Title: Fermat's Last Theorem

Author: Barry Foster

Abstract: Recall the theorem states that the equation $a^n + b^n = c^n$ cannot exist if all the quantities are positive integers and n>2.

> Fermat maintained he had a short proof but it has never been found, nor has a short proof been supplied by anyone since.

This attempt uses simple mathematics and methods reminiscent of those taught in English grammar schools in the 1950's.

<u>Fermat's Last Theorem</u> <u>"Hanson Boys' Grammar School Proof"</u>

Statement of the Theorem

Fermat's Last Theorem, (FLT), states that positive integers $\{a,b,c,n; n>2\}$ cannot be found satisfying the equation:

$$a^{n} + b^{n} = c^{n} \qquad (T)$$

Proof

Assume n is prime.

If n is not prime, say $n=p_1p_2...p_r$, where the p_i are primes, not necessarily all different, we may rename p_1 to n, and $\{a, b, c\}$ then become integers raised to the power $(p_{2...}p_r)$.

To clarify, the equation: $u^{p1p2...pr} + v^{p1p2...pr} = w^{p1p2...pr}$ $u^{n(p2...pr)} + v^{n(p2...pr)} = w^{n(p2...pr)}$ i.e. $a^{n} + b^{n} = c^{n}$ where $a = u^{(p2...pr)}$, $b = v^{(p2...pr)}$, $c = w^{(p2pr)}$

Assume all common factors have been cancelled, noting that all, or none, of {a,b,c} can have a common factor. (F)

Assume the theorem is false and n is an integer >2 such that positive integers $\{a,b,c\}$ exist satisfying **(T)**.

Assume a<b, thus a<b<c.

let a+h = b+j = c {h, j positive integers; h>j} (1)

We can now rearrange **(T)** and expand a^n and b^n in 2 different ways.

(i) Using the Binomial Theorem

$$a^{n}=(b+j)^{n} - b^{n}=nb^{n-1}i + n(n-1)/(2!)b^{n-2}i^{2} + ... + i^{n}$$

 $b^{n}=(a+h)^{n}-a^{n}=na^{n-1}h + n(n-1)/(2!)a^{n-2}h^{2} + ... + h^{n}$

(ii) By factoring

$$a^{n} = (c-b)(c^{n-1} + c^{n-2}b + ... + b^{n-1})$$

= j(cⁿ⁻¹ + cⁿ⁻²b + ... + bⁿ⁻¹)
bⁿ = (c-a)(cⁿ⁻¹⁺cⁿ⁻²a + ... + aⁿ⁻¹)
= h(cⁿ⁻¹ + cⁿ⁻²a + ... + aⁿ⁻¹)

Let	a=Ay	{A,y integers>0; A = product of primes not in j,
		y = product of primes in j}
and	b=Bx	{B,x integers>0; B = product of primes not in h,
		x = product of primes in h
thus	x>y	{h>j; x,y are co-prime \cdot of (F) }

The equations in (i) may now be written:

$$(Ay)^n = j(nb^{n-1} + n(n-1)/(2!)b^{n-2}j + ... + j^{n-1}) \quad \{j \le y^n\}$$
 (i.1)

$$(Bx)^n = h(na^{n-1} + n(n-1)/(2!)a^{n-2}h + ... + h^{n-1}) \quad \{h \le x^n\}$$
 (i.2)

(i.1) divided by j gives:

$A^{n} = nb^{n-1} + n(n-1)/(2!)b^{n-2}j_{1} + + j^{n-1}$	$\{if j=y^n\}$	(1.1a) or
$A^{n}Y = nb^{n-1} + n(n-1)/(2!)b^{n-2}j + + j^{n-1}$	$\{if j < y^n\}$	(1.1b)

Y is the product of primes remaining from y^n after dividing and necessarily contains n since n is in every term on the RHS.

Case 1: Assume (1.1a) is true.

Arguing similarly for (i.2) gives $j=y^n$, $h=x^n$

from (1) $Ay + x^n = Bx + y^n = c$		$x + y^n = c$	(2)			
and since	$(a + b)^n > a^n$ $(a + b) > c$	n + b ⁿ (=c ⁿ)				
	$\begin{array}{l} Ay + Bx > A \\ Ay + Bx > B \end{array}$	$y + x^n$ $x + y^n$				
thus	$Bx > x^n$; $Ay > y^n$					
from (2)	$Bx - Ay = x^{r}$ $= Rt$ $= Xx$	$ \begin{cases} 1 & y^{n} = k \\ (x - y) & \{1 \\ x - Yy & \{2 \\ 1 \\ x - Yy & \{2 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	x; positive integer} $R = x^{n-1} + x^{n-2}y + + y^{n-1}$ } $X = x^{n-1}, Y = y^{n-1}$ }	(2.1) (2.2) (2.3)		
from (ii)	A>B	${(Ay)}^{n} = y^{n} (c^{n-1} + (b^{n-1}))^{n} = x^{n} (c^{n-1} + (c^{n-1}))^{n}$	$+c^{n-2}b++b^{n-1}$); $A^{n} = c^{n-1}+c^{n-2}a++a^{n-1}$); $B^{n} = c^{n-1}+c^{n-1}$	$+b^{n-1})$ +a ⁿ⁻¹)}		
from (2.2)	B>R	$\{Bx - Ay = B(x)\}$	-y) - (A - B)y = R(x - y)			
	Bx>Ay>A>B>R>X>Y					
let	A = R + u; B = R + v (R + v)x - (R + u)y = R(x - y) vx = uy		{u, v positive integers, {from 2.1 and 2.2 }	{u, v positive integers, u <v} {from 2.1 and 2.2}</v} 		
	u=x, v=y	(3)	{not u=Py, v=Px, P pos	sitive integer;		
	x, y coprime}					

(2.1) - (2.3) are supposedly consistent simultaneous linear equations. This requires (2.1) to be a linear combination of (2.2) and (2.3)

 $\begin{array}{ll} \therefore & B = pR + qX & \{p,q;\,real\} \\ & A = pR + qY \\ & k = pk + qk \\ thus & p+q = 1 \end{array}$

$$\therefore \qquad A - B = pR + qY - (pR + qX)$$
$$= q(Y - X) \qquad \{q < 0 ; A > B, X > Y\}$$
since
$$R + v = B$$
$$R + v = pR + qX$$
$$v = (p - 1)R + qX$$
$$v = q(X - R)$$
but from (3) $v = y$

This is a contradiction and proves FLT.

Case 2: Assume (1.1b) is true.

Note that n cannot be a factor of both Ay and Bx (\cdot of **(F)**). Furthermore, because **(1.1b)** contains factors in Y that are in every j on the RHS, those factors cannot be in b of the first term (\cdot of (F)).

Therefore Y, y, and j must have the forms: $Y = n^{nr}$, $y = tn^{r}$, $j = t^{n}n^{nr-1}$ {r integer>0, t=product of primes in y other than n}

... (2) becomes:

 $Aw + x^n = Bx + (w/n^{(1/n)})^n = c$ {w=tn^r}

and we proceed as for Case 1 to the same contradiction.