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Abstract

We derive the equations of relativistic quantum mechanics from a modified version of
classical electrodynamics, where probability is replaced by potential. As a result, a particle
is not a localized entity, in the classical sense, but has a localized energy extremum. The
particle/wave aspect of matter is inherent in the particle/wave equation describing elemen-
tary particles. Furthermore, the Heisenberg uncertainty and Planck-Einstein-de Broglie
relations, and the Klein-Gordon, Dirac and Proca equations follow naturally from the par-
ticle/wave equation. In addition, we incorporate a new and more physical interpretation of
spin angular momentum.

This is a proposed connection between my theory [1] and relativistic quantum mechanics
(RQM). In order to show the relationship between the two, I have attempted to derive the major
equations of RQM (Klein-Gordon, Dirac, Proca) from the equations in the article above.

The scalar electric potential φ [2] at the event P (x, y, z, t), or P , due to a stationary ‘point’
charge q at the origin, in SI units is

φ =
1

4πε0

q

s
(1)

where s is the spacetime interval [3] from P to the origin

s =
√

x2 + y2 + z2 + c2t2 (2)

where c is the speed of light in vacuo. For a stationary charge density ρ, we have the four-
dimensional Poisson’s equation [4]

∇2φ +
∂2φ

c2∂t2
= − ρ

ε0

(3)

where

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(4)
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Setting r2 = x2 + y2 + z2, where r is the spatial distance between P and the origin, and a2 = c2t2

in (2), where a is an unspecified (nonzero) constant, we can write (1) as

φ =
1

4πε0

q√
r2 + a2

(5)

I intend now to show that (5) satisfies (3). Inserting (5) into the left-hand side of (3), we have,
for the first term,

∇2φ =
q

4πε0

∇2

(
1√

r2 + a2

)
(6)

= − q

4πε0

(
3a2

(r2 + a2)5/2

)

and for the second term,
∂2φ

c2∂t2
= 0 (7)

Adding (6) and (7) we have

∇2φ +
∂2φ

c2∂t2
= − q

4πε0

(
3a2

(r2 + a2)5/2

)
(8)

Equation (8) is well-behaved and, in general, nonzero everywhere.
Now, in order to show that (5) satisfies (3), we must show that the right-hand sides of (8)

and (3) are equivalent, in other words, we must show that

− q

4πε0

(
3a2

(r2 + a2)5/2

)
= − ρ

ε0

(9)

To do this, we start by noting that integrating ρdV over all space, where dV is the volume
element, must result in the magnitude of the charge q. Solving (9) for ρ, we get

ρ =
3a2q

4π(r2 + a2)5/2
(10)

In order to show that (9) is true, we must be able to substitute the right-hand side of (10) for ρ
in our integration of ρdV , and obtain the result q. Carrying out the integration, using (10) and
the volume element dV = 4πr2dr, we find

∫

all space

ρdV =

∫ ∞

0

3a2q

4π(r2 + a2)5/2
4πr2dr = q (11)

showing that (5) does indeed satisfy (3). Note that, since the right-hand side of (10) is nonzero
everywhere, the charge density ρ on the left-hand side of (10) must, also, be nonzero everywhere.

At r = 0, (8) becomes

∇2φ +
∂2φ

c2∂t2
= − 3q

4πε0a3
(12)

= − 3

a2

q

4πε0a
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On the right-hand side of (12), we see that q/4πε0a is equivalent to the scalar potential φ from
(5) at r = 0. Thus, setting k2 = 3/a2, we can write the right-hand side of (12) as

− 3

a2

q

4πε0a
= −k2φ (13)

for a > 0. Using (13), we can now write (12) as

∇2φ +
∂2φ

c2∂t2
= −k2φ (14)

or (
∂2 + k2

)
φ = 0 (15)

where

∂2 = ∇2 +
∂2

c2∂t2
(16)

with general solution
φ = A cos(k · x) + B sin(k · x) (17)

where A and B are arbitrary constants, k = (kx, ky, kz, kt), x = (x, y, z, ct), and k2 = k2
x + k2

y +
k2

z + k2
t .

1

If a < 0, with k2 = 3/a2, (12) becomes

∇2φ +
∂2φ

c2∂t2
= k2φ (18)

or (
∂2 − k2

)
φ = 0 (19)

with general solution
φ = C exp(k · x) + D exp(−k · x) (20)

where C and D are arbitrary constants.2

We can form still another solution to (18) if we multiply the two solutions (17) and (20)
together. In order to differentiate between the two, I will refer to solution (17) as φ+, since a > 0,
and solution (20) as φ−, since a < 0. Note that the k’s in (17) and (20) need not be equivalent.
Allowing for this possibility, I will replace the k associated with (20) with p = (px, py, pz, pt),
where p2 = p2

x + p2
y + p2

z + p2
t . The combined potential φ is, thus,

φ = φ+φ− = (A cos(k · x) + B sin(k · x)) (C exp(p · x) + D exp(−p · x)) (21)

Expanding the right-hand side of (21) produces the sum φ = φ1 + φ2 + φ3 + φ4, where

φ1 = A1 exp(p · x) cos(k · x) (22)

φ2 = A2 exp(p · x) sin(k · x)

φ3 = A3 exp(−p · x) cos(k · x)

φ4 = A4 exp(−p · x) sin(k · x)

1An equally valid solution to (14) is φ = A exp(k · x) + B exp(−k · x) with the basis vectors eµ [5] satisfying
the relations eµeν = −e4 for µ = ν, where µ, ν = 1, 2, 3, 4.

2Here, in (20), the basis vectors eµ [5] satisfy the relations eµeν = e4 for µ = ν, where µ, ν = 1, 2, 3, 4.
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and A1 = AC, A2 = BC, A3 = AD and A4 = BD. If we set A = B = C = D = 1 and insert
(21) into the left-hand side of (18), we get

∇2φ +
∂2φ

c2∂t2
=

(
p2 − k2

)
φ (23)

Then, due to the multiplication rules for the orthonormal basis vectors eµ [5], we can write
(p2 − k2) = (p− k)2 so that (23) becomes

∇2φ +
∂2φ

c2∂t2
= (p− k)2 φ (24)

Therefore, (21) is also a solution to (18) with k = p − k. Furthermore, it can be shown that
k = p + k, k = −p− k, and k = −p + k also satisfy k2 = p2 − k2 and, therefore, k2 = (p− k)2.
Note, also, that if p < k, then k2 = p2−k2 < 0, thus, (21) is also a solution to (14). This would
seem to suggest that whether k2 is positive, negative, or zero depends on whether p is greater
than, less than, or equal to k, respectively.

Evidently, from (21), a particle is not a localized entity, in the classical sense (i.e., it’s not a
little round ball) - it extends over all space. It does, however, have a localized energy maximum (or
minimum) at r = 0. The localized energy maximum at r = 0 is associated with the exp(−p · x)
terms, and the localized energy minimum is associated with the exp(p · x) terms. I hesitate,
however, to disregard the exp(p · x) terms on the basis that they ‘blow up’ as r →∞. I suspect
they describe physically valid quantities - possibly antiparticles. The terms cos(k·x) and sin(k·x)
may describe the field of the particle or antiparticle described by exp(−p · x) or exp(p · x).3

It would seem natural to attribute the sinusoidal parts of (21) to the wave aspect, and the
exponential parts to the particle aspect, of matter. In order to make the correspondence with
the equations of RQM, I will associate p with the momentum four-vector p = (px, py, pz, E/c) (in
which case we would need to divide by h̄) and k with the wave four-vector k = (kx, ky, kz, ω/c).

Using these definitions for p and k, if we set k = (p/h̄)− k = 0, after rearranging, we arrive
at

p = h̄k (25)

which contains the Planck-Einstein-de Broglie relations.4 Analogously, if k = (p/h̄) − k > 0,
then

p > h̄k (26)

Combining (25) and (26), we get
p ≥ h̄k (27)

which leads to the Heisenberg uncertainty relations ∆p∆x ≥ h̄.5 If k = (p/h̄)− k < 0, then

p < h̄k (28)

3In my paper [1] the field of a particle (antiparticle) travelling ‘forward’ in time is its associated antiparticle
(particle) travelling (relatively) ‘backward’ in time, thus, the particle/field ‘pair’ form an electric ‘dipole’, since
every charged particle is accompanied by its field [6]. In this case, φ+ = A cos(k · x) + B sin(k · x) in (21) might
better be replaced with φ+ = A exp(k · x) + B exp(−k · x) with the basis vectors eµ [5] satisfying the relations
eµeν = −e4 for µ = ν, where µ, ν = 1, 2, 3, 4. In addition, if k = 0 in (14) or (18), or if p − k = 0 in (24), the
implication is that there are no electric monopoles.

4Thus the Planck-Einstein-de Broglie relations imply no electric monopoles.
5∆p∆x signifies the product of the uncertainties in the corresponding components of p and x, i.e. ∆p∆x ≥ h̄

signifies ∆px∆x ≥ h̄, ∆py∆y ≥ h̄, ∆pz∆z ≥ h̄, and ∆E∆t ≥ h̄.
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The meaning of (28) is not clear at this time, however, one implication is that ∆p∆x < h̄,
providing p < h̄k.

If we set k2 = m2c2/h̄2, in (19), where m is the mass of the particle, equation (19) becomes

(
∂2 −

(mc

h̄

)2
)

φ = 0 (29)

This is the Klein-Gordon equation, up to a sign, which describes a particle with spin 0 and mass
m.

If we specify that k2 = m2c2/h̄2 = 3/a2, the value of a would be a = ±h̄
√

3/mc. Note,
however, that this value for a arises from the time interval t, not a spatial interval, since a = ct.

To get the Dirac equation, we start with (29), multiply by h̄2, then, due to the multiplication
rules for the orthonormal basis vectors eµ [5] (remembering that ∂ is a four-vector [7]), we can
factor, to obtain

(h̄∂ + mc) (h̄∂ −mc) φ = 0 (30)

Eliminating the first term in parentheses, by convention, we then have

(h̄∂ −mc) φ = 0 (31)

This is the Dirac equation, up to a sign, which describes a particle with spin 1/2 and mass m.
Equation (15) can easily be made to describe a particle with spin 1 and mass m, by simply

replacing the scalar potential φ with the potential four-vector Aµ, and setting k2 = m2c2/h̄2,
thus, (

∂2 +
(mc

h̄

)2
)

Aµ = 0 (32)

This is the Proca equation, up to a sign, where the term ∂ν(∂µAν) from Maxwell’s equations has
been cancelled by the time component of the electric field [8], thus it is unnecessary to invoke
the Lorenz condition ∂νAν = 0. The free photon is described by setting m = 0 in (32).

We can incorporate angular momentum and spin [9] by replacing φ, φ+, and φ− in (21) with

φ′ = φ′+φ′− = (A cos(kx) + B sin(kx)) (C exp(px/h̄) + D exp(−px/h̄)) (33)

where p is the momentum four-vector, k is the wave four-vector, and kx and px are four-vector
products [10].
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