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Abstract

Quarks are described mathematically by (3 x 3) matrices. To include these quarkonian math-
ematical structures into Geometric Algebra it is helpful to restate Geometric Algebra in the
mathematical language of (3 x 3) matrices.
It will be shown in this paper how (3 x 3) permutation matrices can be interpreted as unit
vectors. Special emphasis will be given to the definition of some wedge products which fit
better to this algebra of (3 x 3) matrices than the usual Geometric Algebra wedge product.
And as S3 permutation symmetry is flavour symmetry a unified flavour picture of Geometric
Algebra will emerge.
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1 Overview

The geometric product and its decomposition into dot and wedge product

ab = a · b+ a ∧ b (1)

constitute the central core of geometric algebra and thus is of tremendous importance. It is
central for understanding vectors [9, sec. V] in a didactical and in a mathematical sense: ”The
geometric product should be regarded as an essential part of the definition of vectors” [8]. Sobczyk
even today vividly remembers his ”sense of amazement”, when David Hestenes wrote down this
stunning equation (1), and asks himself: ”Why hadn’t I ever heard of this striking product?” [27,
p. 1291].

It will be shown in this paper, that an alternative decomposition of the geometric product

ab = a • b+ a ∧12 b+ a ∧21 b (2)

might be of similar importance for understanding vectors of S3 permutation algebra. This will be
done in the second part of this paper, comprised of sections 12 to 18.

In the first part the basic ideas behind this alternative version of geometric algebra will be
explained. This part, which comprises sections 2 to 11, can be found at the AGACSE 2012 flash

*Preprint version of a paper submitted to AACA, Special Issue of AGACSE 2012 in La Rochelle.
�Address: Schütte-Lanz-Str. 61, D – 12209 Berlin, Germany, mail@grassmann-algebra.de.
This work was done at and supported by the Institute of Physics Education, Department of Physics at
Goethe University Frankfurt, Germany. Special thanks go to Marvin Sauerland for technical support.
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drive [12] distributed by the AGACSE 2012 organizers. It was written before the conference took
place in La Rochelle.

At the poster session it became clear that some features of this unorthodox geometric algebra
perspective I presented should be explained in more detail. This is done with the help of the
alternative decomposition (2). Therefore I hope that a little bit of this sense of amazement once
felt at the first encounter with the geometric product will be felt again by some readers.

2 Warning

In this version of geometric algebra negative numbers are avoided. There will be only imaginary
units i, positive scalars as multiples of 1, and matrices. This paper lives in a positive, but yet
complex world.

Of course it is possible to include minus signs into geometric algebra of quarks as it is no crime
against mathematics to write equations like 0 0 i

0 i 0
i 0 0

2

=

 −1 0 0
0 −1 0
0 0 −1

 = −

 1 0 0
0 1 0
0 0 1

 (3)

But for ontological reasons (see [11, sec. 8]) I prefer to write this equation without a minus sign
as  0 0 i

0 i 0
i 0 0

2

'

 1 1 1+i
1 1+i 1

1+i 1 1

2

=

 2+2i 3+2i 3+2i
3+2i 2+2i 3+2i
3+2i 3+2i 2+2i

 '
 0 1 1

1 0 1
1 1 0


(4)

3 Introduction

It is well known that generators of the symmetric group S3, which is isomorphic to the dihedral
group of order 6, can be represented by positive (3 x 3) matrices. In geometric algebra it is possible
to consider these matrices as geometric objects with a clear geometric meaning.

And it is well known that permutation symmetry S3 closely resembles flavour symmetry [20].
To prepare the scene for a unified geometric algebra picture of quarks (which will be constructed
one day) permutation symmetry S3 will be used in the following to restate geometric algebra in
the language of (3 x 3) matrices. As Gell-Mann matrices are (3 x 3) matrices, a unification of
geometric algebra and Gell-Mann matrix algebra (which will be found one day) is surely made
easier to construct.

One possible way to identify (3 x 3) permutation matrices with geometric objects is presented
in [11], where special emphasis is given to the fact that a purely positive world without negative
and without complex numbers can be formulated. In the present paper a more direct relation to
matrix representations of the symmetric group S3 is drawn, now using imaginary units to describe
directions perpendicular to the S3-plane of [11]. For this reason imaginary numbers are included,
while the representation of the null matrix (or nihilation matrix) is still applied by analogy to [11].
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4 Ugliness in Geometric Group Theory

Geometric group theory [22] discusses among other things matrix representations of permutations.
The six different permutations of three objects or positions or flavour families a, b, and c are
represented by the six positive (3 x 3) matrices [23, p. 356] as operators of S3. For example the
second and third positions of a column vector are exchanged in [22, p. 180] by: 1 0 0

0 0 1
0 1 0

 a
b
c

 =

 a
c
b

 (5)

This can be considered as geometric operation in three-dimensional space when we interprete
the numbers a, b, and c as coordinates: 1 0 0

0 0 1
0 1 0

 x
y
z

 =

 x
z
y

 (6)

From a geometric algebra perspective this is a very, very ugly equation. The operator is represented
by a (3 x 3) matrix while the operand is represented by a column vector or (1 x 3) matrix.
Compared with the (3 x 3) matrix, a column vector is a totally different mathematical object.
Thus we have an algebra of two different mathematical worlds: the world of (3 x 3) matrices and
the world of (1 x 3) matrices.

In geometric algebra we have a more ambitious dream. Vianna, Trindade and Fernandes [28,
p. 962] state this dream in the following way: ”We share with many authors the idea that operators
and operands should be elements of the same space.” To fulfill this dream and to find an algebra
which shows a ”proper conformity of the parts to one another and to the whole” (as Heisenberg [6]
and Chandrasekhar [1] characterise mathematical beauty) it is tried in the following to use only
(3 x 3) and later (9 x 9) matrices to de- scribe three-dimensional objects, operations, or geometric
situations.

It is surely more beautiful to represent all parts of a mathematical system by the same math-
ematical structures. And if it is not considered as more beautiful by aesthetically desillusioned
pragmatists, it should at least be considered as more consistent, practical or convenient.

5 Interpreting (3 x 3) Matrices

The (3 x 3) matrix of eq. (6) exchanges the y- and z-coordinates of three-dimensional Euclidean
space. Therefore this (3 x 3) matrix acts like a reflection at a plane which is spanned by the x-axis
and the diagonal line between the y- and z-axis (see figure 1(b)). In a first approach it can be
checked whether it is possible to identify this matrix with the corresponding plane in geometric
algebra.

In the following the (3 x 3) matrix representation will be given at the left side of the double
sided arrow, while the standard Pauli matrix representation of geometric algebra can be found at
the right side of the double sided arrow:

e1 =

 1 0 0
0 0 1
0 1 0

 ??←→ 1√
2

(σy + σz)σx =
1√
2

(σzσx − σxσy) (7)

Please note the question marks, because a problem arises. The square of bivectors or of linear com-
binations of bivectors in three-dimensional space of geometric algebra is negative. An evaluation
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of the right-hand side of the double sided arrow of eq. (7) consequently gives

(
2−0.5(σzσx − σxσy)

)2
=

(
−1 0
0 −1

)
= −

(
1 0
0 1

)
(8)

while the square of matrix e1 at the left-hand side of the double sided arrow is positive:

e21 =

 1 0 0
0 0 1
0 1 0

2

=

 1 0 0
0 1 0
0 0 1

 6=
 0 1 1

1 0 1
1 1 0

 (9)

This leads to the conclusion that we have to identify the dual of e1 (which will be called E1)
with the considered plane of eq. (7):

E1 = ie1 =

 i 0 0
0 0 i
0 i 0

 ←→ 1√
2

(σy + σz)σx =
1√
2

(σzσx − σxσy) (10)

In this way we have identified a (3 x 3) matrix on the left side of the double sided arrow with
a (2 x 2) matrix on the right side of the double sided arrow. It will be shown later that this (3
x 3) matrix E1 indeed acts in the same way on a vector r = xσx + yσy + zσz like the standard
geometric algebra reflection matrix of eq. (10), which exchanges the y- and z-coordinates:

r′ =
1√
2

(σy + σz)σx(xσx + yσy + zσz)
1√
2

(σy + σz)σx = xσx + zσy + yσz (11)

But first we have to find the (3 x 3) matrix equivalent of vector r.
The two other (3 x 3) matrices E2 and E3 which exchange two other coordinates in each case

can be interpreted in a similar way. The (3 x 3) matrix E2 exchanges the x- and z-coordinates.
Therefore it can be identified with a plane which is spanned by the y-axis and the diagonal line
between the x- and z-axis (see figure 1(c)):

E2 = ie2 =

 0 0 i
0 i 0
i 0 0

 ←→ 1√
2

(σx + σz)σy (12)

And the (3 x 3) matrix E3 can be identified with a plane which is spanned by the z-axis and
the diagonal line between the x- and y-axis (see figure 1(a)):

E3 = ie3 =

 0 i 0
i 0 0
0 0 i

 ←→ 1√
2

(σx + σy)σz (13)

And it is clear that the red area elements of figure 1 have surface areas of
√

2 times the unit
area.

A multiplication by the imaginary unit i in matrix algebra can be considered as a multiplication
by the volume element σxσyσz in geometric algebra. The three unit vectors e1, e2, and e3 of
geometric algebra of quarks can thus be identified with the following standard geometric algebra
vectors:
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Figure 1: Imaginary permutation matrices E1, E2, and E3 represent planes.

e2 = i3E2 =
E2

i
=

 0 0 1
0 1 0
1 0 0

 ←→
− 1√

2
(σx+σz)σy σxσyσz

= 1√
2
(σz−σx)

(14)

e3 =
E3

i
=

 0 1 0
1 0 0
0 0 1

 ←→ 1√
2

(σx − σy) (15)

e1 =
E1

i
=

 1 0 0
0 0 1
0 1 0

 ←→ 1√
2

(σy − σz) (16)

In this way (3 x 3) matrices can be identified with vectors. This is an important message: S3

permutation matrices represent vectors. These three vectors are shown in figure 2.
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Figure 2: Permutation matrices e1, e2, and e3 represent vectors.
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6 Nihilation Matrix and Identity

The three permutation vectors e1, e2, and e3 are unit vectors because they square to one1. They
are furthermore coplanar as e1, e2, and e3 are located in the same plane. This has been tried to
visualise in figure 3.

But figure 3 shows another important feature: The sum of the three vectors e1 + e2 + e3 (see
left picture of figure 3) or the double sum 2e1 + 2e2 + 2e3 (see right picture of figure 3) or every
other multiple sum like 3(e1 + e2 + e3) (see middle picture of figure 3) results in a vector of length
zero. That is why we should identify the matrix of ones N geometrically and algebraically with
the zero matrix O.

N = e1 + e2 + e3 =

 1 1 1
1 1 1
1 1 1

 '
 0 0 0

0 0 0
0 0 0

 = O (17)

This identification of N with zero is also justified when we compare the sum e1 + e2 + e3 with
its geometric algebra counterpart by adding eq. (14), (15), and (16).

e1 + e2 + e3 ' O ←→ 1√
2

(σz − σx + σx − σy + σy − σz) = 0 (18)
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Figure 3: Some attempts to visualise that the vectors e1, e2, and e3 lie in the same plane.

In the same way the sum of all three imaginary permutation matrices E1, E2, and E3 which
represent unit area elements has to be identified with nothingness, nihilation, null or zero.

E1 + E2 + E3 =

 i i i
i i i
i i i

 = iO ' N

←→ 1√
2

(σxσy + σzσy + σyσz + σxσz + σzσx + σyσx) = 0

(19)

In the literature the matrix of ones is sometimes called unit matrix (see e.g. [29]), which is
rather confusing. The matrix of ones is not the identity matrix. And sometimes the matrix of
ones is called democratic matrix (see e.g. [2]), which seems even more confusing and hides the
structural meaning of N . If a (3 x 3) matrix is multiplied with N in geometric algebra of quarks,

1In a world with positive numbers only, it makes sense to call them base vectors, because they form a minimal
set of vectors spanning a plane, see [11]. It is not possible to reach every point of a plane when there are just two
base vectors with only positive coordinates.
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it will be nihilated und becomes zero. Thus we have indefinitely many representations of matrices
meaning zero. For example there are (with r ∈ C):

N =

 1 1 1
1 1 1
1 1 1

 '
 r r r

r r r
r r r

 '
 0 0 0

0 0 0
0 0 0

 = O (20)

Hence every other (3 x 3) matrix possess indefinitely many representations too. The matrix
Z ′2 given by Dev, Gautam and Singh in [2, eq. (16)]

Z ′2 =
1

3

 1 −2 −2
−2 1 −2
−2 −2 1


=

1

3

 3 0 0
0 3 0
0 0 3

+
1

3

 −2 −2 −2
−2 −2 −2
−2 −2 −2

 '
 1 0 0

0 1 0
0 0 1

 (21)

is just another representation of the identity matrix. Therefore it is obvious that every mathe-
matical structure should be invariant under Z ′2 in geometric algebra of quarks.

And every vector r can be written in different ways:

r = x1e1 + x2e2 + x3e3 ' (x1 − x3) e1 + (x2 − x3) e2

' (x2 − x1) e2 + (x3 − x1) e3

' (x3 − x2) e3 + (x1 − x2) e1

←→ 1√
2

[(x2 − x1)σx + (x3 − x2)σy + (x1 − x3)σz]

(22)

Therefore it is always possible to find a fundamental expression of vector r with only two unit
vectors ei and purely positive coefficients. For example, if x2, x3 ≥ x1 then it would make sense
to use the second line of eq. (22) as the two coefficients are greater than or equal to zero.

Although it seems that we are living in a three-dimensional space with x-, y- and z-axes as
shown in the previous figures, till now we are not able to reach points outside the plane indicated
in figure 3. We are frozen in this plane. Every point we can reach till now is considered to be
a linear combination of the three vectors e1, e2, and e3. To reach points outside this plane it is
crucial to identify a vector perpendicular2 to the S3-plane.

7 Products of Permutation Matrices

The following products of permutation matrices exist:

e0 := e21 = e22 = e23 =

 1 0 0
0 1 0
0 0 1

 ←→
(

1 0
0 1

)
= 1 (23)

	 := E2
1 = E2

2 = E2
3 =

 0 1 1
1 0 1
1 1 0

 ←→ −
(

1 0
0 1

)
= −1 (24)

(25)

2As quarks should be regarded as entities having absolutely no rectangular symmetry e4 will be ignored again
in the second part of this paper.
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e12 := e1e2 = e2e3 = e3e1 =

 0 0 1
1 0 0
0 1 0


←→ 1

2
(−1 + σxσy + σyσz + σzσx)

(26)

e21 := e2e1 = e3e2 = e1e3 =

 0 1 0
0 0 1
1 0 0


←→ 1

2
(−1− σxσy − σyσz − σzσx)

(27)

E12 := E1E2 = E2E3 = E3E1 =

 1 1 0
0 1 1
1 0 1


←→ 1

2
(1− σxσy − σyσz − σzσx)

(28)

E21 := E2E1 = E3E2 = E1E3 =

 1 0 1
1 1 0
0 1 1


←→ 1

2
(1 + σxσy + σyσz + σzσx)

(29)

These matrix products are geometric products. They thus bear geometrical meaning. The
entities of eq. (23) and (24) can be identified with scalars. The entities of eq. (25) to (28) can be
identified as linear combinations of a scalar and bivectors, parallelograms of sorts. The trivector
or pseudoscalar can be found by the following permutation matrix multiplications:

I := E1e1 = E2e2 = E3e3 =

 i 0 0
0 i 0
0 0 i

 ←→ σxσyσz (30)

If we restrict ourselves to the plane of figure 3, we can do everything in this plane using (3
x 3) matrices of geometric algebra of quarks what we are able to do with (2 x 2) Pauli matrices
in conventional geometric algebra in a plane. This is important! (2 x 2) matrices can be
thought as and seen as (3 x 3) permutation matrices. So it is no mathematical question,
which system we use, it is instead a didactical question.

8 The Philosophy of Negative Numbers

As indicated in section 1 minus signs are avoided in this paper. Instead of this algebraic sign ”–”
the geometric entity

e12 + e21 =

 0 1 1
1 0 1
1 1 0

 ←→ −1 (31)

gives us a (3 x 3) matrix which does all that a minus sign usually does. Algebraically e12 + e21
reduces every scalar ke0 by one unit:

ke0 + e12 + e21 = (k − 1)e0+ e0 + e12 + e21︸ ︷︷ ︸ ' (k − 1)e0

N
(32)
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But at the same time the matrix e12 + e21 has a clear geometric meaning: It reverses the
direction of vectors:

(e12 + e21)(x1e1 + x2e2 + x3e3) = x1(e2 + e3) + x2(e3 + e1) + x3(e1 + e2) (33)

This is indeed a complete reversion as for example the unit vector e2 + e3 is parallel to the unit
vector e1, but shows into the opposite direction.

Therefore this matrix (e12 + e21) is called 	 in this paper, using the \ominus symbol of Latex
like it is done in eq. (24). So 	 e0 is no multiplication of a negative sign with the scalar 1, but
a matrix multiplication resulting in 	 e0 = 	. This avoidance of minus signs indicates that we
might live in a mathematically purely positive world.

In this world negative entities do not exist. We just reverse directions. And sometimes we
do not totally reverse a direction but change the direction only a little bit. This might have
epistemological and ontological consequences for our physical world too. Do we really measure
negative entities anywhere in physics? Or do we only measure positive entities in different or
sometimes in opposite directions? The possibility of avoiding the minus sign might indicate that
we not only might live in a mathematically positive world, but that we might live in a world which
can be decribed in physics as a purely positive world too.

And as we actually speak about something like ”reality” it is even possible that the world of
physics not only can be but even must be described as purley positve, to understand it conceptully
as ”The Road to Reality” (see discussion in [21, §3.5]) is a mathematical road3.

But whatever our ontological and epistemological positions are: We have reached here the true
heart of geometric algebra: 	 can be interpreted as algebraic and as well as geometric operation.
Algebra and geometry are deeply connected now. We live in both worlds: in the world of algebra
and in the world of geometry. And as we can transfer from algebra to geometry and back to
algebra at every moment, these worlds coalesce structurally.

9 Constructing e4

After having found an appropriate entity to describe negativities in geometric algebra of quarks
we are able to split up the geometric product of two vectors r1r2 into dot product and wedge
product in analogy to eq. (1):

r1r2 = r1 · r2 + r1 ∧ r2 (34)

The dot product results in a scalar

r1 · r2 =
1

2
(r1r2 + r2r1) (35)

and is connected with the cosine of the angle α between the two vectors r1 and r2:

cosα = r̂1 · r̂2 =
1

2
(r̂1r̂2 + r̂2r̂1) (36)

where r̂ is the unit vector of r = x1e1 + x2e2 + x3e3:

r̂ =
r

|r|
(37)

3At the beginning of this discussion Penrose writes: ”I think that it is clear that, unlike the natural numbers,
there is no evident physical content to the notion of a negative number of physical objects” [21, p. 65]. But he
later on revises this position slightly.
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with

|r| =
√
r2 =

√
x21 + x22 + x23 − x1x2 − x2x3 − x3x1 e0 (38)

As indicated in figure 3 the angles between all unit vectors e1, e2, and e3 indeed equal 2π/3:

cosα = e1 · e2 = e2 · e3 = e3 · e1 =
1

2
(e1e2 + e2e1) = 	1

2
e0 ←→ −1

2
(39)

It surely makes sense to identify the arccosine of this expression with

α = arccos

(
	 1

2

)
' 2π

3
e0 = 120◦e0 (40)

Now the (standard) wedge product is defined as:

r1 ∧ r2 =
1

2
(r1r2 +	r2r1) (41)

Thus we get an expression for a bivector representing the plane AS3 in which the unit vectors
e1, e2, and e3 are situated:

AS3
:= e1 ∧ e2 = e2 ∧ e3 = e3 ∧ e1 =

1

2
(e1e2 +	e2e1)

=
1

2
e0 + e12 =

 1
2 0 1
1 1

2 0
0 1 1

2

 ←→ 1

2
(σxσy + σyσz + σzσx)

(42)

The magnitude of this area element is

|AS3
| =

√
	
(
e12 +

1

2
e0

)2

=

√
	
(

1

4
e0 + e12 + e21

)
'
√
	3

4
(e12 + e21) =

√
	2

3

4
'
√

3

4
e0 =

1

2

√
3 e0

(43)

Therefore the unit area element E4 which is perpendicular to the wanted unit vector e4 equals

E4 =
AS3

|AS3 |
=

1√
3

(e0 + 2e12) =
1√
3

 1 0 2
2 1 0
0 2 1


←→ 1√

3
(σxσy + σyσz + σzσx)

(44)

By analogy to eq. (14), (15), or (16) the unit vector e4 perpendicular to all other unit vectors
e1, e2, and e4 can be found as

e4 = 	iE4 =
1√
3
i(e0 + 2e21) =

1√
3

 i 2i 0
0 i 2i
2i 0 i


←→ 1√

3
(σx + σy + σz)

(45)

As expected e4 is a unit vector.
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e24 =
1

3

 i 2i 0
0 i 2i
2i 0 i

2

' 1

3

 i+2 2i+2 2
2 i+2 2i+2

2i+2 2 i+2

2

=
1

3

 12i+11 12i+8 12i+ 8
12i+8 12i+11 12i+ 8
12i+8 12i+8 12i+11

 ' 1

3

 3 0 0
0 3 0
0 0 3

 =

 1 0 0
0 1 0
0 0 1


(46)

Or written in vector notation instead of matrix notation:

e24 =

(
1√
3
i(e0 + 2e21)

)2

=
1

3
(e12 + e21)(3e12 + 3e21) ' e0

←→
(

1√
3

(σx + σy + σz)

)2

= 1

(47)

And e4 is perpendicular to all other unit vectors:

cosα14 = e1 · e4 = e2 · e4 = e3 · e4 =
1

2
(e1e4 + e4e1)

=
1

2
√

3
i (2e1 + 2e2 + 2e3) =

1√
3
iN ' 0 ←→ cosα14 = 0

(48)

⇒ α14 =
π

2
e0 = 90◦e0 (49)

Consequently the products of e4 with the other unit vectors are:

e14 := e1e4 =
1√
3
i(e1 + 2e3) =

1√
3

 i 2i 0
2i 0 i
0 i 2i

 = 	 e4e1

←→ 1√
6

(−σxσy + 2σyσz − σzσx)

(50)

e41 := e4e1 =
1√
3
i(e1 + 2e2) =

1√
3

 i 0 2i
0 2i i
2i i 0

 = 	 e1e4

←→ 1√
6

(σxσy − 2σyσz + σzσx)

(51)

e24 := e2e4 =
1√
3
i(e2 + 2e1) =

1√
3

 2i 0 i
0 i 2i
i 2i 0

 = 	 e4e2

←→ 1√
6

(−σxσy − σyσz + 2σzσx)

(52)

e42 := e4e2 =
1√
3
i(e2 + 2e3) =

1√
3

 0 2i i
2i i 0
i 0 2i

 = 	 e2e4

←→ 1√
6

(σxσy + σyσz − 2σzσx)

(53)
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e34 := e3e4 =
1√
3
i(e3 + 2e2) =

1√
3

 0 i 2i
i 2i 0
2i 0 i

 = 	 e4e3

←→ 1√
6

(2σxσy − σyσz − σzσx)

(54)

e43 := e4e3 =
1√
3
i(e3 + 2e1) =

1√
3

 2i i 0
i 0 2i
0 2i i

 = 	 e3e4

←→ 1√
6

(−2σxσy + σyσz + σzσx)

(55)

Reflecting the unit vectors e1, e2, e3 or e4 at each other then results in:

e1e1e1 = e1 e2e1e2 = e3 e3e1e3 = e2 e4e1e4 = e2 + e3 (56)

e1e2e1 = e3 e2e2e2 = e2 e3e2e3 = e1 e4e2e4 = e3 + e1 (57)

e1e3e1 = e2 e2e3e2 = e1 e3e3e3 = e3 e4e3e4 = e1 + e2 (58)

e1e4e1 = 	e4 e2e4e2 = 	e4 e3e4e3 = 	e4 e4e4e4 = e4 (59)

10 Pauli Matrices

In a last step to reach a full identification of Pauli matrices with (3 x 3)-matrices explicit formulae
for them can be found using eq. (14), (15), (16), and (44):

ex =
1

3

(√
2(e1 + 2e3) +

√
3e4

)
←→ σx (60)

ey =
1

3

(√
2(e2 + 2e1) +

√
3e4

)
←→ σy (61)

ez =
1

3

(√
2(e3 + 2e2) +

√
3e4

)
←→ σz (62)

Reflections of these (3 x 3) Pauli vectors ex, ey, and ez at unit vector e1 then are:

e1exe1 =
1

3

(√
2(e1 + 2e2) +	

√
3e4

)
= 	ex ←→ −σx (63)

e1eye1 =
1

3

(√
2(e3 + 2e1) +	

√
3e4

)
= 	ez ←→ −σz (64)

e1eze1 =
1

3

(√
2(e2 + 2e3) +	

√
3e4

)
= 	ey ←→ −σy (65)

or

	e1exe1 =
1

3

(√
2(e2 + e3 + 2e1 + 2e3) +

√
3e4

)
(66)

' 1

3

(√
2(e1 + 2e3) +

√
3e4

)
= ex ←→ σx (67)

	e1eye1 =
1

3

(√
2(e1 + e2 + 2e2 + 2e3) +

√
3e4

)
(68)

' 1

3

(√
2(e3 + 2e2) +

√
3e4

)
= ez ←→ σz (69)

	e1eze1 =
1

3

(√
2(e1 + e3 + 2e1 + 2e2) +

√
3e4

)
(70)

' 1

3

(√
2(e2 + 2e1) +

√
3e4

)
= ey ←→ σy (71)
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Now we can construct a (3 x 3) matrix expression which is equivalent to eq. (11). A reflection
of vector

r = xex + yey + zez ←→ xσx + yσy + zσz (72)

at plane E1 = ie1 is given by

r′ = ie1(xex + yey + zez)ie1

= 	x e1exe1 +	y e1eye1 +	z e1eze1
= x ex + z ey + y ez ←→ xσx + zσy + yσz

(73)

and exchangs indeed the y- and z-coordinates. This and similar equations for reflections at plane E2

and E3 show the inherent linkage between a geometric algebra of (3 x 3) matrices and permutation
symmetry S3. And as S3 seems to describe important features of flavour symmetry I hope that
this will indeed help us to understand quarks and neutrions one day in a geometrically convincing
manner.

And again: we are able do everything in three-dimensional Euclidean space using (3 x 3)
matrices of geometric algebra of quarks what we are able to do with (2 x 2) Pauli matrices in
conventional geometric algebra. It is no mathematical question, which system we use, it is a
didactical one.

11 Interlude

This AGACSE paper has been reviewed by two reviewers whom I wish to thank for their very
constructive and helpful remarks. But there are two comments I do not agree with, and I think
this should be discussed openly.

First of all one of the reviewers wrote: ”Please avoid the use of words like crime, ugly and
ugliness in a scientific paper.” I want to clarify why I didn’t follow this proposition. As I am
a physics teacher and a physics education researcher my daily work is to analyse the process of
physics and mathematics learning. Categories like ’beauty’ or ’ugliness’ consciously and uncon-
sciously influence learning processes [19]. Not only students but we all evaluate ideas and concepts
according to such categories – even if we do not speak about them.

But not to speak about them does not mean that theses categories are not there. Scientific
research is learning too: We learn something new about nature, and we do that on the basis of
our preconceptions. These preconceptions about whether an idea in physics or mathematics is
beautiful or ugly are important features of our understanding of a subject. The more we learn
about a subject the more we care about its inherent beauty or bother about its inherent lack of
beauty.

This care about beauty even is a sign of professionality, and Dirac once explained: ”With
increasing knowledge of a subject, when one has a great deal of support to work from, one can
go over more and more towards the mathematical procedure. One then has as one’s underlying
motivation the striving for mathematical beauty. Theoretical physicists accept the need for math-
ematical beauty as an act of faith. There is no compelling reason for it, but it has proved a very
profitable objective in the past” [3, p. 21]. Therefore the statement that the equation 1 0 0

0 0 1
0 1 0

 a c b
c b a
b a c

 1 0 0
0 0 1
0 1 0

 =

 a b c
b c a
c a b

 (74)

is much more beautiful than equation (5) is important for me. And it directly adresses the main
point of this paper as another comment of the reviewers shows.
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This comment was: ”Note that the (3 x 3) matrices ’describing’ quarks are the 8 infinitesimal
generators of SU(3). One representation are the Gell-Mann matrices. They act on columns of 3
spinors, the spinors represent quarks.” This describes the standard procedure given in standard
physics books like [4, p. 51/52].

To find a unified geometric algebra picture of quarks it might be helpful to use a representation
of space by (3 x 3) matrices instead of (2 x 2) Pauli matrices. But in addition to that it seems
inevitable to get rid of these columns of spinors used today (which are in my eyes as ugly as eq.
(5)) and to construct (3 x 3) matrices of spinors similar to the second matrix of (73).

There exist more ideas how to construct a geometric algebra picture of quarks in the literature.
For example Hestenes [7], Schmeikal [24], [25] or Keller [15, chap. 4.6] present some of these. But
it seems that all these ideas go into more or less different directions and we are still in need of a
really unified geometric algebra picture of quarks.

12 La Rochelle Poster Session

The AGACSE conference 2012 at the University of La Rochelle was an excellent scientific event.
It was very well organized and a great success. But at the same time it was a depressing and dis-
couraging experience for me: I had a message, and nobody seemed to understand it. The message
was: If we use negative numbers or minus signs, we will not work in a coordinate independent
way. There is a geometric meaning encoded in minus signs which affects and biases mathematical
structures.

This is of course strong stuff. One of the main criteria Hestenes identified for a geometric design
of a unified mathematical language for physics is indeed working with ”coordinate-free methods
to formulate and solve basic equations of physics” [9, p. 106]. Thus working and thinking without
reference to preferred or priviledged coordinates is (or at least should be) a key advantage of
geometric algebra.

But coordinate-free does not automatically mean coordinate independent. We can (uncon-
sciously or openly) weave coordinate-related structures into a mathematical language written in
a coordinate-free way. This happens when we are using minus signs and negative numbers.

If minus signs are used in geometric algebra, coordinate systems with a reflexion symmetry or
a symmetry of π are automatically preferred, as other coordinate systems with oblique axes will
look artifical and facticious. Thus the presence of minus signs in formulae is an indication that a
group of coordinates (especially rectangular coordinates) is favoured and other possible groups of
coordinates are severly disadvantaged in this mathematical language.

I told this message and got nothing but sort of silence and disbelief. Therefore I go on defending
my position by discussing a different way of wedge product construction which will be presented
in the following.

13 Wedge Products of S3 Permutation Matrices

The canoncial desomposition of the geometric product (1) into standard dot product (34) and
standard wedge product (40) is found by adding the nihilation matrix ba + 	ba = baN ' O or
zero ba− ba = 0 to the geometric product ab.

ab =
1

2
(ab+ ba+ ab+	ba) ←→ ab =

1

2
(ab+ ba+ ab− ba) (75)

The obvious use of 	 = e12 + e21 in geometric algebra of quarks (left-hand side) or the minus
sign in standard geometric algebra (right-hand side of eq. (74)) for constructing the wedge product
clearly indicates that orthogonal axes are priviledged.
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And this results in the well-known phase shift of π/2 between the magnitude of dot and wedge
product (see figure 4). This diagram shows the canonical decomposition of the geometric product
of the unit vector e1 with a second unit vector r = e1 cosα+ 1√

3
(e1 + 2e2) sinα:

e1r = cosα e0 +
1√
3

sinα (e0 + 2e12) (76)

The standard dot product of this expression

e1 · r =
1

2
(e1r + re1) = cosα e0 (77)

represents a scalar and is given in red color in figure 4 while the standard wedge product

e1 ∧ r =
1

2
(e1r +	re1) =

1√
3

sinα(e0 + 2e12) (78)

represents a bivector. As 1√
3
(e0 + 2e12) is a unit area element, the following graph is shown in

figure 4 in blue color:

|e1 ∧ r| =
∣∣∣∣ 1√

3
(e0 + 2e12)

∣∣∣∣ sinα (79)

α

|e1 ∧ r|

e1 · r

π
2

π 3π
2

2π 5π
2

1−

−1−

Figure 4: Canonical decomposition of the geometric product.

Now we try to priviledge the coordinate system of S3 permutation algebra by avoiding the
canonical decomposition into two different products (1). Since	 = e12+e21 is itself a mathematical
structure made up of two elements e12 and e21 (30), an alternative decomposition into three
different products can be constructed easily in analogy to (74):

ab =
1

3
(ab+ ba+ ab+ e12ba+ ab+ e21ba) (80)

These three products are a modified dot product

a • b =
1

3
(ab+ ba) (81)

and the two new wedge products

a ∧12 b =
1

3
(ab+ e12 ba)

←→ 1

3

(
ab− 1/2 (1− σxσy − σyσz − σzσx) ba

) (82)
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a ∧21 b =
1

3
(ab+ e21 ba)

←→ 1

3

(
ab− 1/2 (1 + σxσy + σyσz + σzσx) ba

) (83)

This time the decomposition results in a phase shift of 2π/3 between the magnitudes of dot
and wedge products (see figure 5). This diagram shows the new quarkonian decomposition of the
geometric product (75) of unit vector e1 with unit vector r = e1 cosα + 1√

3
(e1 + 2e2) sinα. The

modified dot product of this expression

e1 • r =
1

3
(e1r + re1) =

2

3
cosα e0 (84)

represents a scalar and is given in red color in figure 5 while the first new wedge product

e1 ∧12 r =
1

3
(e1r + e12 re1) =

1

3
(e0 + e12)(cosα+

√
3 sinα)

= 	2

3
(e0 + e12) cos

(
α+

2π

3

)
=

2

3
e21 cos

(
α+

2π

3

) (85)

represents a parallelogram with an angle of 2π/3 = 120◦. As the magnitude of e21 is

|e21| =
√
e21 e12 = e0 (86)

the following graph is shown in figure 5 in blue color:

|e1 ∧12 r| =
∣∣∣∣23 e21

∣∣∣∣ cos

(
α+

2π

3

)
(87)

The second new wedge product

e1 ∧21 r =
1

3
(e1r + e21 re1) =

1

3
(e0 + e21)(cosα+	

√
3 sinα)

=
1

3
e12 (	 cosα+

√
3 sinα)

=
2

3
e12 cos

(
α+

4π

3

) (88)

represents again a parallelogram with an opening angle of 2π/3 = 120◦ and is shown by the
following graph in figure 5 in green color:

|e1 ∧21 r| =
∣∣∣∣23 e12

∣∣∣∣ cos

(
α+

4π

3

)
(89)

While the canonical decompostion of the geometric product results in projections on two or-
thogonal axes, this alternative decomposition is equivalent to projections on three axes at an angle
of 2π/3.

Figure 4 and standard geometric algebra surely is useful to explain the mathematics of alter-
nating current. But as figure 5 clearly indicates: Geometric algebra of S3 permuation matrices
might be useful to explain the mathematics of three-phase current, as it possesses an appropriate
inner structure which makes it easier to discuss problems with three constituents. This inner
mathematical structure becomes more apparent when a three-sided coin is thrown (see following
section) or quarks are modelled (see sections 15 & 17).
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α

e1 • r

|e1 ∧12 r|
|e1 ∧21 r|

π
2

π 3π
2

2π 5π
2

2
3

− 2
3

Figure 5: Alternative decomposition of the geometric product.

14 Throwing Quarkonian Coins

If we throw a two-sided coin n times, the probabilities for getting the n + 1 possible different
results will be represented by binomial coefficients:

p(n,k) =
1

2n

(
n

k

)
(90)

Theses coefficients are the coefficients of the Taylor expansion of an ordinary scalar binom

(e0 + x e0)n ←→ (1 + x)n (91)

and can be found in the three Pascal triangles. When we have to deal with two opposing elements
in physics, this makes sense: ”There are positive and there are negative electric charges, there
are magnetic north and there are magnetic south poles, there is attraction and there is repulsion.
There is no third form of electric charge, there is no third form of a magnetic pole, and there
is no third form of force which is the opposite of attraction and at the same time the opposite
of repulsion, too. (...) But sometimes this strategy of choosing only two basic elements fails
in physics. Obviously baryons like neutrons and protons can be described in a mathematically
appropriate way only, if we use three distinct and somehow opposing basic elements. There are
three quarks, two are not enough,” I explained in [13, p. 2/3].

In these situations where we have to deal with three ’opposing’ elements, we need the Taylor
expansion of an ordinary scalar trinom

(e0 + x e0 + x2 e0)n ←→ (1 + x+ x2)n (92)

to get the probabilities for the possible differents results which are represented by Eulerian trino-
mial coefficients:

p?(n,k) =
1

3n

(
n

k

)
2

(93)

We have to throw a three-sided coin n times, and these coefficients can be found in the three
trinomial triangles [13, fig. 1]. But does nature really use three-sided coins to construct these
results? A second option would be to throw instead a two-sided quarkonian coin 2n times. Then
the three trinomial triangles are constructed with the quarkonian geometric algebra binom [13,
eq. (40)]

(e1 +	x e2)2n ←→ 1

2n
(σy − σz + x(σz − σx))

2n
(94)

The coefficients of the Taylor expansion of this quarkonian binom (93) can be arranged as the
three quarkonian trinomial triangles. Geometric algebra of quarks thus transfers (or translates)
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trinomial mathematical structures into binomial ones. The positive quarkonian trinomial triangle
is shown in figure 6. For a complete picture of all three quarkonian trinomial triangles please look
at [13, fig. 4].

e0

e1 	 e2
e0 e0 e0

e1 e1 +	e2 e1 +	e2 	 e2
e0 2e0 3e0 2e0 e0

e1 2e1 +	e2 3e1 +	2e2 2e1 +	3e2 e1 +	2e2 	 e2
e0 3e0 6e0 7e0 6e0 3e0 e0

Figure 6: The positive quarkonian trinomial triangle.

15 Fundamental Building Blocks of Quarks

We do not live in two- or three-dimensional space. We live in four-dimensional spacetime. Ev-
eryday experience tells us that this spacetime possesses three spacelike directions. And everyday
experience tells us that there is one timelike direction. All theses directions can be represented by
Dirac matrices in geometric algebra.

To construct Dirac-like matrices we will return to the ideas of [11] and eschew orthogonal
unit vectors e4 or 	e4. This makes sense if we consider quarks as objects (or entities) with no
orthogonal structural composition, but with a totally 2π/3 triangularial structure. In the spirit
of [10] we are then able to construct Dirac-like matrices with the help of the Zehfuss-Kronecker
product or direct product using only unit vectors of a plane. The direct products of base scalar,
the two base vectors, and the base bivector of a plane automatically yield the geometric base
entities of four-dimensional spacetimes (see discussion in [10]).

Let’s start with two orthogonal Pauli-like (3 x 3) matrices which represent two space-like base
vectors of the e1e2-plane:

σx = e1 (95)

σy =
1√
3

(e1 + 2e2) (96)

(9 x 9) Dirac-like matrices which can be interpreted as base vectors of a four-dimensional
spacetime with one time direction and three space directions can be found with the help of the
Zehfuss-Kronecker product in analogy to [10, p. 9, eq. 35 to 38] by:

γx = e0 ⊗ σx = e0 ⊗ e1 (97)

γy = e0 ⊗ σy =
1√
3
e0 ⊗ (e1 + 2e2) (98)

γz = (σxσy)⊗ (σxσy) =
1

3
(e0 + 2e12)⊗ (e0 + 2e12) (99)

γt = σx ⊗ (σxσy) =
1√
3
e1 ⊗ (e0 + 2e12) (100)
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Using the identies [14, sec. V]

1 = 	⊗	 = e0 ⊗ e0 (101)

(−1) = 1̄ = 	⊗ e0 = e0 ⊗	 (102)

it can be seen that these base vectors square to

γ2x = γ2y = γ2z = e0 ⊗ e0 (103)

γ2t = 	⊗ e0 (104)

Space-like base vectors thus square to the (9 x 9) identity matrix (100) of plus one while the
time-like base vector squares to the (9 x 9) matrix of minus one (101), as it is not possible to
construct the inverse signature of (+,−,−,−) with the Zehfuss-Kronecker product of two space-
like base vectors [10, p. 9]. And of course all base vectors (96) to (99) anti-commute:

γiγj = (e0 ⊗	) γjγi = (	⊗ e0) γjγi (105)

Thus the following conclusion can be drawn: The Zehfuss-Kronecker products or direct prod-
ucts

e0,1 = e0 ⊗ e1 e0,2 = e0 ⊗ e2 e0,3 = e0 ⊗ e3
e1,0 = e1 ⊗ e0 e2,0 = e2 ⊗ e0 e3,0 = e3 ⊗ e0

(106)

form fundamental building blocks of our world as the Dirac-like (9 x 9) matrices (96) to (99)
representing four-dimensional base vectors are nothing else than linear combinations of several of
these fundamental building blocks or of products (117) of these fundamental building blocks:

γx = e0,1 (107)

γy =
1√
3

(e0,1 + 2e0,2) (108)

γz =
1

3
(e0,0 + 2e0,1e0,2 + 2e1,0e2,0 + 4e1,1e2,2) (109)

γt =
1√
3

(e1,0 + 2e1,1e0,2) (110)

Every four-dimensional spacetime vector r can then be written as usual as

r = ctγt + xγx + yγy + zγz (111)

And the other way round we are able to identify

e0,1 = γx (112)

e0,2 =
1

2
(1̄γx +

√
3γy) (113)

e0,3 =
1

2
(1̄γx + 1̄

√
3γy) (114)

e1,0 = 1̄γxγyγt (115)

e2,0 =
1

2
(γxγyγt +

√
3γzγt) (116)

e3,0 =
1

2
(γxγyγt + 1̄

√
3γzγt) (117)
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And part of the same four-dimensional world then are the following building blocks which are
constructed by simple (9 x 9) matrix multiplications

ei,j = ei,0e0,j = e0,jei,0 (118)

using the fundamental building blocks ei,0 and e0,j of eq. (105):

e1,1 = e1 ⊗ e1 e1,2 = e1 ⊗ e2 e1,3 = e1 ⊗ e3
e2,1 = e2 ⊗ e1 e2,2 = e2 ⊗ e2 e2,3 = e2 ⊗ e3
e3,1 = e3 ⊗ e1 e3,2 = e3 ⊗ e2 e3,3 = e3 ⊗ e3

(119)

There is nothing rectangular any more in these mathematical entities (118). Consequently
these building blocks are the building blocks of quarks as they show quarkonian symmetry (see
section 17). They are four-dimensional spacetime entities and obviously no entities of higher
dimensional worlds.

The philosophy behind this is the philosophy of Gull, Lasenby and Doran, who once wrote as
second last sentence of a paper: ”We have no objections to the use of higher dimensions as such;
it just seems to us to be unnecessary at present, when the algebra of the space that we do observe
contains so many wonders that are not yet generally appreciated” [5].

Furthermore this philosophy is an extended version of the philosophy of Snygg, when he de-
scribes the history of the electron and its algebra with the words: ”It was necessary to attribute
to the electron a spin of 1⁄2 and a periodicity of 4π. In recent years, it has become more widely
recognized that objects larger than electrons also have 4π periodicities” [26, p. 11]. In the same
way the Dirac belt trick demonstrates that extended macroscopic objects ”in some sense loosely
attached to its surroundings” [26, p. 12] show the 4π symmetry of electrons, I am convinced
another belt-like trick will show us quark symmetry for objects larger than quarks one day. Find-
ing such a trick for extended objects should be only a matter of time revealing the geometrical
simplicity of quark algebra.

16 Quarkonian Wedge Products

The (9 x 9) direct nihilation product N ⊗N can be decomposed into

N ⊗N = e0 ⊗ e0 + e12 ⊗ e0 + e21 ⊗ e0 + e0 ⊗ e12 + e0 ⊗ e21
+ e12 ⊗ e12 + e12 ⊗ e21 + e21 ⊗ e12 + e21 ⊗ e21

= 1 + e12,0 + e21,0 + e0,12 + e0,21 + e12,12 + e12,21

+ e21,12 + e21,21

(120)

The decomposition (119) can be used for constructing a quarkonian decomposition of the (9 x
9) geometric product of two vectors by adding 1⁄9 ba(N ⊗N) to the geometric product ab.

ab =
1

9
(9ab+ ba+ e12,0ba+ e21,0ba+ e0,12ba+ e0,21ba

+ e12,12ba+ e12,21ba+ e21,12ba+ e21,21ba)
(121)

This produces a modified dot product

a • b =
1

9
(ab+ ba) (122)
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and eight new wedge products

a ∧12,0 b =
1

9
(ab+ e12,0 ba) a ∧21,0 b =

1

9
(ab+ e21,0 ba) (123)

a ∧0,12 b =
1

9
(ab+ e0,12 ba) a ∧0,21 b =

1

9
(ab+ e0,21 ba) (124)

a ∧12,12 b =
1

9
(ab+ e12,12, ba) a ∧12,21 b =

1

9
(ab+ e12,21 ba) (125)

a ∧21,12 b =
1

9
(ab+ e21,12 ba) a ∧21,21 b =

1

9
(ab+ e21,21 ba) (126)

These eight wedge products should describe quarkonian symmetry much better than the or-
thogonally constructed standard wedge product of eq. (40).

17 Greetings from Vienna

Ten days after the AGACSE conference in La Rochelle I took part at the ICNPAA 2012 congress
in Vienna which included an organised Clifford algebra session. Directly after my talk (about
five-dimensional cosmological special relativity) Suzuki gave a very impressive account about the
construction of quarks with the help of nonion algebra and Galois extensions [18].

And there are good reasons to relate the (3 x 3) nonions of [18, p. 1010, eq. 22]

R1 =

 1 0 0
0 1 0
0 0 1

 Q̄3 =

 0 0 1
1 0 0
0 1 0

 Q3 =

 0 1 0
0 0 1
1 0 0

 (127)

R2 =

 1 0 0
0 j 0
0 0 j2

 Q̄2 =

 0 0 1
j 0 0
0 j2 0

 Q2 =

 0 j2 0
0 0 j
1 0 0

 (128)

R3 =

 1 0 0
0 j2 0
0 0 j

 Q̄1 =

 0 0 1
j2 0 0
0 j 0

 Q1 =

 0 j 0
0 0 j2

1 0 0

 (129)

Kerner [16], [17], Larynowicz, Nouno, Nagayama and Suzuki [18] use to model quarks with the
basic (9 x 9) building blocks of quarks given in eq. (111). This can be done by identifying

j =̂ e12 (130)

j2 =̂ e212 = e21 (131)

1 = j3 =̂ e312 = e0 (132)

and hence according to [16, slides 21, 42, 83], [17, p. 154 & 159]

j + j2 = −1 =̂ 	 or j + j2 + 1 = 0 =̂N (133)

by rearranging these matrices.
One central idea of the AGACSE poster [12] and my paper [11] is to strictly base this alternative

geometric algebra approach on the three S3 permutation algebra vectors e1, e2, and e3. These
vectors are the starting point, not the geometric products e1e2, e2e1, or e21 = e0 which only
constitute a subgroup of S3 permuation algebra. In the spirit of this conceptual foundation it is
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reasonable to start with vector-like matrices (133) to (135) which structurally resemble e1, e2, and
e3.

q1,1 =

 1 0 0
0 0 1
0 1 0

 q1,2 =

 1 0 0
0 0 j
0 j2 0

 q1,3 =

 1 0 0
0 0 j2

0 j 0

 (134)

q2,1 =

 0 0 j
0 1 0
j2 0 0

 q2,2 =

 0 0 1
0 1 0
1 0 0

 q2,3 =

 0 0 j2

0 1 0
j 0 0

 (135)

q3,1 =

 0 j 0
j2 0 0
0 0 1

 q3,2 =

 0 j2 0
j 0 0
0 0 1

 q3,3 =

 0 1 0
1 0 0
0 0 1

 (136)

Please note: These matrices are only seemingly vector-like matrices. Even though they square
to the base scalar e0 ⊗ e0, they do not represent vectors.

The nonion matrices of eq. (126), (127), and (128) can now be expressed as the following
matrix products:

R1 = q1,1q1,1 = q1,2q1,2 = q1,3q1,3 = q2,1q2,1 = q2,2q2,2

= q2,3q2,3 = q3,1q3,1 = q3,2q3,2 = q3,3q3,3
(137)

R2 = q1,1q1,3 = q1,2q1,1 = q1,3q1,2 = j q2,1q2,3 = j q2,2q2,1

= j q2,3q2,2 = j2q3,1q3,3 = j2q3,2q3,1 = j2q3,3q3,2
(138)

R3 = q1,1q1,2 = q1,2q1,3 = q1,3q1,1 = j2q2,1q2,2 = j2q2,2q2,3

= j2q2,3q2,1 = j q3,1q3,2 = j q3,2q3,3 = j q3,3q3,1
(139)

Q1 = j2q1,1q3,2 = j q1,2q3,3 = q1,3q3,1 = j q2,1q1,2 = q2,2q1,3

= j2q2,3q1,1 = q3,1q2,2 = j2q3,2q2,3 = j q3,3q2,1
(140)

Q2 = j q1,1q3,1 = q1,2q3,2 = j2q1,3q3,3 = j q2,1q1,1 = q2,2q1,2

= j2q2,3q1,3 = j q3,1q2,1 = q3,2q2,2 = j2q3,3q2,3
(141)

Q3 = q1,1q3,3 = j2q1,2q3,1 = j q1,3q3,2 = j q2,1q1,3 = q2,2q1,1

= j2q2,3q1,2 = j2q3,1q2,3 = j q3,2q2,1 = q3,3q2,2
(142)

Q̄1 = j q1,1q2,3 = j2q1,2q2,1 = q1,3q2,2 = j2q2,1q3,3 = q2,2q3,1

= j q2,3q3,2 = q3,1q1,3 = j q3,2q1,1 = j2q3,3q1,2
(143)

Q̄2 = j2q1,1q2,1 = q1,2q2,2 = j q1,3q2,3 = j2q2,1q3,1 = q2,2q3,2

= j q2,3q3,3 = j2q3,1q1,1 = q3,2q1,2 = j q3,3q1,3
(144)

Q̄3 = q1,1q2,2 = j q1,2q2,3 = j2q1,3q2,1 = j2q2,1q3,2 = q2,2q3,3

= j q2,3q3,1 = j q3,1q1,2 = j2q3,2q1,3 = q3,3q1,1
(145)

Thus Kerner’s and Suzuki’s nonions (126), (127), (128) are constructed by using the more basic
building blocks (133), (134), (135).

Another central idea of this paper is that nasty and ugly transformations should be avoided
(see section 4). In the spirit of this perhaps naive principle one-sided matrix multiplications are
ignored and rejected as legitimate transformations. Only beautiful transformations like eq. (73)
with right-hand and left-hand matrix multiplications are considered and accepted as genuine and
truly geometric algebraic transformations.
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Following this principle the basic building blocks of quarks ei,j with i, j = 1, 2, 3 (neglecting
direct products of e4) and the basic building blocks of nonions qi,j can be considered as isomorphic
as obey the same reflection laws. The basic building blocks of quarks transform as

ei,j ek,l ei,j = eiki,jlj ek,l ei,j ek,l = eiki,jlj (146)

ek,l eiki,jlj ek,l = ei,j eiki,jlj ek,l eiki,jlj = ei,j (147)

eiki,jlj ei,j eiki,jlj = ek,l ei,j eiki,jlj ei,j = ek,l (148)

The basic building blocks of nonions transform in a totally identical way:

qi,j ek,l qi,j = qiki,jlj qk,l qi,j qk,l = qiki,jlj (149)

qk,l qiki,jlj qk,l = qi,j qiki,jlj qk,l qiki,jlj = ei,j (150)

qiki,jlj qi,j qiki,jlj = qk,l qi,j qiki,jlj qi,j = qk,l (151)

Thus both sets of basic building blocks ei,j and qi,j possess the same mathematical structure
concerning the beautiful parts of mathematics. Consequently it should be possible to describe the
same phenomena of physics – provided the personal categories of mathematical beauty mentioned
in this paper coincide (at least partly) with the formative principles of nature. It is my innermost
conviction that this is indeed the case.
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