place we may 

introduce variables representing its translational velocity and momentum. If we denote by G, 

the translational momentum of the gas as a whole, then we have  
 

                                vG )(; 2co    ,               (12) 

 

where   = (1-v
2
/c

2
)

- ½
 and v is the translational velocity. It can be easily shown that the above 

relations will hold good even if the direction of the translational motion does not coincide with 

that of the confinement. It is obvious that ξ and G are related to each other exactly the way the 

energy and momentum of a particle are related to each other. In fact combining two equations 

in (12), we obtain 
 

                                                      2222

oc   G     .                                       (13) 
 

This is the relativistic energy and translational momentum relation of the primary eigen gas. If 

we take v to be along the z-axis, then by taking the differentials in (12), one can readily show 

that 
 

                                                         
zz dGd v     .                                          (14) 

 

But from (10) we may write 
 

                                  
zþNGandNE z    .              (15)  

 

E may be called the intensive internal energy of the primary eigen gas and þ its intensive 

translational momentum. Dropping the suffix from Gz,, þz and vz while assuming they are 

directed along the z-axis, (11) can be written using (15) as 
 

                                                          2cEvþ     .                                              (16) 

 

          It is worthwhile to recall here that while the confinement of the helical wave takes place 

in the internal coordinates, the eigen state which represents the particle is defined in the 

laboratory coordinates. Therefore, in the laboratory coordinate system the microstates 

constituting the eigen state will be represented by the plane wavelets. As already discussed, the 

plane wavelet will be taken as the most basic entity for the primary eigen gas just as the 

molecular state is taken as the most basic entity forming a real gas state. Although a wavelet 

has the inner structure of a CH wave, this aspect plays no role in the nature of the eigen state. 

Only the plane wavelets, which can be treated as the projections of the CH wave onto the 

laboratory coordinates, are of importance. The need to get into the CH wave structure will 

arise only to explain the fermionic nature of the particle. For all other purposes, the plane 

wavelet structure will be adequate.  
 

          It should be noted that the introduction of the translational momentum, G is tantamount 

to the introduction of a new thermodynamic variable. Therefore, apart from (3), and (4) the 

following additional condition will have to be introduced where Ĝ is taken as fixed because the 

total number of copies in the ensemble is fixed. We shall for the sake simplicity take the 

direction of the translational motion to be strictly along the z-axis so that 
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k


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Using (17), equation (3) can be generalized to give  
 

                                 ,)1( RG  


                                   (18)   
 

where  is a constant which has to be determined. Ĝ is naturally a scalar. Now following the 

steps taken earlier (Annexure I), we can write   
 

                     }),(ln){( 1  YGKRnKS kkk
k

  .                                 

 

                         G  ,                                                                (19) 

 

Here ξ and G represent the average values of the internal energy and the translational 

momentum while  denotes the thermodynamic potential given by 
 

                      )(

1 ),(
KGK

k egeY kk                      (20) 

 

Note that if the energy states are lying close together, we may take them as continuous. 

Therefore, we may replace the summation by integration and also replace ξk  and Gk  by ξ′ and 

G′ respectively. We may now express the probability function corresponding to (6) as 
 

                               ,),(),( )(1

1

KGKeGgYGW


                         (21)   

 

We know that in any reversible change we may take S as an invariant. Therefore taking 

differentials in (19) , keeping in mind that / is a constant, we obtain 
 

                                                      dGd    ,                                                       (22)                      

 

Since dξ/dG  = v, the translational velocity, we have   = v/. Accordingly we may re-express 

(19) as  
 

                                              GS v                                    (23) 

 

We may introduce a modified entropy function S′ given by 
 

                                   GSS v1                                  (24) 

 

Note that S1 also will remain an invariant in any reversible change as we know from (20) that 

/ is a constant. Keeping in mind that S1 is the modified entropy function, we may drop the 

suffix from S1 and express (24) as 
 

                                                 GS v                                                       (25) 

 

If the velocity and the translational momentum are along any general direction, then we have 
 

                                             Gv S                                                   (26)
 

 

We may now express (21) as 
 

                                   .)()( )(  KegW Gv                                            (27) 
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Here 𝑔( ′) stands for 𝑒/𝐾𝑔( ′). Further,we should keep in mind that the translational 

momentum G′ is taken along one direction only and this means ξ′ completely determines the 

value of G′. 
 

          It can be seen (see Annexure) that in a relativistic transformation, an ideal gas for all 

practical purpose will behave like a particle having rest energy. Needless to say, this applies to 

the case of the primary eigen gas also. Since the number of microstates is a relativistic 

invariant, we may define E = ξ/N and þ = G/N respectively as the energy and the translational 

momentum of a single microstate. For the primary eigen gas, an infinitesimal increase in the 

energy of the translational motion will be given by v•dG. In the case of particle mechanics, 

the equivalent function is v•dþ.  
 

                               rFþrrþv ddt)(dþ)d(  dddtd  . 

     
Now combining (26) and (27) we may write                                                                            

 

 

                                            }/][)()(  KegW Gv    .                            (28) 

 

(15) can now be written as      

    

                                2Eand cN vþþG      .             (29)                     

 

Equation (26) can be expressed in a more general way as 
 

                               )(


v.þ


E
NsNS                                       (30) 

 

where s may be called the intensive entropy 

 

6   Introducing the Abstract Giant Primary Gas 

 

          We shall now try to express (28) in terms of the intrinsic quantities like E′ and þ′ instead 

of  ξ′ and G′.  We know that the probability density function W(ξ′,G′) has a sharp peak like a 

delta function for value ξ′ = ξ and G′ = G, where ξ and G are the average values for the 

ensemble as a whole. Therefore, for all practical purpose the entire ensemble of the primary 

gas may be assumed to occupy states having average values ξ and G. We shall now introduce 

an abstract gas formed by the entire ensemble of the gas which has Nne microstates. For this 

abstract gas, the average intrinsic energy and intrinsic momentum of the microstate will be E 

and þ. Note that this abstract gas having Nne microstates possesses the internal energy


and 

the translational momentum Ĝ. We shall ignore the problem regarding the indistinguishability 

of the microstates for the present. Now following the Boltzmann‟s box method, It can be easily 

shown that the probability for occupying the microstate with energy E′ is given by   

 

                                       KENneeEgEW
/)(

)()(
þv                                  (31) 

 

But we know that the number of microstates have a sharp maximum for energy and 

translational momentum which are close to the average values. Note that here the situation is 

similar to what is given in figure 1. In fact, equation (22) may be written as  

 

                                      þ)-þ()(  vEE  ,                                                                                 

 

The above equation can be modified using (30) to obtain 
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                              sEE   //// þvþv .                                 (32)                           

 

(31) can now be expressed using (32) as 
 

                                   KENneeEgEW
/)(

)()(
þv                                      (33) 

 

In the rest frame of reference, the energy of a copy of the primary eigen gas will be ξo and (33) 

may be expressed as 
 

                                       ooe KENn

oo eEgEW
/

)()(
                                        (34) 

 

Since the energy of the individual microstates also would have a very sharp maximum for     

E′o = Eo , we may replace E′o by Eo for all practical purpose. Here g(E′o) which represents the 

degeneracy, increases as E′o increases while the exponential factor decreases correspondingly 

with the result that W(E′o) gets a sharp maximum like a delta function at E′o = Eo, where Eo is 

taken as the average value. Therefore, the probability to occupy any microstate with energy E′o   

can be expressed as  
 

                                         ooe KENn

oo eEgEW
/' )()(


                                      (35) 

 

Using Sterling‟s formula it can be easily shown that for very large values of the microstates, 

the degeneracy  
 

                                               Nn

o
eeEg )( '                                                           (36)  

 

Here it is worthwhile to note that Eo is the average value of energy of the microstate. Therefore 

it can be equated to Ko. In the light of this, substituting for 𝑔(𝐸𝑜
′ ) from (36) into (35) yields 

 

                                         1)( 
 NnNn

o
ee eeEW

 

This result is quite consistent with the observations. Note that on a macroscopic system like an 

ideal gas, the probability to occupy any state other than that having the average values is 

negligibly small and can be taken as zero for all practical purpose. It should be kept in mind 

that when the system is given a translational velocity, Eo will transform into (E-þv) while o 

will transform into .
                                   

 

7  Quantizing Space and Time 

   

          We saw from the previous chapter that the intensive energy and the intensive momentum 

of a primary eigen gas are related just the way the energy and the momentum of a particle are 

related. That is þ = Ev/c
2
. Further we have E =  Eo where Eo is the value of E in the rest frame 

of reference. This leads us to the relativistic relation  
 

                                                .þ 2222

oEcE                                              (37) 

       

Let us now introduce two new thermodynamic quantities Te and Re defined by    
 

                        KhandKhTe vRe   .              (38)   

 

The factor h/K has been introduced into the equation so that Te will have the dimension of 

time. We saw from the previous section while deriving (35) from (36) that  Eo = Ko. From a 

moving frame of reference the corresponding equation will be  (E-þ.v) = E/
2
 = Kθ. Therefore, 

we have 
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                                           TEhTe

22   .                                    (39) 

 

Here T denotes the period of the plane wavelet or the microstate. Let us now take (30) and 

substitute for 1/ and v/ from (38) and (39) after multiply it with ne. If we now define a new 

function  S
#
 =  neNS representing the extensive entropy, then we obtain                                                                   

                                                     

                                  ])[(#
þR  eeee NnENnThKS  .                              (40) 

     
Here neNTe and neNRe have very interesting properties. neNTe denotes the spread of the eigen 

state in time while neNRe represents the spatial distance covered during that period. Equation 

(40) pertains to ne eigen states. We may re-express the equation as   
 

                                          ))((#

erþ  eEthKS                                         (41) 

 

where         
ee Rr NnandNTnt eeee      .                   (42) 

 

Here as neN increases, te also increases. In that sense te has the property of the progressive 

time. Likewise, re has the property of spatial coordinate. 
 

          The question which comes to our mind here is whether the time and the space 

coordinates denoted by te and re are specific to the primary eigen gas under study or can it be 

taken to represent the laboratory (external) coordinate system. The equations in (38) which 

define Te and Re are specific to a primary eigen gas. But we have to consider the fact that if we 

take certain time interval, then the number of eigen states, ne contained in it will be inversely 

proportional to the energy of the eigen gas. In (39) we have equated the intrinsic time of a 

primary eigen gas, Te inversely proportional to the rest mass. It is obvious that the period of the 

plane wavelet representing one particle will be different from that of another if they differ in 

their rest masses.  
 

          Let us now take the case of two primary eigen gases A and B having rest energy EoA and 

EoB respectively, with EoA > EoB. Then, if ToA and ToB are respectively the intrinsic quantum of 

time (the period of the plane wave) of A and B, it is obvious that   
 

                             
oBoBoAoAoAoB EhTEhTasTT  ,  .               (43) 

 

 Note that although ToB is greater than ToA, the number of eigen states that exist in a time 

interval in the case of B is proportionately less than that of A. If we denote by noA and noB the  
 
 

                                                      noANTA 

                                                                                                    A 
 

                                                      noBNTB 
                                                                                                    B     
 
 

                          The interval between two consecutive vertical lines can be taken as the spread of 

                                 the eigen gas  state in time and it is quite clear from the figure that noATA = noBTB. 
 

                                                              Figure.2 
 

number of eigen states contained in a certain time interval by the primary eigen gases A and B 

respectively, then presuming that noA and noB are very large numbers, we have 
 

                                  
oooBoBoAoA TNnTNnTNn    .                  (44) 
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Here no and To pertain to some eigen gas which can be taken as a norm. Note that To can be 

taken as small as required so that for all practical purpose, noNTo can be taken as a continuous 

function and therefore it can be used to represent the external time coordinate. Substituting for 

noNTo by to , (44) can be written as  

 

                                      
ooBoBoAoA tTNnTNn     .                        

If these particles are observed from a moving frame of reference (moving with a velocity –v), 

then the above equation transforms to 

                                         tTNnTNn BBAA                                (45)
 

It can be easily seen that this property given by (45) can explain the perception of time as a 

universal background. Note that if r is the spatial coordinate of the primary eigen gas taken as 

the norm, then r = vt.  
 

          We know that the extensive internal energy of n eigen states, each having N microstates, 

can be represented by ξ
#
 where 

 
 

                                      nNEn   #     .                                      (46) 

 

If we now take two primary eigen gases, A and B interacting with each other for a duration t, 

then their corresponding extensive energy can be taken as 
𝐴
#

 and 
𝐵
#

. Since the eigen states of 

A and B involved in the interactions are nA and nB respectively, the corresponding number of 

microstates involved in the interactions will be NnA and NnB respectively. This means that, 

instead of taking the extensive internal energy of A and B, we may as well use the average 

energy of the microstates of A and B denoted by EA = (
𝐴
#  /𝑁𝑛𝐴) and EB = (

𝐵
#  /𝑁𝑛𝐵) 

respectively.  
 

              Using (45), we may now express the small variations in t and r as  

      

                        Rr nNandTNnt   .           (47) 

 

where T and R pertains to the primary eigen gas used as the norm in the laboratory coordinate 

system. We saw from the preceding discussion that we may take T and R as small as required 

so that t and r may be taken as continuous variables. Therefore, if ∆n << n, then t can be 

replaced by dt and ∆r by dr. Let us now take (45) and replacing the suffix A by e, we obtain 
                                                      

                                       tnNTNTnt eee                                         (48) 

                                                                                                                                                 

                 rvvre  TnNTNn ee
  .                                     (49) 

      

Now substituting in (41) for te and re from (48) and (49) we have  
 

                                        ])[(# rþ  EthKS   .                                         (50) 

 

We may also re-write (33) using (38), (48) and (49) as  
 

                                          hEW )-t(E-e)Eg()( rþ
.
                                            (51) 

 

Substituting for S
#
 from (50) into (51), we have 

 

                                        
KSEW

#-e)Eg()( 
.                                                  (52)  
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          Now we have to define the infinitesimal variations in entropy, energy and momentum. 

Here we should keep in mind that the eigen state is the most basic level for observation. 

Therefore, any variation should be measured from one eigen state to another. Let us take n 

number of eigen states which are occupied successively. Let S
#
 be the extensive entropy of the 

group of eigen states. Then we have 
 

                               nSSandnSnNsS  ##  .                    (53) 

 

This means that as the laboratory time progresses through ∆t, the extensive entropy increases 

by ∆n S. The variation defined by (53) is the extensive variation where only n varies. In a 

similar manner we may define differentials of ξ and G also.  

 

8  Action Entropy Equivalence of the of the Primary Eigen  gas 

 

          We saw from the earlier discussion that a particle can be represented by a primary eigen 

gas. We shall now examine if the mechanics of a particle can be related to the thermodynamics 

of the primary eigen gas. We saw that in a relativistic transformation, the intensive energy E 

and corresponding intensive translational momentum þ of a primary eigen gas changes exactly 

like the energy and linear momentum of a real particle. Let us now take the action function of a 

free particle given by 
 

                                  
otEtA oE-)(  rþ .                            (54) 

 

Here Eo is the energy of the particle and to its time coordinates in the rest frame of reference. It 

should be kept in mind that action is a relativistic invariant. Comparing (50) with (54) we 

obtain 
 

                  hdAKdSorhAKS  ##  .        (55) 

    

The invariance of entropy under a relativistic transformation holds good for both the extensive 

and the intensive aspects. The extensive aspect remains invariant because nN is an invariant in 

a relativistic transformation.  
 

          This equivalence of two of the relativistic invariants, action and entropy brought out by 

(55), is an exciting result. Being a thermodynamic system, entropy of the primary eigen gas 

has a maximum in the equilibrium state. We know that entropy remains a constant in a 

relativistic transformation. From (55), we observe that when S
#
 is maximum, action A is a 

minimum. This means that the least action principle of the particle-mechanics is nothing but a 

restatement of the second law of thermodynamics applied to the primary eigen gas. Let us now 

try to find out the thermodynamic equivalent of the Langrangean of the primary eigen gas. We 

know that if we introduce to a system a small number of eigen states having the same average 

characteristics, then it will result in the increase in its heat content by a small value dQ 

#
 . This 

will result in a change in the extensive aspect of entropy given by             
  
                    ,)()(## dtqhKqNdnThKdQdS e                 (56) 

 

where q is the internal heat expressed in terms of a single microstate or one may call it the 

intensive internal  heat.  However, for a mechanical system   
 

                                                     ,dtLdA                                                     (57) 

  

where L is the Langrangean.  Comparing (57) with (56) and (55) yields 
                                                                             

                              )v1( 222 cmcLq   .                           (58) 
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When v = 0, q = mc
2
. Therefore, one may state that the rest mass of a particle is a measure of 

its internal heat. Note that the heat which we perceive in our daily experience is due to the 

random motion at the molecular level. However, the heat referred to here is created by random 

motion at the innermost or most or sub-quantum level. Therefore it may be more appropriate to 

call it the sub-quantum heat.  
 

          In the light of the above discussion, we may examine the equation for the relativistic 

transformation of energy given by 
 

               )v1()v()v1()v1( 22222222 ccEcEcEE ooo              

 

                      þv)v1( 222  cmc  .                                                                    (59) 

 

Using (58), the first term on the right hand side of the above equation can be identified with 

the heat content while the second term can be identified with the free energy given by þv. Note 

that in the case of an ordinary gas, where the number of molecules is fixed, the free energy is 

given by PV, where P and V are pressure and volume respectively. But in the case of a primary 

gas, the equivalent function is þv. Therefore, (59) can be expressed as 
 

                                                          .þv qE                                            (60) 

 

This represents the first law of thermodynamics. Actually the first law should be expressed 

using the variations as  
 

                                                     wqdE   .                                             (61) 

 

Here w denotes the work done on the system which is equal to þv. Note that Δq and Δw are 

improper differentials. This is because a thermodynamic system can undergo variations in q 

and w along various paths defined by values of pressure, volume and temperature occupied by 

the system. Note that when a system moves from state A(P1,V1,1) to state B(P2,V2,2), then 

there are infinite path ways available for this transition. Therefore, when Δq or Δw approaches 

zero, the paths followed by them are not uniquely defined. Therefore we cannot replace Δq and 

Δw by dq and dw. This also means that we cannot arrive at (60) starting from (61). Here it 

should be noted that the linear combination of the two variations equals to the variation in the 

internal energy which is seen to be a proper differential and is therefore denoted by dE.          

In the case of the primary eigen gas, the situation is different. This is so because we know that 

both q and w are functions of v and their variations are uniquely defined. Therefore we may 

replace Δq and Δw by dq and dw respectively. This explains why (60) holds good for the 

primary eigen gas.                                                      
 

          Let us now substitute for q in (60) from (59) and take the differential to obtain  
 

                dþvdþvdvþdvþ-þv)()( 2  dmcddE   .       (62) 

              

Note that the variation in the internal heat is exactly compensated by one of the two terms 

representing the variation in the free energy leaving only vdþ as the resultant variation. This 

represents the variation in the kinetic energy (recall that d[mv
2
] = v dþ). This is the reason 

why we could ignore the primary gas structure of a particle and deal with it as a point particle.  

The idea that the mass of a particle represents its sub-quantum heat opens the window to a new 

breath-taking view of the internal structure of matter. In fact, this allows us to study the 

quantum world using the well understood principles of thermodynamics. 
                                                 
9  Statistical basis of the uncertainty principle  
              

          We shall now show that the Heisenberg‟s uncertainty principle can be derived from this 

idea of the interactions with vacuum fluctuations. Let us take n number of primary eigen gas 
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states having energy 1 to n. We know that if n is quite large, then the states occupied by the 

particle would crowd around the average value ξ. Now applying the principle of fluctuations 

on these n eigen states , we obtain 

                                                 n1    .                                                 (63) 

 

This is the equation for fluctuations [5]. If we take the case of the primary eigen gas with N 

microstates, then, we know that ξ = Nhν = Nh/Te where Te is the period of the CH wave. 

Therefore, we have  
 

ie;                                         nNhTe

2     .                                           (64) 

Let us now define the variation in the intrinsic energy as  ΔE = ∆ξ/N. Now multiplying both 

sides of (64) by n, we obtain  
 

ie;                                        hnTnE e

2    .                                               

 

If we now take n to be a very small number denoted by Δn, then the above equation could 

expressed as 

                                            
hnTnE e  2                                              (65) 

 

If T is the intrinsic quantum of time of the laboratory coordinate system, then from (48) we can 

always relate it to the intensive time of a particle by the relation 
 

                                                          mNTTe     ,                                              (66) 

 

where m is an integer. Here T is the intrinsic time of the primary eigen gas which is taken as 

the norm for the external or laboratory coordinate system. NT will give us the time spread of 

the primary eigen gas state which is taken as the norm. Note that T can be made as small as 

required. We may now express (65) as 
 

                                       hnmNTnE  2   . 

 

Taking  m ∆n  =   ∆n', the above equation may be written as 
 

                                          hnTNnE  2   .       

 

We know from (47) that “∆n'NT” can be taken as the durative time in the external coordinates 

and could be denoted by ∆t. This gives us the relation 
 

                       htEorhntE  2     .              (67)                                                                               

 

In a similar fashion, taking the case of the momentum and the spatial coordinates, we may 

derive the relation 
 

                                                      h
2
1xþ   .                                                 (68) 

 

The reason why h appears on the right hand side is due to the fact that the CH wave is half 

wave, not a full wave. 
 

 

10  Understanding the Nature of the Virtual Interactions 

 

          We know that in quantum mechanics the uncertainty principle given in (67) and (68) 

plays a very important role. If the period ∆t is long, then the fluctuation in energy becomes 
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almost zero. We know that any fluctuation in energy which does not comply with the 

uncertainty relation given in (67) and (68) will remain a virtual one. In other words, if the 

vacuum fluctuations comply with the inequality ∆E ∆t < h, then such fluctuations will be 

virtual by nature.  
 

          Let us examine this issue in the light of the equation for fluctuations given in (63). Here 

we should keep in mind that when we fix the time duration Δt, it is equivalent to fixing the 

value of Δn. Therefore, when we take ΔE Δt > h, we are taking Δn > 1. Similarly, when we 

take ΔE Δt = h, we are basically taking Δn = 1. By the same reasoning, when we take ΔE Δt < 

1, we are assuming Δn < 1. Now we should try to understand what is the implication when we 

take Δn < 1. We know that a primary eigen gas state (equivalent to the eigen state of quantum 

mechanics) is formed by N microstates. We can assume that the number of microstates, Ni 

keeps on increasing from 1, 2, 3 etc. till it reaches the value N when the eigen state is formed 

and the value of n becomes 1. Therefore, it is obvious that n < 1 pertains to the situation where 

Ni < N or when the primary eigen gas state is not yet fully formed. Let us now examine the 

fluctuations that could take place in the energy of the microstates. We know from the equation 

for fluctuations that 
 

                          
iiiiii NEEorN  , .                      (69)    

                       ,  
Here i represents the extensive energy of the system having Ni microstates while Ei = ξi/Ni 

and ΔEi = Δξi/Ni. It is quite obvious from (69) that smaller the time duration (note that Ni is 

directly proportional to the time interval) larger will be the fluctuations in the energy. This 

means that the so called virtual interactions undergone by a particle are caused by the usual 

statistical fluctuations. If we take the case of space and momentum, the requirement for the 

fluctuations to remain virtual will be ∆þ∆x < h.  
 

          One of the paradoxes of quantum mechanics has been the role played by the virtual 

interactions. While the interactions are termed virtual, their effect on the particles is real and 

observable like in the case of Lamb shift and Casimir effect. The interpretation of the 

uncertainty principle given above makes it clear that the so called virtual interactions with the 

vacuum are as real as any other interactions. The only reason why they appear virtual is that 

only a primary eigen gas state formed by a group of N wavelets could only be an observable 

state. To understand the situation better let us examine an analogous case of a real gas. Let us 

assume that no sophisticated instruments are available to observe the molecules of a real gas 

directly, the instruments available can observe only macroscopic systems. In that case, as far as 

the observer is concerned, only the gas contained in a vessel will be a real entity while the 

molecules that form the gas will be virtual! Here, the virtual nature of the molecules is a 

constraint imposed by technology. However in the case of sub-quantum states, there seems to 

be a universal limit for observation. It seems that N microstates are required to form an 

observable state. But we do not know the exact value of N as it gets factored out in any 

calculation. We can only presume that it is not a small number. 
 

11 Conclusion 

 
 

          Since the vacuum fluctuations play the role of the sub-quantum thermal bath, it is 

obvious that the internal energy of the particle will be equal to the energy of the vacuum 

fluctuations. Here we should keep in mind that the energy for one degree of freedom will be 

given by Kθo. Since the CH wave could be attributed two degrees of freedom, one due to 

oscillations in one plane and the other due to rotation, the total energy involved would be Kθo. 

This would apply even if we have to consider some other composite wave instead of the 

electromagnetic wave for confinement to represent particles like quarks. Therefore, the energy 

of the particle in the rest frame of reference would be given by Eo = Kθo. 
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        The concept that an eigen state is represented by N wavelets means that a primary eigen 

gas will be spread out in space over N wave lengths of the plane wave where N is not a small 

number. Therefore, it appears that a particle cannot be localized under the primary gas 

approach. It will be shown in separate papers that this problem of the localization of the 

particle can be resolved by going deeper into the nature of time. As such we know from the 

equation given in (51) that the state function of the primary eigen gas has the same form as that 

of a wave function except for the absence of the imaginary number “2i” in the exponential 

term as a factor. In other words, we may say that in the wave representation of a particle, time 

is treated as an imaginary quantity while in the primary gas approach it is treated as a real 

quantity. This analysis appears to lead us to a new understanding of the nature of time and also 

to the very basis of quantum mechanics. However, before making such a claim, it is necessary 

to establish the thermodynamic basis of the basic postulates of quantum mechanics. This will 

be done in separate papers shortly. 
 

        A detailed analysis of the approach shows that in the case of wave picture, time and space 

coordinates r and t increase parametrically with the increase in N and n while in the primary 

gas picture the corresponding increase is in the energy and momentum values. In other words, 

while the plane wave is the space-time representation, the primary eigen gas is the energy-

momentum representation of a particle. Note that energy-momentum space may be termed as 

the reciprocal space of the four dimensional space-time.  
  

         Here it is interesting to note that de Broglie, towards the later part of his life, had come 

around to the view that a particle may be attributed a hidden thermodynamic system and the 

mass of a particle may be taken as a measure of the hidden heat of the system while action may 

represent its entropy [10]. However, his idea did not find acceptability due to certain serious 

shortcomings. For example de Broglie assumed that the particle may be treated like a real gas. 

However, the action function of a free particle at rest given by “–Eoto” increases as time 

progresses while the entropy of a real gas at rest is given by ξo/θo which does not have such a 

time dependence. This forced him to restrict the action function to one period of the phase 

wave artificially before equating it to the entropy. Besides, it was not clear as to how vacuum 

which acts like a sub-quantum thermal bath can sustain two particles with different rest masses 

continuously in the same region. We should keep in mind that he had not given up the concept 

of the point particle while attempting this intuitive jump. Therefore, although the concept of 

the action-entropy equivalence proposed by him was a laudable attempt, he could not put 

forward a consistent theory to back it up. That may explain why his attempt did not get the 

attention it actually deserved. All said and done, one has to salute this genius who was in the 

forefront in the quantum revolution during 1920s and fifty years hence could still foresee the 

next revolution in physics which we may be called the “sub-quantum thermodynamics”.  
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ANNEXURE -A 

 

         Let  us consider L number of successive microstates of the primary gas which are 

subdivided into R groups, each group being formed by N successive microstates such that 
 

                                                   LRN     .                                                       (A I) 

 

Here R represents the ensemble of the primary gas. L and R can be made as large as required. 

If we denote by nk the number of the ensemble copies for which the energy is k , then, the 

ratio, nk/R will give the probability for the gas to occupy the states with the specific values k. 

If we now consider a giant abstract gas formed by combining all of the R copies of the 

ensemble, then the states with a given value k will play the same role as played by a box in the 

Boltzmann‟s method [1]
 
and the number of copies nk, the role of the number of balls in the 

boxes.  
 

          The number of ways in which the copies of the ensemble can be distributed among the 

boxes is equal to 
 

                                                                         !! kk nRM   .                                        (A II)                      

                                                                                       

We may assume that there exists a Gibbs micro-canonical distribution for the giant gas 

containing R copies. Therefore, the number of copies R and the total energy of all the copies  ̂ 
will be assumed to be fixed. These constraints may be expressed by the equations 
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
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k
k

nandRn     .                 (A III)           

 

We know that for the most probable state of the gas, M will have a maximum. Keeping this in 

view, let us define a function  given by                                                                        
 

                                                                             MK ln  ,                                                                            (A IV) 
 

where K is the Boltzmann's constant. We know that  has a maximum when M has a 

maximum. Taking the conditions imposed by equations in (A III) and using the Langrangean 

method of multipliers along with Sterling formula, we look for the maximum of  in the 

expression 
 

                                            R)1(  


 ,                                     (A V) 

 

where               .lnlnln kk nnKRRKMK   

 

Differentiating the nk‟s as independent quantities and equating the first derivative of   to zero, 

we obtain 
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The Langrangean multiplier  is obtained by substituting for nk from (A VI) into (A III) and is 

given by 
 

                                           KK keRe
 

                                          (A VII) 

 

and         KK

k
kk eYwhereeYRn
  

 )(,)(
1 .           (A VIII) 

                                   

Since the number of the ensemble copies and as a consequence nk can be made as large as 

desired, the application of the Stirling‟s formula is quite justified. The ratio nk/R = Wk is the 

probability that the system will be in the state with energy k. If the energy level k is 

degenerate by a factor gk, then (A VIII) may be modified to give 
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where                   K

k
k

kegY
 

)(   .                                                        (A X) 

  

Let us now examine the thermodynamic significance of . Using (A IV), let us introduce a 

function S given by   
 

                               RMKRS   ln1  .                           (A XI)  

 

S could be identified with entropy. The basis for identifying /R with entropy is firstly the 

additivity of the quantities S and . The second reason is that S and  both reach their 

maximum values in the most probable state or the equilibrium state. The need to divide by R in 

(A XI) arises due to the fact that we want to determine the entropy of a real system which is 

represented by just one copy of the ensemble. Substituting the value of  and using Sterling‟s 

formula to simplify, we get 
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k
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This equation determines the entropy of an arbitrary state of a system, whether in equilibrium 

or otherwise. Substituting for nk/R from (A IX) into ( A XII), we obtain 
 

                             })(ln){(  YKRnKS kk
k

  .               (A XIII)         

                                      

Note that (nk/R) denotes the probability to occupy the k
th

 energy state. Therefore, the term               

 (nk/R) k will give the average value of k and we obtain 
 

                                         )(ln  YKS   ,                                       (A XIV) 
 

where   ̅ =   ̂/R  is  the mean value of the energy of the system. It should be noted that the 

mean value ̅  as per the statistical approach represents its value in the thermodynamic sense.      
 

          Let us now onwards, for the sake of notational convenience, replace ξ ̅ by  keeping in 

mind that it represents the average value, while  ' will be used for the individual value in place 

of ξk. Accordingly (A IX) may be written as 
 

                                            ,)()( 1 KegYW                                 (A XV) 

 

where                                        .)( KegY                         (A XVI) 

                              

The mean energy and the entropy of the system are given by 
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By comparing (A XVII) with a similar function obtained for an ideal gas,  can be easily 

identified with the inverse of temperature  and “-K  lnY” with the ratio of the free energy F to 

the temperature of the system. These relations may be expressed as 
 

                         SFYKand ln1  .              (A XVIII)  

 

The entropy may now be expressed in the familiar form 
 

                                                    FS    .                                      (A XIX) 

 

We may now re-express (XV) as 
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ANNEXURE B 
                             

                        

Relativistic Thermodynamics of an Ideal Gas 
 

          We know from the relativistic thermodynamics that the pressure acting on an ideal gas is 

a relativistic invariant just as its entropy is. If we denote pressure of the ideal gas by P, its 

internal energy by ξ and its translational velocity by v, then we have that [9] 
 

                                              )( oo PVPV   .                                     (B I)   

 

where   = (1-v
2
/c

2
)

-½. The corresponding relation for the translational momentum, G of the 

relativistic ideal gas as a whole is given by 

                                              2)( cPVoo vG   .                          (B II) 

 

As pressure is a relativistic invariant, we may treat the relativistic transformation as an isobaric 

process. We know that in such a process, the enthalpy, denoted by H, is well defined. 

Therefore, if the translational velocity varies infinitesimally, the variation in the heat content  
                                                            

                             dHPVdPdVddQ  )( .                 (B III) 

 

where                                      )( PVH   .                                             (B IIIA) 

 

Enthalpy represents the heat content of the gas. We now see that in a relativistic 

transformation, the enthalpy of the gas behaves exactly like the rest mass of a particle. 

Moreover, the translational momentum G also behaves like the momentum of a particle in a 

relativistic transformation. Combining (B I) and (B II), we obtain  
 

                                              2222

oHcH G .                                            (B IV) 

 

This is the equivalent of the relativistic energy-momentum relation for a particle. These 

similarities reinforce our conviction that a particle can be treated as a gas.  
 

          But when we extend these results, we have to keep in mind that the primary eigen gas 

does not have an independent dimension in pressure and volume. Therefore, (B IIIA) will have 

to be modified to give 
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                                                       H .                                                        (B V) 

 

This means that the internal energy of a primary eigen gas plays the role of the heat content. 

Accordingly, corresponding to (B I) and (B II) we have 
 

                        2cando vG   .               (B VI) 

 

Since the number of microstates is an invariant in a relativistic transformation, we may re-

express the two equations in (B VI) in terms of the intrinsic values of energy and momentum 

as 
 

                          2cEvþ   andEE o
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where E  =  /N and  þ = G/N , N being the number of molecules in the gas.  

 

           

           

       


