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Abstract

The quantum mechanics status of the probability vector current density has long seemed to be marginal.

On one hand no systematic prescription for its construction is provided, and the special examples of

it that are obtained for particular types of Hamiltonian operator could conceivably be attributed to

happenstance. On the other hand this concept’s key physical interpretation as local average particle

flux, which flows from the equation of continuity that it is supposed to satisfy in conjunction with the

probability scalar density, has been claimed to breach the uncertainty principle. Given the dispiriting

impact of that claim, we straightaway point out that the subtle directional nature of the uncertainty

principle makes it consistent with the measurement of local average particle flux. We next focus on the fact

that the unique closed-form linear-superposition quantization of any classical Hamiltonian function yields

in tandem the corresponding unique linear-superposition closed-form divergence of the probability vector

current density. Because the probability vector current density is linked to the quantum physics only

through the occurrence of its divergence in the equation of continuity, it is theoretically most appropriate

to construct this vector field exclusively from its divergence—analysis of the best-known “textbook”

special example of a probability vector current density shows that it is thus constructed. That special

example in fact leads to the physically interesting “Ehrenfest subclass” of probability vector current

densities, which are closely related to their classical peers.

Introduction

The quantum mechanical probability vector current density concept has long been at best hazily understood.
Although special examples of probability vector current density have been obtained for particular types of
Hamiltonian operator [1], there is no systematic prescription for constructing it, so its special examples could
conceivably be attributed to happenstance. Its essential feature is supposed to be that, in consequence of the
quantum mechanical conservation of probability, it jointly with the probability scalar density satisfies the
equation of continuity, which compellingly suggests that it physically represents local average particle flux.
It has, however, been claimed that the measurement of local average particle flux breaches the uncertainty
principle because such a measurement involves arbitrary particle localization while it simultaneously yields
information concerning particle velocity, and for that reason probability vector current density cannot have

its only truly natural physical interpretation, namely that of local average particle flux [1]. This contention,
if valid, would raise two linked vexing issues: (1) if probability vector current density cannot in principle be
physically interpreted as local average particle flux, then what is its correct physical interpretation, and (2)
is that correct physical interpretation still something that is of actual interest to physicists?

Very forturnately, however, while it is indeed the case that measurement of local average particle flux
restricts particle position while delivering information regarding particle velocity, these things do not in fact
occur in such a manner as to challenge the uncertainty principle. To measure one of the vector components
of local average particle flux at a given point, one passes a plane which is perpendicular to that vector
component through that point. One then selects an arbitrarily small region of that plane centered on
that point and measures the average rate that particles pass through that selected planar region. This
average rate, divided by the area of the selected planar region, is an approximation to that particular vector
component of average particle flux at that particular point, an approximation which is, in principle, refined
by additionally shrinking the planar region on which that point is centered. The flux one thus measures
does indeed reflect the component of average particle velocity in the direction perpendicular to the plane,
provided, of course, that one knows the average particle density. The uncertainty principle, however, does

not restrict the accuracy with which a particular component of particle momentum can be determined due
to restrictions that are imposed on the particle’s position in directions which are perpendicular to that
momentum component. To see this one need look no further than the Dirac canonical commutation rule,

[x̂i, x̂j ] = 0, [p̂i, p̂j ] = 0, [x̂i, p̂j ] = ih̄δij , i, j = 1, 2, 3,

and recall that the uncertainty principle only applies to quantized dynamical variable pairs that fail to com-

mute, which is clearly not the case for a position component and a momentum component that are mutually
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perpendicular . Therefore the measurement of local average particle flux , notwithstanding that it restricts par-
ticle position while delivering averaged particle velocity information—namely in the direction perpendicular

to the plane in which particle position is restricted—does not challenge the uncertainty principle.
Thus there is in fact no known valid reason to refrain from physically interpreting probability vector

current density as local average particle flux, even as the equation of continuity ostensibly satisfied by
probability vector current density in conjunction with probability scalar density so cogently suggests is sound.
The bona fide issue here is a different one, namely the lack of a general prescription for constructing that
desired probability vector current density which actually satisfies the equation of continuity in conjunction
with the probability scalar density.

We therefore in the rest of this article concentrate on systematically working out such a probability vector
current density for any canonical Hamiltonian operator whatsoever (at least in principle—as one can well
imagine, anything worked out to such a degree of generality yields formidable expressions that cannot be
expected to have transparency as their strong suit). We begin with the divergence of the probability vector
current density, which, from the equation of continuity, must be equal to the negative of the time derivative
of the well-defined probability scalar density. That time derivative, in turn, is the state-vector expectation
value of (i/h̄) times the commutator of the set of position projection operators with the Hamiltonian oper-

ator . Because there exists a linear superposition technique for the unique closed-form quantization of any

classical Hamiltonian function [2], it turns out that for Hamiltonian operators which have classical Hamil-
tonian function antecedents we can also uniquely reduce the just-mentioned expression for the divergence of
the probability vector current density, which involves the state-vector expectation value of a Hamiltonian-

operator commutator, to a linear-superposition closed form. Thus the divergence of the probability vector
current density can always be fully and uniquely worked out when the Hamiltonian operator has a classical
Hamiltonian function antecedent, i.e., when it is a canonical Hamiltonian operator.

The probability vector current density itself of course is naturally mathematically ambiguous, e.g., it
tolerates the addition of an arbitrary vector field that is a curl . However, since its divergence is a state-
vector expectation value (of a set of operators), it is physically entirely reasonable to restrict the probability
vector current density to being a homogeneously linear functional of that divergence so that it likewise will be

a state-vector expectation value. Indeed, the larger idea of restricting the probability vector current density
to the very barest minimum that is compatible with its divergence makes impeccable sense because it is only

that divergence which makes actual contact with the system’s quantum physics, doing so, of course, through
the equation of continuity that it satisfies in conjunction with the probability scalar density. Therefore the
probability vector current density is devoid of quantum physical information that is not already implicit in

its divergence. We shall formally implement this crucial point by stipulating not only that the probability
current density is homogeneously linear in its divergence, but that it furthermore must not depend on any
constants which are additional to those that are intrinsic to its divergence, and also that among the forms
which are mathematical candidates for this vector field, only the most symmetric are to be considered because
these add no further information to that available from its scalar divergence. These three stipulations result
in a unique closed-form expression for the probability vector current density in terms of its unique divergence,
and we shall see that the “textbook” best-known special example of a probability vector current density [1]
is indeed consistent with these three stipulations.

We now turn to the presentation of the ingredients that are needed to work out the probability vector
current density in the manner that has just been outlined. As is well-known, the conservation of probability

in quantum mechanics [1] follows from the Hermitian property of the Hamiltonian operator, namely Ĥ†(t) =

Ĥ(t), in conjunction with the Schrödinger equation,

ih̄d|ψ(t)〉/dt = Ĥ(t)|ψ(t)〉, (1a)

which together imply that,

−ih̄d〈ψ(t)|/dt = 〈ψ(t)|Ĥ(t), (1b)

and therefore that probability is conserved,

d〈ψ(t)|ψ(t)〉/dt = 〈ψ(t)|
[
(i/h̄)Ĥ(t) + (−i/h̄)Ĥ(t)

]
|ψ(t)〉 = 0. (1c)

In the case of canonical quantum mechanics, Ĥ(t) is uniquely obtained from a classical Hamiltonian

function Hcl([x,p], t) by the imposition of the following self-consistent slight extension of Dirac’s canonical
commutation rule [2],

[f1(x̂) + g1(p̂), f2(x̂) + g2(p̂)] = ih̄
︷ ︸︸ ︷
{f1(x) + g1(p), f2(x) + g2(p)} , (2)
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where the { , } are the classical Poisson brackets, and the overbrace is used to denote quantization—the
overbrace is only used here for that purpose because the traditional hat accent for denoting quantization is

not sufficiently extensible. The Eq. (2) slight extension of Dirac’s canonical commutation rule turns out to
self-consistently completely resolve the Dirac operator-ordering ambiguity in favor of Born-Jordan operator
ordering [2], which is exactly the same operator ordering that is implicit in the Hamiltonian path integral [3].
The unique Hamiltonian operator which follows from the classical Hamiltonian function Hcl([x,p], t) via the

application of Eq. (2) is, of course, denoted as
︷ ︸︸ ︷
Hcl([x,p], t) , or, when explicit reference to the underlying

classical Hamiltonian function Hcl([x,p], t) isn’t necessary , as simply the canonical Hamiltonian operator

Ĥ([x̂, p̂], t).

When such a canonical Ĥ([x̂, p̂], t) describes the quantum mechanics, probability conservation, given
by Eq. (1c), can be expressed in terms of the probability scalar density (〈ψ(t)|x〉〈x|ψ(t)〉) because of the
following expansion in the complete set of position states |x〉,

d〈ψ(t)|ψ(t)〉/dt = (d/dt)
∫
〈ψ(t)|x〉〈x|ψ(t)〉 dNx = 0, (3a)

which relation might plausibly be expected to imply that the time derivative d(〈ψ(t)|x〉〈x|ψ(t)〉)/dt of the
probability scalar density (〈ψ(t)|x〉〈x|ψ(t)〉) is a perfect differential in the vector variable x, namely that

there exists a probability vector current density j(x, t; [|ψ(t)〉, Ĥ([x̂, p̂], t)]) which satisfies,

d(〈ψ(t)|x〉〈x|ψ(t)〉)/dt+ ∇x · j(x, t; [|ψ(t)〉, Ĥ([x̂, p̂], t)]) = 0. (3b)

Eq. (3b) is the equation of continuity that the probability vector current density j(x, t; [|ψ(t)〉, Ĥ([x̂, p̂], t)])
is supposed to satisfy in conjunction with the probability scalar density (〈ψ(t)|x〉〈x|ψ(t)〉) as a plausible
consequence of the conservation of probability that is given by Eq. (3a). In light of the Schrödinger equations

given by Eqs. (1a) and (1b), as they apply to the particular case that Ĥ(t) = Ĥ([x̂, p̂], t), we can see that
actually fulfilling the Eq. (3b) equation of continuity requires that ,

∇x · j(x, t; [|ψ(t)〉, Ĥ([x̂, p̂], t)]) = −d(〈ψ(t)|x〉〈x|ψ(t)〉)/dt =

(i/h̄)
[
〈ψ(t)|x〉〈x|Ĥ([x̂, p̂], t)|ψ(t)〉 − 〈ψ(t)|Ĥ([x̂, p̂], t)|x〉〈x|ψ(t)〉

]
=

ℜ
[
(2i/h̄)〈ψ(t)|x〉〈x|Ĥ([x̂, p̂], t)|ψ(t)〉

]
,

(3c)

where the symbol ℜ that occurs after the last equal sign of Eq. (3c) denotes the real part of the bracketed

expression which follows it. We thus see that to obtain the divergence of j(x, t; [|ψ(t)〉, Ĥ([x̂, p̂], t)]) we

need to evaluate the core part 〈x|Ĥ([x̂, p̂], t)|ψ(t)〉 of that bracketed expression for an arbitrary canonical

Hamiltonian operator Ĥ([x̂, p̂], t). To achieve this goal it will be extremely useful to emulate the procedure

of Ref. [2] wherein such an arbitrary Ĥ([x̂, p̂], t) is linearly decomposed into “Fourier component” operators

of the form e∓ix̂·ke±ip̂·l/h̄ because, of course,

〈x|e∓ix̂·ke±ip̂·l/h̄|ψ(t)〉 = e∓ix·k〈x|e±ip̂·l/h̄|ψ(t)〉 = e∓ix·k〈x ± l|ψ(t)〉. (3d)

The probability vector current density divergence by linear superposition

Following Ref. [2], we note that the key step for decomposing Ĥ([x̂, p̂], t) into “Fourier component” operators

is the orthodox corresponding Fourier decomposition of its underlying classical Hamiltontonian function

Hcl([x,p], t). This, of course, follows from the identity,

Hcl([x,p], t) =
∫
dNx′

∫
dNp′ δ(N)(x − x′) δ(N)(p − p′)Hcl([x

′,p′], t), (4a)

after we insert into it the Fourier delta-function representations,

δ(N)(x − x′) = (2π)−N
∫
dNk e−ik·(x−x′), δ(N)(p − p′) = (2πh̄)−N

∫
dN l eil·(p−p′)/h̄. (4b)

Since Hcl([x,p], t) is a real-valued function, after inserting Eq. (4b) into Eq. (4a) it is convenient to further-
more explicitly discard the vanishing imaginary part of the result, which yields,

Hcl([x,p], t) = (4π2h̄)−N
∫
dNx′

∫
dNp′Hcl([x

′,p′], t)
∫
dNk

∫
dN l ×(

cos(−x′ · k + p′ · l/h̄) cos(−x · k + p · l/h̄) + sin(−x′ · k + p′ · l/h̄) sin(−x · k + p · l/h̄)
)
.

(4c)

3



The fact that quantization is a linear process [2] permits us to conclude from Eq. (4c) that,

Ĥ([x̂, p̂], t) =
︷ ︸︸ ︷
Hcl([x,p], t) = (4π2h̄)−N

∫
dNx′

∫
dNp′Hcl([x

′,p′], t)
∫
dNk

∫
dN l ×

(
cos(−x′ · k + p′ · l/h̄)

︷ ︸︸ ︷
cos(−x · k + p · l/h̄) + sin(−x′ · k + p′ · l/h̄)

︷ ︸︸ ︷
sin(−x · k + p · l/h̄)

)
.

(4d)

As in Ref. [2], we obtain
︷ ︸︸ ︷
exp(−ix · k + ip · l/h̄) from Eq. (2). From this we further immediately obtain

︷ ︸︸ ︷
exp(ix · k − ip · l/h̄) , and those two results together yield

︷ ︸︸ ︷
cos(−x · k + p · l/h̄) and

︷ ︸︸ ︷
sin(−x · k + p · l/h̄) ,

which is what we require for insertion into Eq. (4d). We shall, however, insure that these cosine and sine
quantizations are expressed as linear combinations of products of exponential operators of the “Fourier
component” type that were introduced in Eq. (3d), because it is those “Fourier component” type operators
which are transparently useful for the evaluation of the core part of the probability vector current density’s
divergence ∇x · j(x, t; [|ψ(t)〉, Ĥ([x̂, p̂], t)]), as is apparent from Eqs. (3c) and (3d).

We now carry out the Eq. (2) quantization of exp(−ix ·k+ ip · l/h̄) with the goal of expressing its result
in terms of Eq. (3d) “Fourier component” type operators. With the needed exponential ingredients inserted,
Eq. (2) reads,

[e−ix̂·k, eip̂·l/h̄] = ih̄
︷ ︸︸ ︷
{e−ix·k, eip·l/h̄} , (4e)

which, written out, is,

e−ix̂·keip̂·l/h̄ − eip̂·l/h̄e−ix̂·k = i(k · l)
︷ ︸︸ ︷
e−ix·k+ip·l/h̄ . (4f)

Eq. (4f) can then be reexpressed as,

(
ei(k·l)/2 − e−i(k·l)/2

)
e−ix̂·k+ip̂·l/h̄ = i(k · l)

︷ ︸︸ ︷
e−ix·k+ip·l/h̄ . (4g)

which yields the unique exponential quantization,

︷ ︸︸ ︷
e−ix·k+ip·l/h̄ = e−ix̂·k+ip̂·l/h̄ sin( 1

2k · l)/( 1
2k · l) = e−ix̂·keip̂·l/h̄e−i 1

2k·l sin( 1
2k · l)/( 1

2k · l), (4h)

where the form farthest to the right in Eq. (4h) is expressed in terms of the desired “Fourier component”
type operator. We now make the simple substitutions k → −k and l → −l in Eq. (4h), which produce the
additional useful result that,

︷ ︸︸ ︷
eix·k−ip·l/h̄ = eix̂·k−ip̂·l/h̄ sin( 1

2k · l)/( 1
2k · l) = eix̂·ke−ip̂·l/h̄e−i 1

2k·l sin( 1
2k · l)/( 1

2k · l). (4i)

Combining Eqs. (4h) and (4i) then yields,

︷ ︸︸ ︷
cos(−x · k + p · l/h̄) = (1/2)

(
e−ix̂·keip̂·l/h̄ + eix̂·ke−ip̂·l/h̄

)
e−i 1

2k·l sin( 1
2k · l)/( 1

2k · l), (4j)

and, ︷ ︸︸ ︷
sin(−x · k + p · l/h̄) = (1/(2i))

(
e−ix̂·keip̂·l/h̄ − eix̂·ke−ip̂·l/h̄

)
e−i 1

2k·l sin( 1
2k · l)/( 1

2k · l), (4k)

which are expressed in terms of the desired “Fourier component” type operators. We can now insert Eqs. (4j)
and (4k) into Eq. (4d), which in turn is inserted into Eq. (3c), after which Eq. (3d) is straightforwardly
applied. The upshot is the general linear superposition expression for the divergence of the probability
vector current density that results from an arbitrary canonical Hamiltonian operator Ĥ([x̂, p̂], t) whose

classical antecedent Hamiltonian function is Hcl([x,p], t),

∇x · j(x, t; [|ψ(t)〉, Ĥ([x̂, p̂], t)]) =
(4π2h̄)−N

∫
dNx′

∫
dNp′ (Hcl([x

′,p′], t)/h̄)
∫
dNk

∫
dN l (sin( 1

2k · l)/( 1
2k · l)) ×(

cos(−x′ · k + p′ · l/h̄)ℜ
[
ie−i 1

2k·l〈ψ(t)|x〉
(
e−ix·k〈x + l|ψ(t)〉 + eix·k〈x − l|ψ(t)〉

)]
+

sin(−x′ · k + p′ · l/h̄)ℜ
[
e−i 1

2k·l〈ψ(t)|x〉
(
e−ix·k〈x + l|ψ(t)〉 − eix·k〈x − l|ψ(t)〉

)])
.

(5a)

One interesting special case of Eq. (5a) occurs when Hcl([x,p], t) has no dependence on the configuration
variables x. In that case the integrations over the variables x′ and k that occur in Eq. (4d) are obviously
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superfluous, and, if actually carried out in Eq. (5a), simply eliminate x′ along with a factor of (2π)−N , while
setting k to 0. Thus in the case that Hcl([x,p], t) has no dependence on x, Eq. (5a) simplifies to,

∇x · j(x, t; [|ψ(t)〉, Ĥ([p̂], t)]) = (2πh̄)−N
∫
dNp′ (Hcl([p

′], t)/h̄)
∫
dN l ×(

cos(p′ · l/h̄)ℜ[i〈ψ(t)|x〉 (〈x + l|ψ(t)〉 + 〈x − l|ψ(t)〉)] +

sin(p′ · l/h̄)ℜ[〈ψ(t)|x〉 (〈x + l|ψ(t)〉 − 〈x − l|ψ(t)〉)]
)
.

(5b)

Similarly, if Hcl([x,p], t) has no dependence on the momentum variables p, then the integrations over p′

and l in Eq. (5a) eliminate p′ along with a factor of (2πh̄)−N , while setting l to 0. Thus in the case that
Hcl([x,p], t) has no dependence on p, Eq. (5a) yields,

∇x · j(x, t; [|ψ(t)〉, Ĥ([x̂], t)]) = (2π)−N
∫
dNx′ (Hcl([x

′], t)/h̄)
∫
dNk ×(

cos(−x′ · k)ℜ
[
i|〈ψ(t)|x〉|2

(
e−ix·k + eix·k

)]
+

sin(−x′ · k)ℜ
[
|〈ψ(t)|x〉|2

(
e−ix·k − eix·k

)])
= 0,

(5c)

namely that ∇x ·j(x, t; [|ψ(t)〉, Ĥ([x̂], t)]) vanishes identically . This can also be verified directly from Eq. (3c)

for such a canonical Hamiltonian operator Ĥ([x̂], t), because 〈x| is one of its eigenvectors, with the corre-
sponding real eigenvalue Hcl([x], t), and 〈ψ(t)|x〉〈x|ψ(t)〉 is real-valued as well. We therefore see that any

terms of Hcl([x,p], t) which have no dependence on p can simply be truncated from Hcl([x,p], t) before

Hcl([x,p], t) is inserted into the general linear superposition expression of Eq. (5a) for the divergence of the

probability vector current density ∇x · j(x, t; [|ψ(t)〉, Ĥ([x̂, p̂], t)]).

Our ultimate goal, of course, is the probability vector current density j(x, t; [|ψ(t)〉, Ĥ([x̂, p̂], t)]) itself ,
rather than its divergence. We now turn our focus to obtaining it, recalling that in the Introduction we set
out three stipulations to be imposed on it to make it formally consistent with the fact that it is devoid of
physical information that is not already implicit in its divergence.

Obtaining the probability vector current density from its divergence

A homogeneously linear form in terms of its divergence for the nth component of the probability vector
current density is given by,

(
j(x, t; [|ψ(t)〉, Ĥ([x̂, p̂], t)])

)
n

=

wn

∫ xn

x
(0)
n

∇x · j(x1, . . . , x
′
n, . . . , xN , t; [|ψ(t)〉, Ĥ([x̂, p̂], t)])dx′n, n = 1, . . . , N,

(6a)

where the weights wn satisfy w1 + · · ·+wN = 1. We of course stipulated not only that the probability vector
current density is homogeneously linear in its divergence, but also that it has no dependence on constants
which are additional to those that are intrinsic to its divergence. The dependence of the expression on the

right-hand side of Eq. (6a) on the set of constants {x
(0)
1 , . . . , x

(0)
N } that are its lower limits of integration is

readily removed by setting all those lower limits of integration to −∞. That the result of thus introducing
an infinite integration interval is well-defined (i.e., does not diverge) is directly tied in with the conservation
of probability, as one can see from Eqs. (3a) and (3b) (with the latter repeated in Eq. (3c)). Finally, we
have also stipulated that among the forms of the mathematical candidates for the probability vector current
density, only the most symmetric are to be considered . That stipulation, and to a certain extent also the
injunction against additional constants not intrinsic to its divergence, requires us to set every weight value

wn of Eq. (6a) to 1/N , n = 1, . . . , N . With these specifications, Eq. (6a) becomes,

(
j(x, t; [|ψ(t)〉, Ĥ([x̂, p̂], t)])

)
n

=

(1/N)

∫ xn

−∞

∇x · j(x1, . . . , x
′
n, . . . , xN , t; [|ψ(t)〉, Ĥ([x̂, p̂], t)])dx′n, n = 1, . . . , N.

(6b)

Eqs. (6b) and (5a) together are the linear superposition construction of the probability vector current density

j(x, t; [|ψ(t)〉, Ĥ([x̂, p̂], t)]) for any canonical Hamiltonian operator Ĥ([x̂, p̂], t) whose classical Hamiltonian
function antecedent is Hcl([x,p], t)—see Eq. (5a) for the way that Hcl([x,p], t) is utilized.

We now turn to the best-known Hamiltonian operator, namely |p̂ − p0(x̂, t)|
2/(2m), for which direct

application of Eq. (3c) suffices to extract the corresponding probability vector current density divergence
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∇x · j(x, t; [|ψ(t)〉, |p̂ − p0(x̂, t)|
2/(2m)]) [1], which we abbreviate as ∇x · j for convenience. It turns out

that this divergence can simply be algebraically manipulated into the explicit form of a divergence operator

∇x· acting on a certain vector field [1], without actually making use of Eq. (6b). We can then inquire
whether the resulting “textbook” probability vector current density j(x, t; [|ψ(t)〉, |p̂ − p0(x̂, t)|

2/(2m)]) [1]
that is specifically thus obtained by algebraic manipulation of its divergence ∇x · j in fact adheres to the

three stipulations used to derive Eq. (6b), namely homogeneous linearity in ∇x · j, no additional constants
beyond the ones intrinsic to ∇x · j, and the maximum possible symmetry.

Do the three postulated stipulations hold for the best-known special example?

The key to applying Eq. (3c) to the Hamiltonian operator |p̂ − p0(x̂, t)|
2/(2m) is obviously to work out its

Eq. (3c) core part , 〈x||p̂ − p0(x̂, t)|
2/(2m)|ψ(t)〉,

〈x||p̂ − p0(x̂, t)|
2/(2m)|ψ(t)〉 = 〈x|(|p̂|2 − p̂ · p0(x̂, t) − p0(x̂, t) · p̂ + |p0(x̂, t)|

2)|ψ(t)〉/(2m) =
〈x|(|p̂|2 + ih̄∇

x̂
· p0(x̂, t) − 2p0(x̂, t) · p̂ + |p0(x̂, t)|

2)|ψ(t)〉/(2m) =[
−h̄2∇2

xψ(x, t) + 2ih̄p0(x, t) · ∇xψ(x, t) + (ih̄∇x · p0(x, t) + |p0(x, t)|
2)ψ(x, t)

]
/(2m),

(7a)

where ψ(x, t)
def
= 〈x|ψ(t)〉, and of course there is also its complex conjugate ψ̄(x, t)

def
= 〈ψ(t)|x〉. We now

obtain the divergence ∇x · j(x, t; [|ψ(t)〉, |p̂−p0(x̂, t)|
2/(2m)]), which we abbreviate as ∇x · j for convenience,

by merely putting Eq. (7a) into Eq. (3c). But we also find that with considerable additional algebraic

manipulation that result can be explicitly presented as a divergence operator ∇x· acting on a certain vector
field,

∇x · j = ℜ
[
(2i/h̄)〈ψ(t)|x〉〈x||p̂ − p0(x̂, t)|

2/(2m)|ψ(t)〉
]

=

m−1ℜ
[
−ih̄ψ̄(x, t)(∇2

xψ(x, t)) − 2ψ̄(x, t)(p0(x, t) · ∇xψ(x, t)) − |ψ(x, t)|2(∇x · p0(x, t))
]

=
(2m)−1[ψ̄(x, t)((−ih̄)∇2

xψ(x, t)) + ((ih̄)∇2
xψ̄(x, t))ψ(x, t)]−

m−1[ψ̄(x, t)(p0(x, t) · ∇xψ(x, t)) + (p0(x, t) · ∇xψ̄(x, t))ψ(x, t) + |ψ(x, t)|2(∇x · p0(x, t)] =
(2m)−1∇x · [ψ̄(x, t)((−ih̄)∇xψ(x, t)) + ((ih̄)∇xψ̄(x, t))ψ(x, t)]−

m−1[(p0(x, t) · ∇x|ψ(x, t)|2) + |ψ(x, t)|2(∇x · p0(x, t))] =
∇x · [ψ̄(x, t)((−ih̄)∇xψ(x, t)) + ((ih̄)∇xψ̄(x, t))ψ(x, t) − 2p0(x, t)|ψ(x, t)|2]/(2m).

(7b)

Here the divergence operator ∇x· has been simply factored out of the divergence expression ∇x · j which
follows from Eq. (3c). Therefore it is abundantly clear that the resulting “textbook” probability vector
current density [1],

j(x, t; [|ψ(t)〉, |p̂ − p0(x̂, t)|
2/(2m)])

def
=

[ψ̄(x, t)((−ih̄)∇xψ(x, t)) + ((ih̄)∇xψ̄(x, t))ψ(x, t) − 2p0(x, t)|ψ(x, t)|2]/(2m),
(7c)

is homogeneously linear in its Eq. (3c) divergence ∇x · j and also that it has no additional constants beyond
those that are intrinsic to ∇x · j. Inspection of its Eq. (7c) expression also reveals this particular probability
vector current density to be highly symmetric; indeed its N-dimensional form is the completely symmetric

generalization of its one-dimensional case. Thus this “textbook” best-known special example of a probability
vector current density [1] definitely adheres to the three stipulations which underlie Eq. (6b).

One naturally wonders which subclass of the class of canonical Hamiltonian operators Ĥ([x̂, p̂], t) has
members which all emulate |p̂− p0(x̂, t)|

2/(2m) insofar as having the property that the divergence operator

∇x· can simply be explicitly algebraically factored out of ∇x · j(x, t; [|ψ(t)〉, Ĥ([x̂, p̂], t)]). An important
clue for working out that subclass is the fact that this property is manifest in the classical limit, where
the single-particle vector current density can readily be shown through precisely such explicit algebraic
factorization to be equal to the singular classical single-particle scalar density times the classical particle
velocity. Interestingly, the straightforward quantization of the singular classical single-particle scalar density
turns out to be equal to the quantum particle-position projection operator in the Heisenberg picture, and,
of course, the quantum probability scalar density is simply an expectation value of that particle-position

projection operator . Thus it isn’t greatly surprising that there exists a subclass of the canonical Hamiltonian

operators Ĥ([x̂, p̂], t) for which, in Ehrenfest-theorem style, the probability vector current density turns out
to be equal to the expectation value of the quantization of the just-mentioned result for the classical single-
particle vector current density, namely the singular classical single-particle scalar density times the classical
particle velocity, a result that, exactly as in the classical case, is arrived at for this “Ehrenfest subclass” of
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the canonical Hamiltonian operators by the explicit algebraic factorization of the divergence operator ∇x·
out of ∇x · j(x, t; [|ψ(t)〉, Ĥ([x̂, p̂], t)]).

The classical vector current density and an Ehrenfest-like theorem

As is familiar from its electromagnetic application [4], the classical single-particle scalar density is given by
the singular expression,

ρcl(y, t) = δ(N)(xcl(t) − y), (8a)

which, irrespective of the value of t, satisfies,

∫
ρcl(y, t) d

Ny = 1, (8b)

in precise analogy to the probability-conservation property of the quantum single-particle probability scalar
density 〈ψ(t)|y〉〈y|ψ(t)〉, which satisfies,

∫
〈ψ(t)|y〉〈y|ψ(t)〉 dNy = 〈ψ(t)|ψ(t)〉 = 1. (8c)

Therefore it is plausible that there exists a classical single-particle vector current density jcl(y, t) which
satisfies the equation of continuity in conjunction with ρcl(y, t),

dρcl(y, t)/dt+ ∇y · jcl(y, t) = 0. (8d)

For Eq. (8d) to hold it must be the case that,

∇y · jcl(y, t) = −dρcl(y, t)/dt = −{δ(N)(xcl(t) − y), Hcl([xcl(t), pcl(t)], t)} =
−

(
∇xcl(t)δ

(N)(xcl(t) − y)
)
· ∇pcl(t)Hcl([xcl(t), pcl(t)], t) =(

∇yδ
(N)(xcl(t) − y)

)
· ∇pcl(t)Hcl([xcl(t), pcl(t)], t) =

∇y ·
[
δ(N)(xcl(t) − y) ∇pcl(t)Hcl([xcl(t), pcl(t)], t)

]
= ∇y ·

[
δ(N)(xcl(t) − y) dxcl(t)/dt

]
,

(8e)

where { , } denotes the classical Poisson bracket, and we have used Hamilton’s first classical equation of
motion, dxcl(t)/dt = ∇pcl(t)Hcl([xcl(t), pcl(t)], t). Eq. (8e) clearly shows that the divergence operator ∇y·
explicitly algebraically factors out of the divergence of the classical single-particle vector current density
∇y · jcl(y, t), thus yielding for the classical single-particle vector current density jcl(y, t) itself ,

jcl(y, t) = δ(N)(xcl(t) − y) ∇pcl(t)Hcl([xcl(t), pcl(t)], t) = ρcl(y, t) dxcl(t)/dt. (8f)

From Eq. (8f) we see that the classical single-particle vector current density is equal to the classical single-

particle scalar density times the classical particle velocity , which is a simple, physically graphic result that
turns out to have significant resonance in canonical quantum mechanics as well.

The quantum/classical linkage arises both from the Eq. (2) relation between commutator and Poisson
brackets and from the fact that the quantization of the classical single-particle scalar density ρcl(y, t) =
δ(N)(xcl(t) − y) is the Heisenberg-picture version of the quantum position projection operator |y〉〈y|, whose

expectation value in the state |ψ(t)〉 is the quantum probability scalar density 〈ψ(t)|y〉〈y|ψ(t)〉. This aspect
of the quantum position projection operator |y〉〈y| can be obtained from the fact that its application to any
position eigenstate vector |x〉 yields,

|y〉〈y|x〉 = δ(N)(y − x)|y〉 = δ(N)(x − y)|x〉, (9a)

which is identical to what the application of δ(N)(x̂−y) to that position eigenstate vector |x〉 yields, namely,

δ(N)(x̂ − y)|x〉 = δ(N)(x − y)|x〉, (9b)

and the fact that, in the canonical quantum regime, the set {|x〉} of position eigenstate vectors is complete.
Therefore, the quantum probability scalar density 〈ψ(t)|y〉〈y|ψ(t)〉 has the alternate expression,

〈ψ(t)|y〉〈y|ψ(t)〉 = 〈ψ(t)|δ(N)(x̂ − y)|ψ(t)〉, (9c)

which is easily shown to produce the following alternate form of Eq. (3c),

∇y · j(y, t; [|ψ(t)〉, Ĥ([x̂, p̂], t)]) = (i/h̄)〈ψ(t)|[δ(N)(x̂ − y), Ĥ([x̂, p̂], t)]|ψ(t)〉. (9d)
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Eq. (9d), in turn, implies the following alternate form of the combination of Eqs. (6b) and (5a),

(
j(y, t; [|ψ(t)〉, Ĥ([x̂, p̂], t)])

)
n

=

(1/N)

∫ yn

−∞

(i/h̄)〈ψ(t)|[δ(N)(x̂ − (y1, . . . , y
′
n, . . . , yN )), Ĥ([x̂, p̂], t)]|ψ(t)〉dy′n, n = 1, . . . , N.

(9e)

Eq. (9e) does not, however, provide information on the consequences of undertaking Fourier decomposition

of the canonical Hamiltonian operator Ĥ([x̂, p̂], t), as Eq. (5a) does.
Much less general than Eq. (9e), but doubtless of greater physical interest, is the probability vector current

density result for the subclass of canonical Hamiltonian operators Ĥ([x̂, p̂], t) which satisfy a particular
“Ehrenfest” requirement, namely that,

[δ(N)(x̂ − y), Ĥ([x̂, p̂], t)] = ih̄
︷ ︸︸ ︷
{δ(N)(x − y), Hcl([x,p], t)} , (10a)

where, of course,

Ĥ([x̂, p̂], t) =
︷ ︸︸ ︷
Hcl([x,p], t) . (10b)

From Eq. (2) it is immediately apparent that canonical Hamiltonian operators of the form,

Ĥ([x̂, p̂], t) =
︷ ︸︸ ︷
K([p], t) + V ([x], t) = K([p̂], t) + V ([x̂], t), (10c)

do indeed satisfy the “Ehrenfest” requirement of Eq. (10a).

Given a canonical Hamiltonian operator Ĥ([x̂, p̂], t) which satisfies this “Ehrenfest” requirement, the
substitution of Eq. (10a) into Eq. (9d) permits a series of steps that are analogous to those of the classical

Eq. (8e), and that likewise result in the explicit algebraic factorization of the divergence operator ∇y·

out of the Eq. (9d) expression for the divergence ∇y · j(y, t; [|ψ(t)〉, Ĥ([x̂, p̂], t)]) of the probability vector

current density, thereby yielding the probability vector current density j(y, t; [|ψ(t)〉, Ĥ([x̂, p̂], t)]) itself as
the expectation value of the quantization of the classical single-particle scalar density δ(N)(x − y) times the

classical particle velocity ∇pHcl([x,p], t). Carrying out this substitution of Eq. (10a) into Eq. (9d), and then
proceeding in analogy with Eq. (8e), we obtain,

∇y · j(y, t; [|ψ(t)〉, Ĥ([x̂, p̂], t)]) = −〈ψ(t)|
︷ ︸︸ ︷
{δ(N)(x − y), Hcl([x,p], t)} |ψ(t)〉 =

−〈ψ(t)|
︷ ︸︸ ︷(
∇xδ

(N)(x − y)
)
· ∇pHcl([x,p], t) |ψ(t)〉 = 〈ψ(t)|

︷ ︸︸ ︷(
∇yδ

(N)(x − y)
)
· ∇pHcl([x,p], t) |ψ(t)〉 =

〈ψ(t)|
︷ ︸︸ ︷
∇y ·

[
δ(N)(x − y) ∇pHcl([x,p], t)

]
|ψ(t)〉 =

∇y ·
[
〈ψ(t)|

︷ ︸︸ ︷
δ(N)(x − y) ∇pHcl([x,p], t) |ψ(t)〉

]
,

(10d)
where, because quantization and taking the divergence with respect to the non-quantized vector variable
y are independent linear processes, we can extract the explicitly factored divergence operator ∇y· out of
the quantization—and also, of course, out of the expectation value with the state |ψ(t)〉. Therefore, for

the subclass of canonical Hamiltonian operators Ĥ([x̂, p̂], t) which satisfy the “Ehrenfest” requirement of
Eq. (10a), the probability vector current density is given by,

j(y, t; [|ψ(t)〉, Ĥ([x̂, p̂], t)]) = 〈ψ(t)|
︷ ︸︸ ︷
δ(N)(x − y) ∇pHcl([x,p], t) |ψ(t)〉, (10e)

which is the expectation value of the quantization of the classical single-particle scalar density δ(N)(x − y)
times the classical particle velocity ∇pHcl([x,p], t).

Now in addition to those particular “Ehrenfest-subclass” canonical Hamiltonian operators which have
the form given by Eq. (10c), canonical Hamiltonian operators which have the form,

Ĥ([x̂, p̂], t) =
︷ ︸︸ ︷
p · v0(x, t) = 1

2 (p̂ · v0(x̂, t) + v0(x̂, t) · p̂), (10f)

as well satisfy the “Ehrenfest” requirement of Eq. (10a), which we now show in an abbreviated manner,

[δ(N)(x̂ − y), 1
2 (p̂ · v0(x̂, t) + v0(x̂, t) · p̂)] = ih̄

(
∇

x̂
δ(N)(x̂ − y)

)
· v0(x̂, t) =

ih̄
(
−∇yδ

(N)(x̂ − y)
)
· v0(x̂, t) = −ih̄∇y ·

[
δ(N)(x̂ − y) v0(x̂, t)

]
,
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and,

︷ ︸︸ ︷
{δ(N)(x − y), p · v0(x, t)} =

︷ ︸︸ ︷(
∇xδ

(N)(x − y)
)
· v0(x, t) =

︷ ︸︸ ︷(
−∇yδ

(N)(x − y)
)
· v0(x, t) =

−∇y ·
︷ ︸︸ ︷[
δ(N)(x − y) v0(x, t)

]
= −∇y ·

[
δ(N)(x̂ − y) v0(x̂, t)

]
.

These results make it apparent that for this case as well, the divergence operator ∇y· explicitly algebraically
factors out, paving the way for the resulting probability vector current density to be equal to the expectation
value of the quantization of the classical single-particle scalar density δ(N)(x− y) times the classical particle
velocity v0(x, t) = ∇pHcl([x,p], t).

Combining the special cases of Eqs. (10c) and (10f), we see that canonical Hamiltonian operators

Ĥ([x̂, p̂], t) which adhere to the “Ehrenfest” requirement of Eq. (10a) have the form,

Ĥ([x̂, p̂], t) =
︷ ︸︸ ︷
K([p], t) + p · v0(x, t) + V ([x], t) =

K([p̂], t) + 1
2 (p̂ · v0(x̂, t) + v0(x̂, t) · p̂) + V ([x̂], t).

(10g)

For this “Ehrenfest subclass” of the canonical Hamiltonian operators, the divergence operator ∇y· always

explicitly algebraically factors out of the Eq. (9d) expression ∇y ·j(y, t; [|ψ(t)〉, Ĥ([x̂, p̂], t)]) for the divergence
of the probability vector current density, as we see from Eq. (10d), and the consequent probability vector

current density j(y, t; [|ψ(t)〉, Ĥ([x̂, p̂], t)]) itself is always given by the expectation value of the quantization

of the classical single-particle scalar density δ(N)(x − y) times the classical particle velocity ∇pHcl([x,p], t),
as we see from Eq. (10e).
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