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Abstract : In this article we proved so-called strong reflection principles corresponding to

formal theories Th which has omega-models. A posible generalization of Lob’s theorem
is considered.Main results are:

(i) �Con�ZFC � �Mst
ZFC�,

(ii) �Con�ZFC2�, (iii) let k be an inaccessible cardinal then �Con�ZFC � ���.
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I.Introduction.

1.1.Main results.
Let us remind that accordingly to naive set theory, any definable collection is a set. Let

R be the set of all sets that are not members of themselves. If R qualifies as a member
of itself, it would contradict its own definition as a set containing all sets that are not
members of themselves. On the other hand, if such a set is not a member of itself, it
would qualify as a member of itself by the same definition. This contradiction is Russell’s
paradox. In 1908, two ways of avoiding the paradox were proposed, Russell’s type
theory and Zermelo set theory, the first constructed axiomatic set theory. Zermelo’s
axioms went well beyond Frege’s axioms of extensionality and unlimited set abstraction,
and evolved into the now-canonical Zermelo–Fraenkel set theory ZFC. "But how do we
know that ZFC is a consistent theory, free of contradictions? The short answer is that we
don’t; it is a matter of faith (or of skepticism)"— E.Nelson wrote in his paper [1].
However, it is deemed unlikely that even ZFC2 which is significantly stronger than ZFC
harbors an unsuspected contradiction; it is widely believed that if ZFC and ZFC2 were
inconsistent, that fact would have been uncovered by now. This much is certain —ZFC
and ZFC2 is immune to the classic paradoxes of naive set theory: Russell’s paradox, the
Burali-Forti paradox, and Cantor’s paradox.

Remark 1 .1.1.Note that in this paper we view (i) the first order set theory ZFC under
the

canonical first order semantics (ii) the second order set theory ZFC2 under the Henkin
semantics [2],[3] and (iii) the second order set theory ZFC2under the full second-order
semantics [4],[5],[6].
Remark 1 .1.2.Second-order logic essantially differs from the usual first-order

predicate
calculus in that it has variables and quantifiers not only for individuals but also for

subsets
of the universe and variables for n-ary relations as well [7],[8].The deductive calculus
DED2 of second order logic is based on rules and axioms which guarantee that the
quantifiers range at least over definable subsets [7]. As to the semantics, there
are two tipes of models: (i) Suppose U is an ordinary first-order structure and
S is a set of subsets of the domain A of U. The main idea is that the set-variables
range over S, i.e. �U, S� � �X��X� � �S�S � S���U, S� � ��S��.
We call �U, S� a Henkin model, if �U, S� satisfies the axioms of DED2 and
truth in �U, S� is preserved by the rules of DED2. We call this semantics
of second-order logic the Henkin semantics and second-order logic with the
Henkin semantics the Henkin second-order logic. There is a special class of
Henkin models, namely those �U, S� where S is the set of all subsets of A.
We call these full models. We call this semantics of second-order logic the full
semantics and second-order logic with the full semantics the full second-order logic.
Remark 1 .1.3.We emphasize that the following facts are the main features of
second-order logic:
1.The Completeness Theorem : A sentence is provable in DED2 if and only if it holds



in
all Henkin models [7].

2.The Löwenheim -Skolem Theorem : A sentence with an infinite Henkin model has a
countable Henkin model.

3.The Compactness Theorem : A set of sentences, every finite subset of
which has a Henkin model, has itself a Henkin model.
4.The Incompleteness Theorem : Neither DED2 nor any other effectively
given deductive calculus is complete for full models, that is, there are
always sentences which are true in all full models but which are unprovable.
5.Failure of the Compactness Theorem for full models.
6.Failure of the Löwenheim-Skolem Theorem for full models.
7.There is a finite second-order axiom system �2 such that the semiring
� of natural numbers is the only full model (up to isomorphism) of �2.
8. There is a finite second-order axiom system RCF2 such that the field
� of real numbers is the only (up to isomorphism) full model of RCF2.
Remark 1 .1.4.For let second-order ZFC be, as usual, the theory that results obtained
from ZFC when the axiom schema of replacement is replaced by its second-order
universal closure,i.e.

�X�Func�X� � �u���r�r � � � �s�s � u � �s, r� � X���, �1. 1. 1�

where X is a second-order variable, and where Func�X� abbreviates " X is a functional
relation",see [7].
Thus we interpret the wff’s of ZFC2 language with the full second-order semantics as

required in [4],[5],[6],[7].
Designation 1 .1.1. We will denote (i) by ZFC2

Hs set theory ZFC2 with the Henkin
semantics, (ii) by ZFC2

fss set theory ZFC2 with the full second-order semantics,(iii) by

ZFC2
Hs set theory ZFC2

Hs � �Mst
ZFC2

Hs

and (iv) by ZFCst set theory ZFC � �Mst
ZFC, where Mst

Th

is a standard model of the theory Th.
Remark 1 .1.3.There is no completeness theorem for second-order logic with the full

second-order semantics. Nor do the axioms of ZFC2
fss imply a reflection principle which

ensures that if a sentence Z of second-order set theory is true, then it is true in some
model MZFC2

fss
of ZFC2

fss [5]. Let Z be the conjunction of all the axioms of ZFC2
fss. We

assume now that: Z is true,i.e. Con ZFC2
fss . It is known that the existence of a model

for Z requires the existence of strongly inaccessible cardinals, i.e. under ZFC it can be
shown that κ is a strongly inaccessible if and only if �Hκ,�� is a model of ZFC2

fss. Thus
�Con�ZFC2

fss� � �Con�ZFC � ����. In this paper we prove that:

(i) ZFCst � ZFC � �Mst
ZFC (ii) ZFC2

Hs � ZFC2
Hs � �Mst

ZFC2
Hs

and (iii) ZFC2
fss is inconsistent,

where Mst
Th is a standard model of the theory Th.

Axiom �MZFC. [8]. There is a set MZFC and a binary relation � � MZFC � MZFC which
makes MZFC a model for ZFC.
Remark 1 .1.3.(i) We emphasize that it is well known that axiom �MZFC a single
statement in ZFC see [7],Ch.II,section 7.We denote this statement throught all this

paper
by symbol Con�ZFC; MZFC�.The completness theorem says that �MZFC � Con�ZFC�.
(ii) Obviously there exists a single statement in ZFC2

Hs such that
�MZFC2

Hs
� Con�ZFC2

Hs�.



We denote this statement throught all this paper by symbol Con ZFC2
Hs; MZFC2

Hs
and

there
exists a single statement �MZ2

Hs
in Z2

Hs. We denote this statement throught all this
paper by

symbol Con Z2
Hs; MZ2

Hs
.

Axiom �Mst
ZFC. [8].There is a set Mst

ZFC such that if R is
	�x, y�|x � y � x � Mst

ZFC � y � Mst
ZFC


then Mst
ZFC is a model for ZFC under the relation R.

Definition 1 .1.1.[8].The model Mst
ZFC is called a standard model since the relation �

used
is merely the standard �- relation.
Remark 1 .1.4.[8].Note that axiom �MZFC doesn’t imply axiom �Mst

ZFC.
Remark 1 .1.5.We remind that in Henkin semantics, each sort of second-order variable

has a particular domain of its own to range over, which may be a proper subset of all
sets or functions of that sort. Leon Henkin (1950) defined these semantics and proved
that Gödel’s completeness theorem and compactness theorem, which hold for first-order
logic, carry over to second-order logic with Henkin semantics. This is because Henkin
semantics are almost identical to many-sorted first-order semantics, where additional
sorts of variables are added to simulate the new variables of second-order logic.
Second-order logic with Henkin semantics is not more expressive than first-order logic.
Henkin semantics are commonly used in the study of second-order arithmetic.Väänänen
[6] argued that the choice between Henkin models and full models for second-order logic
is analogous to the choice between ZFC and V (V is von Neumann universe), as a basis
for set theory: "As with second-order logic, we cannot really choose whether we
axiomatize mathematics using V or ZFC. The result is the same in both cases, as ZFC is
the best attempt so far to use V as an axiomatization of mathematics."

Remark 1 .1.6.Note that in order to deduce: (i) ~Con�ZFC2
Hs� from Con�ZFC2

Hs�,
(ii) ~Con�ZFC� from Con�ZFC�,by using Gödel encoding, one needs something more

than

the consistency of ZFC2
Hs, e.g., that ZFC2

Hs has an omega-model M�
ZFC2

Hs

or an standard

model Mst
ZFC2

Hs

i.e., a model in which the integers are the standard integers.To put it
another way, why should we believe a statement just because there’s a ZFC2

Hs-proof of
it? It’s clear that if ZFC2

Hs is inconsistent, then we won’t believe ZFC2
Hs-proofs. What’s

slightly more subtle is that the mere consistency of ZFC2 isn’t quite enough to get us to
believe arithmetical theorems of ZFC2

Hs; we must also believe that these arithmetical
theorems are asserting something about the standard naturals. It is "conceivable" that

ZFC2
Hs might be consistent but that the only nonstandard models MNst

ZFC2
Hs

it has are those
in which the integers are nonstandard, in which case we might not "believe" an
arithmetical statement such as "ZFC2

Hs is inconsistent" even if there is a ZFC2
Hs-proof of it.

Remark 1 .1.7. However assumption �Mst
ZFC2

Hs

is not necessary. Note that in any

nonstandard model MNst
Z2

Hs

of the second-order arithmetic Z2
Hs the terms 0,

S0 � 1, SS0 � 2,� comprise the initial segment isomorphic to Mst
Z2

Hs

� MNst
Z2

Hs

. This initial

segment is called the standard cut of the MNst
Z2

Hs

. The order type of any nonstandard

model of MNst
Z2

Hs

is equal to � � A � � for some linear order A [9]. Thus one can to choose



Gödel encoding inside Mst
Z2

Hs

.
Remark 1 .1.8. However there is no any problem as mentioned above in second order

set theory ZFC2 with the full second-order semantics becouse corresponding second
order arithmetic Z2

fss is categorical.
Remark 1 .1.9. Note if we view second-order arithmetic Z2 as a theory in first-order

predicate calculus. Thus a model MZ2 of the language of second-order arithmetic Z2

consists of a set M (which forms the range of individual variables) together with a
constant 0 (an element of M), a function S from M to M, two binary operations � and � on
M, a binary relation � on M, and a collection D of subsets of M, which is the range of the
set variables. When D is the full powerset of M, the model MZ2 is called a full model. The
use of full second-order semantics is equivalent to limiting the models of second-order
arithmetic to the full models. In fact, the axioms of second-order arithmetic have only
one full model. This follows from the fact that the axioms of Peano arithmetic with the
second-order induction axiom have only one model under second-order semantics, i.e.
Z2, with the full semantics, is categorical by Dedekind’s argument, so has only one
model up to isomorphism. When M is the usual set of natural numbers with its usual
operations, MZ2 is called an ω-model. In this case we may identify the model with D, its
collection of sets of naturals, because this set is enough to completely determine an

ω-model. The unique full omega-model M�
Z2

fss

, which is the usual set of natural numbers
with its usual structure and all its subsets, is called the intended or standard model of
second-order arithmetic.

2.Derivation of the inconsistent definable set in set theory
ZFC2

Hs and in set theory ZFCst.

2.1.Derivation of the inconsistent definable set in set
theory ZFC2

Hs.
Designation 2 .1.1.Let �X

Hs be the collection of the all 1-place open wff of the set
theory

ZFC2
Hs.

Definition 2 .1.1.Let �1�X�,�2�X� be 1-place open wff’s of the set theory ZFC2
Hs.

(i) We define now the equivalence relation �� 	X �� � �X
Hs � �X

Hs by

�1�X� 	X �2�X� � �X��1�X� � �2�X�� �2. 1. 1�

(ii) A subset �X
Hs of �X

Hs such that �1�X� 	X �2�X� holds for all �1�X� and �2�X� in �X
Hs,

and never for �1�X� in �X
Hs and �2�X� outside �X

Hs, is called an equivalence class of
�X

Hs by 	X .
(iii)The collection of all possible equivalence classes of �X

Hs by ~X, denoted �X
Hs/ 	X

�X
Hs/ 	X � 	���X��Hs|��X� � �X

Hs
, �2. 1. 2�

is the quotient set of �X
Hs by 	X .

(iv) For any ��X� � �X
Hs let ���X��Hs � 	��X� � �X

Hs|��X� 	 ��X�
 denote the
equivalence class to which ��X� belongs. All elements of �X

Hs equivalent to each other
are also elements of the same equivalence class.
Definition 2 .1.2.[9].Let Th be any theory in the recursive language �Th 
 �PA,where

�PA



is a language of Peano arithmetic.We say that a number-theoretic relation R�x1, . . . , xn�
of

n arguments is expressible in Th if and only if there is a wff R�x1, . . . , xn� of Th with the
free

variables x1, . . . , xn such that,for any natural numbers k1, . . . , kn, the following hold:

(i) If R�k1, . . . , kn� is true, then �Th R�k1, . . . , kn�.

(ii) If R�k1, . . . , kn� is false, then �Th �R�k1, . . . , kn�.

Designation 2 .1.2.(i) Let gZFC2
Hs�u� be a Gödel number of given an expression u of

the set theory ZFC2
Hs � ZFC2

Hs � �Mst
ZFC2

Hs

.

(ii) Let Fr2
Hs�y, v� be the relation : y is the Gödel number of a wff of the set theoryZFC2

Hs

that contains free occurrences of the variable X with Gödel number v [8]-[9].

(iii) Note that the relation Fr2
Hs�y, v� is expressible in ZFC2

Hs by a wff Fr2
Hs�y, v�

(iv) Note that for any y, v � � by definition of the relation Fr2
Hs�y, v� follows that

Fr2
Hs�y, v� � �!��X� gZFC2

Hs���X�� � y � gZFC2
Hs�X� � � , �2. 1. 3�

where ��X� is a unique wff of ZFC2
Hs which contains free occurrences of the variable X

with Gödel number v.We denote a unique wff ��X� defined by using equivalence
(1.2.3)

by symbol �y,��X�, i.e.

Fr2
Hs�y, v� � �!�y,��X� gZFC2

Hs��y,��X�� � y � gZFC2
Hs�X� � � , �2. 1. 4�

(v) Let 	2
Hs�y, v,�1� be a Gödel number of the following wff: �!X���X� � Y � X�,where

gZFC2
Hs���X�� � y, gZFC2

Hs�X� � �, gZFC2
Hs�Y� � �1.

(vi) Let PrZFC2
Hs�z� be a predicate asserting provability in ZFC2

Hs, which defined by

formula
(2.6) in section 2, see Remark 2.2 and Designation 2.3,(see also [9]-[10]).

Definition 2 .1.3. Let �X
Hs be the countable collection of the all 1-place open wff’s of

the set theoryZFC2
Hs that contains free occurrences of the variable X.

Definition 2 .1.4. Let gZFC2
Hs�X� � �.Let ��

Hs be a set of the all Gödel numbers of the

1-place open wff’s of the set theoryZFC2
Hs that contains free occurrences of the

variable X
with Gödel number v, i.e.

��
Hs � 	y � �|�y,�� � Fr2

Hs�y, v�
, �2. 1. 5�

or in the following equivalent form:

�y�y � �� y � ��
Hs � �y � �� � Fr2

Hs�y, v� . �2. 1. 6�

Remark 2 .1.1.Note that from the axiom of separation it follows directly that ��
Hs is a set

in the sense of the set theory ZFC2
Hs.

Definition 2 .1.5.(i)We define now the equivalence relation

�� 	� �� � ��
Hs � ��

Hs �2. 1. 7�

in the sense of the set theory ZFC2
Hs by

y1 	� y2 � ��X��y1,��X� � �y2,��X��� �2. 1. 8�



Note that from the axiom of separation it follows directly that the equivalence relation
�� 	� �� is a relation in the sense of the set theory ZFC2

Hs.
(ii) A subset ��

Hs of ��
Hs such that y1 	� y2 holds for all y1 and y1 in ��

Hs,and never for y1

in
��

Hs and y2 outside ��
Hs, is an equivalence class of ��

Hs.
(iii) For any y � ��

Hs let �y�Hs � 	z � ��
Hs|y 	� z
 denote the equivalence class to which y

belongs. All elements of ��
Hs equivalent to each other are also elements of the same

equivalence class.
(iv)The collection of all possible equivalence classes of ��

Hs by ~�, denoted ��
Hs/ 	�

��
Hs/ 	� � 	�y�Hs|y � ��

Hs
. �2. 1. 9�

Remark 2 .1.2. Note that from the axiom of separation it follows directly that ��
Hs/ 	� is

a
set in the sense of the set theory ZFC2

Hs.
Definition 2 .1.6.Let 
2

Hs be the countable collection of the all sets definable by 1-place
open wff of the set theory ZFC2

Hs, i.e.

�Y	Y � 
2
Hs � ���X������X��Hs � �X

Hs/ 	X � � ��!X���X� � Y � X���
. �2. 1. 10�

Definition 2 .1.7.We rewrite now (2.1.10) in the following equivalent form

�Y	Y � 
2
Hs � ���X������X��Hs � �X

�Hs/ 	X � � �Y � X��
, �2. 1. 11�

where the countable collection �X
�Hs/ 	X is defined by

���X�	���X�� � �X
�Hs/ 	X � �����X�� � �X

Hs/ 	X � � �!X��X��
 �2. 1. 12�

Definition 2 .1.8. Let �2
Hs be the countable collection of the all sets such that

�X�X � 
2
Hs��X � �2

Hs � X  X�. �2. 1. 13�

Remark 2 .1.3. Note that �2
Hs � 
2

Hs since �2
Hs is a collection definable by 1-place open

wff

��Z,
2
Hs� � �X�X � 
2

Hs��X � Z � X  X�.

From (2.1.13) one obtains

�2
Hs � �2

Hs � �2
Hs  �2

Hs. �2. 1. 14�

But (2.1.14) gives a contradiction

��2
Hs � �2

Hs� � ��2
Hs  �2

Hs�. �2. 1. 15�

However contradiction (2.1.15) it is not a contradiction inside ZFC2
Hs for the reason that

the countable collection 
2
Hs is not a set in the sense of the set theory ZFC2

Hs.

In order to obtain a contradiction inside ZFC2
Hs we introduce the following

definitions .

Definition 2 .1.9.We define now the countable set ��
�Hs/ 	� by

�y �y�Hs � ��
�Hs/ 	� � ��y�Hs � ��

Hs/ 	� � � Fr2
Hs�y, v� � ��!X�y,��X�� . �2. 1. 16�

Remark 2 .1.4. Note that from the axiom of separation it follows directly that ��
�/ is a

set in the sense of the set theory ZFC2
Hs.

Definition 2 .1.10.We define now the countable set 
2
�Hs by formula



�Y Y � 
2
�Hs � �y ��y� � ��

�Hs/ 	� � � gZFC2
Hs�X� � � � Y � X . �2. 1. 17�

Note that from the axiom schema of replacement (1.1.1) it follows directly that 
2
�Hs is

a
set in the sense of the set theory ZFC2

Hs.
Definition 2 .1.12.We define now the countable set �2

�Hs by formula

�X�X � 
2
�Hs��X � �2

�Hs � X  X�. �2. 1. 18�

Note that from the axiom schema of separation it follows directly that �2
�Hs is a set in

the
sense of the set theory ZFC2

Hs.
Remark 2 .1.5.Note that �2

�Hs � 
2
�Hs since �2

�Hs is a definable by the following formula

���Z� � �X�X � 
2
�Hs��X � Z � X  X�. �2. 1. 19�

Theorem 2 .1.1.Set theory ZFC2
Hs is inconsistent.

Proof. From (2.1.18) and Remark 2.1.5 we obtain �2
�Hs � �2

�Hs � �2
�Hs  �2

�Hs from
which immediately one obtains a contradiction ��2

�Hs � �2
�Hs� � ��2

�Hs  �2
�Hs�.

2.2.Derivation of the inconsistent definable set in set
theory ZFCst.

Designation 2 .2.1.(i) Let gZFCst�u� be a Gödel number of given an expression u of
the set theory ZFCst � ZFC � �Mst

ZFC.
(ii) Let Frst�y, v� be the relation : y is the Gödel number of a wff of the set theoryZFCst

that contains free occurrences of the variable X with Gödel number v [9].

(iii) Note that the relation Frst�y, v� is expressible in ZFCst by a wff Frst�y, v�
(iv) Note that for any y, v � � by definition of the relation Frst�y, v� follows that

Frst�y, v� � �!��X���gZFCst���X�� � y� � �gZFCst�X� � ���, �2. 2. 1�

where ��X� is a unique wff of ZFCst which contains free occurrences of the variable X
with Gödel number v.We denote a unique wff ��X� defined by using equivalence

(2.2.1)
by symbol �y,��X�, i.e.

Frst�y, v� � �!�y,��X���gZFCst��y,��X�� � y� � �gZFCst�X� � ���, �2. 2. 2�

(v) Let 	st�y, v,�1� be a Gödel number of the following wff: �!X���X� � Y � X�,where
gZFCst���X�� � y, gZFCst�X� � �, gZFCst�Y� � �1.

(vi) Let PrZFCst�z� be a predicate asserting provability in ZFCst, which defined by
formula

(2.6) in section 2, see Remark 2.2 and Designation 2.3,(see also [8]-[9]).
Definition 2 .2.1. Let �X

st be the countable collection of the all 1-place open wff’s of
the set theory ZFCst that contains free occurrences of the variable X.
Definition 2 .2.2. Let gZFCst�X� � �.Let ��

st be a set of the all Gödel numbers of the
1-place open wff’s of the set theory ZFCst that contains free occurrences of the

variable X
with Gödel number v, i.e.

��
st � 	y � �|�y,�� � Frst�y, v�
, �2. 2. 3�

or in the following equivalent form:



�y�y � �� y � ��
st � �y � �� � Frst�y, v� .

Remark 2 .2.1.Note that from the axiom of separation it follows directly that ��
st is a set

in the sense of the set theory ZFCst.
Definition 2 .2.3.(i)We define now the equivalence relation �� 	X �� � �X

st � �X
st by

�1�X� 	X �2�X� � ��X��1�X� � �2�X��� �2. 2. 4�

(ii) A subcollection �X
st of �X

st such that �1�X� 	X �2�X� holds for all �1�X� and �2�X�
in

�X
st, and never for �1�X� in �X

st and �2�X� outside �X
st, is an equivalence class of

�X
st.
(iii) For any ��X� � �X

st let ���X��st � 	��X� � �X
st|��X� 	X ��X�
 denote the

equivalence
class to which ��X� belongs. All elements of �X

st equivalent to each other are also
elements of the same equivalence class.

(iv) The collection of all possible equivalence classes of �X
st by ~X, denoted �X

st/ 	X

�X
st/ 	X � 	���X��st|��X� � �X

st
. �2. 2. 5�

Definition 2 .2.4.(i)We define now the equivalence relation �� 	� �� � ��
st � ��

st in the
sense of the set theory ZFCst by

y1 	� y2 � ��X��y1,��X� � �y2,��X��� �2. 2. 6�

Note that from the axiom of separation it follows directly that the equivalence relation
�� 	� �� is a relation in the sense of the set theory ZFCst.
(ii) A subset ��

st of ��
st such that y1 	� y2 holds for all y1 and y1 in ��

st,and never for y1 in
��

st and y2 outside ��
st, is an equivalence class of ��

st.
(iii) For any y � ��

st let �y�st � 	z � ��
st|y 	� z
 denote the equivalence class to which y

belongs. All elements of ��
st equivalent to each other are also elements of the same

equivalence class.
(iv)The collection of all possible equivalence classes of ��

st by ~�, denoted ��
st/ 	�

��
st/ 	� � 	�y�st|y � ��

st
. �2. 2. 7�

Remark 2 .2.2. Note that from the axiom of separation it follows directly that ��
st/ 	� is

a
set in the sense of the set theory ZFCst.
Definition 2 .2.5.Let 
st be the countable collection of the all sets definable by 1-place
open wff of the set theory ZFCst, i.e.

�Y	Y � 
st � ���X������X��st � �X
st/ 	X � � ��!X���X� � Y � X���
. �2. 2. 8�

Definition 2 .2.6.We rewrite now (2.2.8) in the following equivalent form

�Y	Y � 
st � ���X������X��st � �X
�st/ 	X � � �Y � X��
, �2. 2. 9�

where the countable collection �X
�st/ 	X is defined by

���X�	���X��st � �X
�st/ 	X � �����X��st � �X

st / 	X � � �!X��X��
 �2. 2. 10�

Definition 2 .2.7. Let �st be the countable collection of the all sets such that

�X�X � 
st��X � �st � X  X�. �2. 2. 11�

Remark 2 .2.3. Note that �st � 
st since �st is a collection definable by 1-place open



wff

��Z,
st� � �X�X � 
st��X � Z � X  X�.

From (2.2.11) and Remark 2.2.3 one obtains directly

�st � �st � �st  �st. �2. 2. 12�

But (2.2.12) immediately gives a contradiction

��st � �st� � ��st  �st�. �2. 2. 13�

However contradiction (2.2.13) it is not a true contradiction inside ZFCst for the reason
that the countable collection 
st is not a set in the sense of the set theory ZFCst.
In order to obtain a true contradiction inside ZFCst we introduce the following

definitions .
Definition 2 .2.8.We define now the countable set ��

�st/ 	� by formula

�y �y�st � ��
�st/ 	� � ��y�st � ��

st/ 	� � � Frst�y, v� � ��!X�y,��X�� . �2. 2. 14�

Remark 2 .2.4. Note that from the axiom of separation it follows directly that ��
�st/ 	� is

a
set in the sense of the set theory ZFCst.
Definition 2 .2.9.We define now the countable set 
st

� by formula

�Y	Y � 
st
� � �y���y�st � ��

�st/ 	� � � �gZFCst�X� � �� � Y � X�
. �2. 2. 15�

Note that from the axiom schema of replacement it follows directly that 
st
� is a set in

the
sense of the set theory ZFCst.
Definition 2 .2.10.We define now the countable set �st

� by formula

�X�X � 
st
� ��X � �st

� � X  X�. �2. 2. 16�

Note that from the axiom schema of separation it follows directly that �st
� is a set in the

sense of the set theory ZFCst.
Remark 2 .2.5.Note that �st

� � 
st
� since �st

� is a definable by the following formula

���Z� � �X�X � 
st
� ��X � Z � X  X�. �2. 2. 17�

Theorem 2 .2.1.Set theory ZFCst is inconsistent.
Proof. From (2.2.17) and Remark 2.2.5 we obtain �st

� � �st
� � �st

�  �st
� from which

immediately one obtains a contradiction ��st
� � �st

� � � ��st
�  �st

� �.

2.3.Derivation of the inconsistent definable set in ZFCNst.
Definition 2 .3.1.Let PA be a first order theory which contain usual postulates of Peano
arithmetic [9] and recursive defining equations for every primitive recursive function as
desired.So for any (n � 1)-place function f defined by primitive recursion over any

n-place
base function g and (n � 2)-place iteration function h there would be the defining
equations:
(i) f�0, y1, . . . , yn� � g�y1, . . . , yn�, (ii) f�x � 1, y1, . . . , yn� � h�x, f�x, y1, . . . , yn�, y1, . . . , yn�.
Designation 2 .3.1.(i) Let MNst

ZFC be a nonstandard model of ZFC and let Mst
PA be a

standard
model of PA.We assume now that Mst

PA � MNst
ZFC and denote such nonstandard model

of the set theory ZFC by MNst
ZFC�PA�. (ii) Let ZFCNst be the theory



ZFCNst � ZFC � MNst
ZFC�PA�.

Designation 2 .3.2.(i) Let gZFCNst�u� be a Gödel number of given an expression u of
the set theory ZFCNst � ZFC � �MNst

ZFC�PA�.
(ii) Let FrNst�y, v� be the relation : y is the Gödel number of a wff of the set theory

ZFCNst

that contains free occurrences of the variable X with Gödel number v [9].

(iii) Note that the relation FrNst�y, v� is expressible in ZFCNst by a wff FrNst�y, v�
(iv) Note that for any y, v � � by definition of the relation FrNst�y, v� follows that

FrNst�y, v� � �!��X���gZFCNst���X�� � y� � �gZFCNst�X� � ���, �2. 3. 1�

where ��X� is a unique wff of ZFCst which contains free occurrences of the variable X
with Gödel number v.We denote a unique wff ��X� defined by using equivalence

(2.3.1)
by symbol �y,��X�, i.e.

FrNst�y, v� � �!�y,��X���gZFCNst��y,��X�� � y� � �gZFCNst�X� � ���, �2. 3. 2�

(v) Let 	Nst�y, v,�1� be a Gödel number of the following wff: �!X���X� � Y � X�,where
gZFCNst���X�� � y, gZFCNst�X� � �, gZFCNst�Y� � �1.

(vi) Let PrZFCNst�z� be a predicate asserting provability in ZFCNst, which defined by
formula

(2.6) in section 2, see Remark 2.2 and Designation 2.3,(see also [9]-[10]).
Definition 2 .3.2. Let �X

Nst be the countable collection of the all 1-place open wff’s of
the set theory ZFCNst that contains free occurrences of the variable X.
Definition 2 .3.3. Let gZFCNst�X� � �.Let ��

Nst be a set of the all Gödel numbers of the
1-place open wff’s of the set theory ZFCNst that contains free occurrences of the

variable X
with Gödel number v, i.e.

��
Nst � 	y � �|�y,�� � Fr Nst�y, v�
, �2. 3. 3�

or in the following equivalent form:

�y�y � �� y � ��
Nst � �y � �� � Fr Nst�y, v� .

Remark 2 .3.1.Note that from the axiom of separation it follows directly that ��
st is a set

in the sense of the set theory ZFCNst.
Definition 2 .3.3.(i)We define now the equivalence relation �� 	X �� � �X

Nst � �X
Nst by

�1�X� 	X �2�X� � ��X��1�X� � �2�X��� �2. 3. 4�

(ii) A subcollection �X
st of �X

st such that �1�X� 	X �2�X� holds for all �1�X� and �2�X�
in

�X
st, and never for �1�X� in �X

Nst and �2�X� outside �X
Nst, is an equivalence class of

�X
Nst.
(iii) For any ��X� � �X

Nst let ���X��Nst � 	��X� � �X
Nst|��X� 	X ��X�
 denote the

equivalence class to which ��X� belongs. All elements of �X
st equivalent to each

other
are also elements of the same equivalence class.

(iv) The collection of all possible equivalence classes of �X
Nst by ~X, denoted �X

Nst/ 	X



�X
Nst/ 	X � 	���X��Nst|��X� � �X

Nst
. �2. 3. 5�

Definition 2 .3.4.(i)We define now the equivalence relation �� 	� �� � ��
Nst � ��

Nst in the
sense of the set theory ZFCNst by

y1 	� y2 � ��X��y1,��X� � �y2,��X��� �2. 3. 6�

Note that from the axiom of separation it follows directly that the equivalence relation
�� 	� �� is a relation in the sense of the set theory ZFCNst.
(ii) A subset ��

Nst of ��
Nst such that y1 	� y2 holds for all y1 and y1 in ��

Nst,and never for
y1 in
��

Nst and y2 outside ��
Nst, is an equivalence class of ��

Nst.
(iii) For any y � ��

Nst let �y�Nst � 	z � ��
Nst|y 	� z
 denote the equivalence class to which

y
belongs. All elements of ��

Nst equivalent to each other are also elements of the same
equivalence class.
(iv)The collection of all possible equivalence classes of ��

Nst by ~�, denoted ��
Nst/ 	�

��
Nst/ 	� � 	�y�Nst|y � ��

Nst
. �2. 3. 7�

Remark 2 .3.2. Note that from the axiom of separation it follows directly that ��
Nst/ 	� is

a
set in the sense of the set theory ZFCNst.
Definition 2 .3.5.Let 
Nst be the countable collection of the all sets definable by

1-place
open wff of the set theory ZFCNst, i.e.

�Y	Y � 
Nst � ���X������X��Nst � �X
Nst/ 	X � � ��!X���X� � Y � X���
. �2. 3. 8�

Definition 2 .3.6.We rewrite now (2.3.8) in the following equivalent form

�Y	Y � 
Nst � ���X������X��Nst � �X
�Nst/ 	X � � �Y � X��
, �2. 3. 9�

where the countable collection �X
�Nst/ 	X is defined by

���X�	���X��Nst � �X
�Nst/ 	X � �����X��Nst � �X

Nst/ 	X � � �!X��X��
 �2. 3. 10�

Definition 2 .3.7. Let �Nst be the countable collection of the all sets such that

�X�X � 
Nst��X � �Nst � X  X�. �2. 3. 11�

Remark 2 .3.3.Note that �Nst � 
Nst since �Nst is a collection definable by 1-place open
wff

��Z,
Nst� � �X�X � 
Nst��X � Z � X  X�.

From (2.3.11) one obtains

�Nst � �Nst � �Nst  �Nst. �2. 3. 12�

But (2.3.12) gives a contradiction

��Nst � �Nst� � ��Nst  �Nst�. �2. 3. 13�

However a contradiction (2.3.13) it is not a true contradiction inside ZFCNst for the
reason

that the countable collection 
Nst is not a set in the sense of the set theory ZFCNst.
In order to obtain a true contradiction inside ZFCNst we introduce the following
definitions .



Definition 2 .3.8.We define now the countable set ��
�Nst/ 	� by formula

�y �y�Nst � ��
�Nst/ 	� � ��y�Nst � ��

Nst/ 	� � � FrNst�y, v� � ��!X�y,��X�� . �2. 3. 14�

Remark 2 .3.4. Note that from the axiom of separation it follows directly that ��
�Nst/ 	�

is
a set in the sense of the set theory ZFCst.
Definition 2 .3.9.We define now the countable set 
Nst

� by formula

�Y	Y � 
Nst
� � �y���y�Nst � ��

�Nst/ 	� � � �gZFCNst�X� � �� � Y � X�
. �2. 3. 15�

Note that from the axiom schema of replacement it follows directly that 
st
� is a set in

the
sense of the set theory ZFCNst.
Definition 2 .3.10.We define now the countable set �Nst

� by formula

�X�X � 
Nst
� ��X � �Nst

� � X  X�. �2. 3. 16�

Note that from the axiom schema of separation it follows directly that �Nst
� is a set in

the
sense of the set theory ZFCNst.
Remark 2 .3.5.Note that �Nst

� � 
Nst
� since �Nst

� is a definable by the following formula

���Z� � �X�X � 
Nst
� ��X � Z � X  X�. �2. 3. 17�

Theorem 2 .3.1.Set theory ZFCNst is inconsistent.
Proof. From (2.3.16) and Remark 2.3.5 we obtain �Nst

� � �Nst
� � �Nst

�  �Nst
� from

which one obtains a contradiction ��Nst
� � �Nst

� � � ��Nst
�  �Nst

� �.

3.Derivation of the inconsistent provably definable set in
set theory ZFC2

Hs, ZFCst and ZFCNst.

3.1.Derivation of the inconsistent provably definable set
in set theory ZFC2

Hs.
Definition 3 .1.1. Let 
2

Hs
be the countable collection of all provable definable sets X

such
that ZFC2

Hs � �!X��X�,where ��X� is a 1-place open wff i.e.,

�Y Y � 
2

Hs
� ZFC2

Hs � ���X������X�� � �X
Hs/ 	X � � ��!X���X� � Y � X��� . �3. 1. 1�

Let X �
ZFC2

Hs
Y be a predicate such that X �

ZFC2
Hs

Y � ZFC2
Hs � X  Y.Let �2

Hs
be the

countable collection of all sets such that

�X X � 
2

Hs
X � �2

Hs
� X �

ZFC2
Hs

X . �3. 1. 2�

From (3.1.2) one obtains

�2

Hs
� �2

Hs
� �2

Hs
�

ZFC2
Hs

�2

Hs
. �3. 1. 3�

But obviously this is a contradiction. However contradiction (3.1.3) it is not a
contradiction inside ZFC2

Hs for the reason that predicate X �
ZFC2

Hs
Y is not a predicate of



ZFC2
Hs and therefore countable collections 
2

Hs
and �2

Hs
are not a sets of ZFC2

Hs.
Nevertheless by using Gödel encoding the above stated contradiction can be shipped in
special consistent extensions of ZFC2

Hs.
Remark 3 .1.1.More formally I can to explain the gist of the contradictions deriveded in

this
paper (see Proposition 2.5.(i)-(ii)) as follows.

Let M be Henkin model of ZFC2
Hs. Let �2

Hs
be the set of the all sets of M provably

definable in ZFC2
Hs, and let �2

Hs
� x � 
2

Hs
: ��x  x� where �A means ‘sentence A

derivable in ZFC2
Hs’, or some appropriate modification thereof. We replace now formula

(3.1.1) by the following formula

�Y Y � 
2

Hs
� ���X������X�� � �X

Hs/ 	X � � ��!X���X� � Y � X�� . �3. 1. 4�

and we replace formula (3.1.2) by the following formula

�X X � 
2

Hs
X � �2

Hs
� ��X  X� . �3. 1. 5�

Definition 3 .1.2.We rewrite now (3.1.4) in the following equivalent form

�Y Y � 
2

Hs
� ���X������X��Hs � �X

Hs/ 	X � � �Y � X�� , �3. 1. 6�

where the countable collection �X
Hs/ 	X is defined by the following formula

���X�	���X�� � �X
Hs/ 	X � �����X��Hs � �X

Hs/ 	X � � ��!X��X��
 �3. 1. 7�

Definition 3 .1.3.Let �2

Hs
be the countable collection of the all sets such that

�X X � 
2

Hs
X � �2

Hs
� �X  X . �3. 1. 8�

Remark 3 .1.2.Note that �2

Hs
� 
2

Hs
since �2

Hs
is a collection definable by 1-place open

wff

� Z,�2

Hs
� �X X � 
2

Hs
�X � Z � ��X  X��.

From (3.1.8) one obtains

�2

Hs
� �2

Hs
� � �2

Hs
 �2

Hs
. �3. 1. 9�

But (3.1.9) immediately gives a contradiction

ZFC2
Hs � �2

Hs
� �2

Hs
� �2

Hs
 �2

Hs
. �3. 1. 10�

However contradiction (3.1.10) it is not a true contradiction inside ZFC2
Hs for the reason

that the countable collection 
2

Hs
is not a set in the sense of the set theory ZFC2

Hs.
In order to obtain a true contradiction inside ZFC2

Hs we introduce the following
definitions .

Definition 3 .1.4.We define now the countable set ��
Hs/ 	� by

�y �y�Hs � ��
Hs/ 	� � ��y�Hs � ��

Hs/ 	� � � Fr2

Hs
�y, v� � ���!X�y,��X�� . �3. 1. 11�

Definition 3 .1.5.We choose now �A in the following form



�A � BewZFC2
Hs�#A� � BewZFC2

Hs�#A� � A . �3. 1. 12�

Here BewZFC2
Hs�#A� is a canonycal Gödel formula which says to us that there exists

proof in ZFC2
Hs of the formula A with Gödel number #A.

Remark 3 .1.3. Notice that the Definition 3.1.5 holds as definition of predicate really
asserting provability in ZFC2

Hs.
Definition 3 .1.7.Using Definition 3.1.5, we replace now formula (3.1.7) by the

following formula

���X�	���X�� � �X
Hs/ 	X � ���X�����X�� � �X

Hs/ 	X � �

� BewZFC2
Hs�#�!X���X� � Y � X�� �

� BewZFC2
Hs�#�!X���X� � Y � X�� � �!X���X� � Y � X� .

�3. 1. 13�

Definition 3 .1.8.Using Definition 3.1.5, we replace now formula (3.1.8) by the
following

formula

�X X � 
2

Hs
X � �2

Hs
� BewZFC2

Hs�#�X  X�� �

� BewZFC2
Hs�#�X  X�� � X  X .

�3. 1. 14�

Definition 3 .1.9.Using Definition1.3.5,we replace now formula (3.1.11) by the
following formula

�y	�y�Hs � ��
Hs/ 	� �

��y�Hs � ��
Hs/ 	� � � Fr2

Hs�y, v� � BewZFC2
Hs�#�!X��y,��X� � Y � X�� �

� BewZFC2
Hs�#�!X��y,��X� � Y � X�� � �!X��y,��X� � Y � X� .

�3. 1. 15�

Definition 3 .1.10.Using Definitions 3.1.4-3.1.7, we define now the countable set 
2

Hs

by formula

�Y Y � 
2

Hs
� �y ��y� � ��

Hs/ 	� � � gZFC2
Hs�X� � � . �3. 1. 16�

Remark 3 .1.4.Note that from the axiom schema of replacement (1.1.1) it follows

directly that 
2

Hs
is a set in the sense of the set theory ZFC2

Hs.
Definition 3 .1.11.Using Definition 3.1.8 we replace now formula (3.1.14) by the

following formula

�X X � 
2

Hs

X � �2

Hs
� BewZFC2

Hs�#�X  X�� � BewZFC2
Hs�#�X  X�� � X  X

. �3. 1. 17�

Remark 3 .1.5. Notice that the expression (3.1.18)

BewZFC2
Hs�#�X  X�� � BewZFC2

Hs�#�X  X�� � X  X �3. 1. 18�

obviously is a well formed formula of ZFC2
Hs and therefore collection �2

Hs
is a set in the

sense of ZFC2
Hs.

Remark 3 .1.6.Note that �2

Hs
� 
2

Hs
since �2

Hs
is a collection definable by 1-place



open
wff

� Z,�2

Hs
�

�X X � 
2

Hs
�X � Z �

BewZFC2
Hs�#�X  X�� � BewZFC2

Hs�#�X  X�� � X  X .

�3. 1. 19�

Theorem 3 .1.1.Set theory ZFC2
Hs � ZFC2

Hs � �Mst
ZFC2

Hs

is inconsistent.
Proof. From (3.1.17) we obtain

�2

Hs
� �2

Hs
� BewZFC2

Hs # �2

Hs
 �2

Hs
�

� BewZFC2
Hs # �2

Hs
 �2

Hs
� �2

Hs
 �2

Hs
.

�3. 1. 20�

(a) Assume now that:

�2

Hs
� �2

Hs
. �3. 1. 21�

Then from (3.1.20) we obtain �ZFC2
Hs BewZFC2

Hs # �2

Hs
 �2

Hs
and

�ZFC2
Hs BewZFC2

Hs # �2

Hs
 �2

Hs
� �2

Hs
 �2

Hs
, therefore �ZFC2

Hs �2

Hs
 �2

Hs
and

so

�ZFC2
Hs �2

Hs
� �2

Hs
� �2

Hs
 �2

Hs
. �3. 1. 22�

From (3.1.21)-(3.1.22) we obtain

�2

Hs
� �2

Hs
,�2

Hs
� �2

Hs
� �2

Hs
 �2

Hs
� �2

Hs
 �2

Hs

and thus �ZFC2
Hs �2

Hs
� �2

Hs
� �2

Hs
 �2

Hs
.

(b) Assume now that

BewZFC2
Hs # �2

Hs
 �2

Hs
�

� BewZFC2
Hs # �2

Hs
 �2

Hs
� �2

Hs
 �2

Hs
.

�3. 1. 23�

Then from (3.1.23) we obtain � �2

Hs
 �2

Hs
.From (3.1.23) and (3.1.20) we obtain

�ZFC2
Hs �2

Hs
� �2

Hs
,so �ZFC2

Hs �2

Hs
 �2

Hs
,�2

Hs
� �2

Hs
which immediately gives us a

contradiction �ZFC2
Hs �2

Hs
� �2

Hs
� �2

Hs
 �2

Hs
.

Definition 3 .1.12.We choose now �A in the following form

�A � BewZFC2
Hs�#A�, �3. 1. 24�

or in the following equivalent form

�A � BewZFC2
Hs�#A� � BewZFC2

Hs�#A� � A

similar to (3.1.5).Here BewZFC2
Hs�#A� is a Gödel formula (see Chapt. II section 2,

Definition)
which really asserts provability in ZFC2

Hs of the formula A with Gödel number #A.



Remark 3 .1.7. Notice that the Definition 3.1.12 with formula (3.1.24) holds as
definition

of predicate really asserting provability in ZFC2
Hs.

Definition 3 .1.13.Using Definition 3.1.12 with formula (3.1.24), we replace now
formula

(3.1.7) by the following formula

���X� ���X�� � �X
Hs/ 	X � ���X�����X�� � �X

Hs/ 	X � �

� BewZFC2
Hs�#�!X���X� � Y � X�� .

�3. 1. 25�

Definition 3 .1.14.Using Definition 3.1.12 with formula (3.1.24), we replace now
formula

(3.1.8) by the following formula

�X X � 
2

Hs
X � �2

Hs
� BewZFC2

Hs�#�X  X�� �3. 1. 26�

Definition 3 .1.15.Using Definition 3.1.12 with formula (3.1.24),we replace now formula
(3.1.11) by the following formula

�y	�y�Hs � ��
Hs/ 	� �

��y�Hs � ��
Hs/ 	� � � Fr2

Hs
�y, v� � BewZFC2

Hs�#�!X��y,��X� � Y � X�� .
�3. 1. 27�

Definition 3 .1.16.Using Definitions 3.1.13-3.1.17, we define now the countable set


2

Hs
by formula

�Y Y � 
2

Hs
� �y ��y� � ��

Hs/ 	� � � gZFC2
Hs�X� � � . �3. 1. 28�

Remark 3 .1.8.Note that from the axiom schema of replacement (1.1.1) it follows

directly that 
2

Hs
is a set in the sense of the set theory ZFC2

Hs.
Definition 3 .1.17.Using Definition 3.1.16 we replace now formula (3.1.26) by the

following formula

�X X � 
2

Hs
X � �2

Hs
� BewZFC2

Hs�#�X  X�� . �3. 1. 29�

Remark 3 .1.9. Notice that the expressions (3.1.30)

BewZFC2
Hs�#�X  X��

and

BewZFC2
Hs�#�X  X�� � BewZFC2

Hs�#�X  X�� � X  X

�3. 1. 30�

obviously is a well formed formula of ZFC2
Hs and therefore collection �2

Hs
is a set in the

sense of ZFC2
Hs.

Remark 3 .1.10.Note that �2

Hs
� 
2

Hs
since �2

Hs
is a collection definable by 1-place

open
wff

� Z,�2

Hs
� �X X � 
2

Hs
X � Z � BewZFC2

Hs�#�X  X�� . �3. 1. 31�

Theorem 3 .1.2.Set theory ZFC2
Hs � ZFC2

Hs � �Mst
ZFC2

Hs

is inconsistent.



Proof. From (3.1.29) we obtain

�2

Hs
� �2

Hs
� BewZFC2

Hs # �2

Hs
 �2

Hs
. �3. 1. 32�

(a) Assume now that:

�2

Hs
� �2

Hs
. �3. 1. 33�

Then from (3.1.32) we obtain �ZFC2
Hs BewZFC2

Hs # �2

Hs
 �2

Hs
and therefore

�ZFC2
Hs �2

Hs
 �2

Hs

thus we obtain

�ZFC2
Hs �2

Hs
� �2

Hs
� �2

Hs
 �2

Hs
. �3. 1. 34�

From (3.1.33)-(3.1.34) we obtain �2

Hs
� �2

Hs
and �2

Hs
� �2

Hs
� �2

Hs
 �2

Hs
thus

�ZFC2
Hs �2

Hs
 �2

Hs
and finally we obtain �ZFC2

Hs �2

Hs
� �2

Hs
� �2

Hs
 �2

Hs
.

(b) Assume now that

BewZFC2
Hs # �2

Hs
 �2

Hs
. �3. 1. 23�

Then from (3.1.35) we obtain �ZFC2
Hs �2

Hs
 �2

Hs
.From (3.1.35) and (3.1.32) we obtain

�ZFC2
Hs �2

Hs
� �2

Hs
, thus �ZFC2

Hs �2

Hs
 �2

Hs
and �ZFC2

Hs �2

Hs
� �2

Hs
which

immediately gives us a contradiction �ZFC2
Hs �2

Hs
� �2

Hs
� �2

Hs
 �2

Hs
.

3.2.Derivation of the inconsistent provably definable set in
ZFCst.

Let 
st be the countable collection of all sets X such that ZFCst � �!X��X�,where ��X�
is a 1-place open wff i.e.,

�Y	Y � 
st � ZFCst � ���X������X�� � �X
st/ 	X � � �!X���X� � Y � X��
. �3. 2. 1�

Let X �ZFCst
Y be a predicate such that X �ZFCst

Y � ZFCst � X  Y.Let � be the

countable collection of all sets such that

�X X � �st � �X � 
st� � X �ZFCst
X . �3. 2. 2�

From (3.2.1) one obtains

�st � �st � �st �ZFCst
�st. �3. 2. 3�

But (3.2.3) gives a contradiction

��st � �st� � ��st  �st�. �3. 2. 4�

However contradiction (3.2.4) it is not a contradiction inside ZFCst for the reason that
predicate X �ZFCst

Y is not a predicate of ZFCst and therefore countable collections 
st

and �st are not a sets of ZFCst. Nevertheless by using Gödel encoding the above stated
contradiction can be shipped in special consistent extensions of ZFCst.

Designation 3 .2.1 (i) Let Mst
ZFC be a standard model of ZFC and

(ii) let ZFCst be the theory ZFCst � ZFC � �Mst
ZFC,



(iii) let 
st be the set of the all sets of Mst
ZFC provably definable in ZFCst,and let

�st � 	X � 
st : �st�X  X�
 where �stA means: ‘sentence A derivable in ZFCst’, or
some

appropriate modification thereof.
We replace now (3.2.1) by formula

�Y	Y � 
st � �st�������!X���X� � Y � X��
, �3. 2. 5�

and we replace (3.2.2) by formula

�X X � �st � �X � 
st� � �st X  X . �3. 2. 6�

Assume that ZFCst � �st � 
st. Then, we have that: �st � �st if and only if
�st��st  �st�, which immediately gives us �st � �st if and only if �st  �st.But this is a
contradiction, i.e., ZFCst � ��st � �st� � ��st  �st�.We choose now �stA in the
following form

�stA � BewZFCst�#A� � �BewZFCst�#A� � A�. �3. 2. 7�

Here BewZFCst�#A� is a canonycal Gödel formula which says to us that there exists proof
in ZFCst of the formula A with Gödel number #A � Mst

PA.
Remark 3 .2.1. Notice that definition (3.2.7) holds as definition of predicate really

asserting provability in ZFCst.
Definition 3 .2.2.We rewrite now (3.2.5) in the following equivalent form

�Y Y � 
st � ���X������X��st � �X
st/ 	X � � �Y � X�� , �3. 2. 8�

where the countable collection �X
Hs/ 	X is defined by the following formula

���X�	���X��st � �X
st/ 	X � �����X��st � �X

st/ 	X � � �st�!X��X��
 �3. 2. 9�

Definition 3 .2.3.Let �st be the countable collection of the all sets such that

�X X � 
st X � �st � �st�X  X� . �3. 2. 10�

Remark 3 .2.2.Note that �2

Hs
� 
2

Hs
since �2

Hs
is a collection definable by 1-place open

wff

� Z,�st � �X X � 
st �X � Z � �st�X  X��. �3. 2. 11�

Definition 3 .2.4.By using formula (3.2.7) we rewrite now (3.2.8) in the following
equivalent form

�Y Y � 
st � ���X������X��st � �X
st/ 	X � � �Y � X�� , �3. 2. 12�

where the countable collection �X
Hs/ 	X is defined by the following formula

���X�	���X��st � �X
st/ 	X �

�����X��st � �X
st/ 	X � � BewZFCst�#�!X��X��� �

��BewZFCst�#�!X��X�� � �!X��X��


�3. 2. 13�

Definition 3 .2.5.Using formula (3.2.7), we replace now formula (3.2.10) by the
following

formula



�X X � 
st X � �st � �BewZFCst�#�X  X��� �

��BewZFCst�#�X  X���.
�3. 2. 14�

Definition 3 .2.6.Using Definition1.3.5,we replace now formula (3.2.11) by the
following formula

�y	�y�st � ��
st/ 	� �

��y�st � ��
st/ 	� � � Frst�y, v� � �BewZFCst�#�!X��y,��X� � Y � X��� �

��BewZFCst�#�!X��y,��X� � Y � X�� � �!X��y,��X� � Y � X��
.

�3. 2. 15�

Definition 3 .2.7.Using Definitions 3.2.4-3.2.6, we define now the countable set 
st


by

formula

�Y Y � 
st


� �y���y�st � ��

st/ 	� � � �gZFCst�X� � ��� . �3. 2. 16�

Remark 3 .2.3.Note that from the axiom schema of replacement it follows directly that


st


is a set in the sense of the set theory ZFCst.

Definition 3 .2.8.Using Definition 3.2.7 we replace now formula (3.2.14) by the
following formula

�X X � 
st



X � �st


� �BewZFCst�#�X  X��� � �BewZFCst

�#�X  X�� � X  X�
. �3. 2. 17�

Remark 3 .2.4. Notice that the expression (3.2.18)

�BewZFCst�#�X  X��� � �BewZFCst�#�X  X�� � X  X� �3. 2. 18�

obviously is a well formed formula of ZFCst and therefore collection �st


is a set in the

sense of ZFC2
Hs.

Remark 3 .2.5.Note that �st


� 
st


since �st


is a collection definable by 1-place open

wff

� Z,�st


�

�X X � 
st


�X � Z �

�BewZFCst�#�X  X��� � �BewZFCst�#�X  X�� � X  X��.

�3. 2. 19�

Theorem 3 .2.1.Set theory ZFCst � ZFC � �Mst
ZFC is inconsistent.

Proof. From (3.2.17) we obtain

�st


� �st


� BewZFCst # �st


 �st


�

� BewZFCst # �st


 �st


� �st


 �st


.

�3. 2. 20�

(a) Assume now that:

�st


� �st


. �3. 2. 21�



Then from (3.2.20) we obtain � BewZFCst # �st


 �st


and

� BewZFCst # �st


 �st


� �st


 �st


, therefore � �st


 �st


and so

�ZFCst �st


� �st


� �st


 �st


. �3. 2. 22�

From (3.2.21)-(3.2.22) we obtain �st


� �st


,�st


� �st


� �st


 �st


� �st


 �st



and therefore �ZFCst �st


� �st


� �st


 �st


.

(b) Assume now that

BewZFCst # �st


 �st


�

� BewZFCst # �st


 �st


� �st


 �st


.

�3. 2. 23�

Then from (3.2.23) we obtain � �2

Hs
 �2

Hs
.From (3.2.23) and (3.2.20) we obtain

�ZFC2
Hs �2

Hs
� �2

Hs
,so �ZFC2

Hs �2

Hs
 �2

Hs
,�2

Hs
� �2

Hs
which immediately gives us a

contradiction �ZFC2
Hs �2

Hs
� �2

Hs
� �2

Hs
 �2

Hs
.

3.3.Derivation of the inconsistent provably definable set in
ZFCNst.

Designation 3 .3.1.(i) Let PA be a first order theory which contain usual postulates of
Peano arithmetic [8] and recursive defining equations for every primitive recursive

function
as desired.
(ii) Let MNst

ZFC be a nonstandard model of ZFC and let Mst
PA be a standard model of

PA.We
assume now that Mst

PA � MNst
ZFC and denote such nonstandard model of ZFC by

MNst
ZFC�PA�.

(iii) Let ZFCNst be the theory ZFCNst � ZFC � MNst
ZFC�PA�.

(iv) Let 
Nst be the set of the all sets of Mst
ZFC�PA� provably definable in ZFCNst,and let

�Nst � 	X � 
Nst : �Nst�X  X�
 where �NstA means ‘sentence A derivable in ZFCNst’,
or

some appropriate modification thereof. We replace now (3.1.4) by formula

�Y	Y � 
Nst � �Nst�������!X���X� � Y � X��
, �3. 3. 1�

and we replace (3.1.5) by formula

�X X � �Nst � �X � 
Nst� � �Nst X  X . 3. 3. 2

Assume that ZFCNst � �Nst � 
Nst. Then, we have that: �Nst � �Nst if and only if
�Nst��Nst  �Nst�, which immediately gives us �Nst � �Nst if and only if �Nst  �Nst.But
this is a contradiction, i.e., ZFCNst � ��Nst � �Nst� � ��Nst  �Nst�.We choose now �NstA
in the following form

�NstA � BewZFCNst�#A� � �BewZFCNst�#A� � A�. 3. 3. 3

Here BewZFCNst�#A� is a canonycal Gödel formula which says to us that there exists



proof
in ZFCNst of the formula A with Gödel number #A � Mst

PA.
Remark 3 .3.1. Notice that definition (3.3.3) holds as definition of predicate really
asserting provability in ZFCNst.
Designation 3 .3.2.(i) Let gZFCNst�u� be a Gödel number of given an expression u of

ZFCNst.
(ii) Let FrNst�y, v� be the relation : y is the Gödel number of a wff of ZFCNst that

contains
free occurrences of the variable with Gödel number v [10].

(iii) Let 	Nst�y, v,�1� be a Gödel number of the following wff:
�!X���X� � Y � X�,where

gZFCNst���X�� � y, gZFCNst�X� � �, gZFCNst�Y� � �1.
(iv) Let PrZFCNst�z� be a predicate asserting provability in ZFCNst, which defined by

formula (2.6), see Chapt. II, section 2, Remark 2.2 and Designation 2.3,(see
also

[10]-[11]).
Remark 3 .3.2.Let 
Nst be the countable collection of all sets X such that
ZFCNst � �!X��X�,where ��X� is a 1-place open wff i.e.,

�Y	Y � 
Nst � ZFCNst � ���X��!X���X� � Y � X�
. �3. 3. 4�

We rewrite now (3.3.4) in the following form

�Y	Y � 
Nst
 �

�gZFCNst�Y� � �1� � �yFrNst�y, v� � �gZFCNst�X� � �� � �PrZFCNst�	Nst�y, v,�1�� �

��PrZFCNst�	Nst�y, v,�1�� � �!X���X� � Y � X���


�3. 3. 5�

Designation 3 .3.3. Let 	Nst�z� be a Gödel number of the following wff: Z  Z, where

gZFCNst�Z� � z.
Remark 3 .3.3.Let �Nst above by formula (3.3.2), i.e.,

�Z Z � �Nst � �Z � 
Nst� � �Nst Z  Z . 3. 3. 6

We rewrite now (3.3.6) in the following form

.
�Z�Z � �Nst

 � �Z � 
Nst
 � � gZFCNst�Z� � z � PrZFCNst�	Nst�z��� �

� PrZFCNst�	Nst�z�� � Z  Z .
�3. 3. 7�

Theorem 3 .3.1.ZFCNst � �Nst
 � �Nst

 � �Nst
  �Nst

 .

3.4.Generalized Tarski’s undefinability lemma.
Remark 3 .4.1.Remind that: (i) if Th is a theory, let TTh be the set of Godel numbers of
theorems of Th,[10],(ii) the property x � TTh is said to be is expressible in Th by wff
True�x1� if the following properties are satisfies [10]:
(a) if n � TTh then Th � True�n�, (b) if n  TTh then Th � �True�n�.
Remark 3 .4.2.Notice it follows from (a)�(b) that

���Th � True�n�� � �Th � �True�n���.
Theorem 3 .4.1. (Tarski’s undefinability Lemma) [10].Let Th be a consistent theory

with



equality in the language � in which the diagonal function D is representable and let
gTh�u�

be a Gödel number of given an expression u of Th.Then the property x � TTh is not
expressible in Th.
Proof .By the diagonalization lemma applied to �True�x1� there is a sentence � such
that: (c)Th � � � �True�q�,where q is the Godel number of �, i.e. gTh��� � q.
Case 1.Suppose that Th � �, then q � TTh. By (a), Th � True�q�. But, from Th � �
and (c), by biconditional elimination, one obtains Th � �True�q�.Hence Th is

inconsistent,
contradicting our hypothesis.
Case 2. Suppose that Th � �. Then q  TTh. By (b), Th � �True�q�. Hence, by (c)

and
biconditional elimination, Th � �.Thus, in either case a contradiction is reached.
Definition 3 .4.1.If Th is a theory, let TTh be the set of Godel numbers of theorems of
Th and let gTh�u� be a Gödel number of given an expression u of Th.The property

x � TTh

is said to be is a strongly expressible in Th by wff True��x1� if the following properties
are

satisfies:
(a) if n � TTh then Th � True��n� � �True��n� � gTh

�1 �n��,
(b) if n  TTh then Th � �True��n�.
Theorem3 .4.2.(Generalized Tarski’s undefinability Lemma).Let Th be a consistent

theory
with equality in the language � in which the diagonal function D is representable and

let
gTh�u� be a Gödel number of given an expression u of Th.Then the property x � TTh is

not
strongly expressible in Th.
Proof .By the diagonalization lemma applied to �True��x1� there is a sentence ��

such
that: (c)Th � �� � �True��q�,where q is the Godel number of ��, i.e. gTh���� � q.
Case 1.Suppose that Th � ��, then q � TTh. By (a), Th � True��q�. But, from

Th � ��

and (c), by biconditional elimination, one obtains Th � �True��q�.Hence Th is
inconsistent, contradicting our hypothesis.
Case 2. Suppose that Th � ��. Then q  TTh. By (b), Th � �True��q�. Hence, by (c)
and biconditional elimination, Th � ��.Thus, in either case a contradiction is reached.
Remark 3 .4.3.Notice that it is widely believed on ubnormal part of the mathematical
comunity that Tarski’s undefinability theorems 3.4.1-3.4.2 blocking any possible
definitions of the sets 
,
st,
Nst,mentioned in subsection 1.2 and therefore these
theorems blocking definitions of the sets �,�st,�Nst, and correspondingly Tarski’s
undefinability theorem blocking the biconditionals

� � � � �  � ,�st � �st � �st  �st ,

�Nst � �Nst � �Nst  �Nst.
�3. 4. 1�



3.5.Generalized Tarski’s undefinability theorem.
Remark 3 .5.1.(I) Let Th1

# be the theory Th1
# � ZFC2

Hs.

In addition under assumption Con�Th1
#�, we establish a countable sequence of the

consistent extensions of the theory Th1
# such that:

(i)Th1
# �. . .� Thi

# � Thi�1
# �. . . Th�

# , where
(ii) Thi�1

# is a finite consistent extension of Thi
#,

(iii) Th�
# � �i�� Thi

#,
(iv) Th�

# proves the all sentences of Th1
#, which valid in M, i.e.,M � A � Th�

# � A,
see Part II, section 2,Proposition 2.1.(i).
(II) Let Th1,st

# be Th1,st
# � ZFCst.

In addition under assumption Con�Th1,st
# �, we establish a countable sequence of the

consistent extensions of the theory Th1
# such that:

(i) Th1,st
# �. . .� Thi,st

# � Thi�1,st
# �. . . Th�,st

# , where
(ii) Thi�1,st

# is a finite consistent extension of Thi,st
# ,

(iii) Th�,st
# � �i�� Thi,st

# ,
(iv) Th�,st

# proves the all sentences of Th1,st
# , which valid in Mst

ZFC, i.e.,
Mst

ZFC � A � Th�,st
# � A,

see Part II, section 2, Proposition 2.1.(ii).
(III) Let Th1,Nst

# be Th1,Nst
# � ZFCNst.

In addition under assumption Con�Th1,Nst
# �, we establish a countable sequence of the

consistent extensions of the theory Th1
# such that:

(i)Th1,Nst
# �. . .� Thi,Nst

# � Thi�1,st
# �. . . Th�,Nst

# , where
(ii) Thi�1,Nst

# is a finite consistent extension of Thi,Nst
# ,

(iii) Th�,st
# � �i�� Thi,st

#

(iv) Th�,st
# proves the all sentences of Th1,st

# , which valid in MNst
ZFC�PA�, i.e.,

MNst
ZFC�PA� � A � Th�,Nst

# � A,
see Part II, section 2, Proposition 2.1.(iii).
Remark 3 .5.2.(I)Let 
i, i � 1, 2, . . . be the set of the all sets of M provably definable in

Thi
#,

�Y	Y � 
i � �i������!X���X� � Y � X�
. �3. 5. 1�

and let �i � 	x � 
i : �i�x  x�
 where �iA means sentence A derivable in Thi
#.Then

we have that �i � �i if and only if �i��i  �i�, which immediately gives us �i � �i if
and only if �i  �i.We choose now �iA, i � 1, 2, . . . in the following form

�iA � Bewi�#A� � �Bewi�#A� � A�. �3. 5. 2�

Here Bewi�#A�, i � 1, 2, . . . is a canonycal Gödel formulae which says to us that there
exist

proof in Thi
#, i � 1, 2, . . .of the formula A with Gödel number #A.

(II) Let 
i,st, i � 1, 2, . . . be the set of the all sets of Mst
ZFC provably definable in Thi,st

# ,

�Y	Y � 
i,st � �i,st������!X���X� � Y � X�
. �3. 5. 3�

and let �i,st � 	x � 
i,st : �i,st�x  x�
 where �i,stA means sentence A derivable in
Thi,st

# .
Then we have that �i,st � �i,st if and only if �i,st��i,st  �i,st�, which immediately gives

us



�i,st � �i,st if and only if �i,st  �i,st.We choose now �i,stA, i � 1, 2, . . . in the following
form

�i,stA � Bewi,st�#A� � �Bewi,st�#A� � A�. �3. 5. 4�

Here Bewi,st�#A�, i � 1, 2, . . . is a canonycal Gödel formulae which says to us that there
exist proof in Thi,st

# , i � 1, 2, . . .of the formula A with Gödel number #A.
(III) Let 
i,Nst, i � 1, 2, . . . be the set of the all sets of MNst

ZFC�PA� provably definable in
Thi,Nst

# ,

�Y	Y � 
i,Nst � �i,Nst������!X���X� � Y � X�
. �3. 5. 5�

and let �i,Nst � 	x � 
i,Nst : �i,Nst�x  x�
 where �i,NstA means sentence A derivable in
Thi,Nst

# .Then we have that �i,Nst � �i,Nst if and only if �i,Nst��i,Nst  �i,Nst�, which
immediately gives us �i,Nst � �i,Nst if and only if �i,Nst  �i,Nst.
We choose now �i,NstA, i � 1, 2, . . . in the following form

�i,NstA � Bewi,Nst�#A� � �Bewi,Nst�#A� � A�. �3. 5. 6�

Here Bewi,Nst�#A�, i � 1, 2, . . . is a canonycal Gödel formulae which says to us that there
exist proof in Thi,Nst

# , i � 1, 2, . . .of the formula A with Gödel number #A.
Remark 3 .5.3 Notice that definitions (3.5.2),(3.5.4) and (3.5.6) hold as definitions of
predicates really asserting provability in Thi

#, Thi,st
# and Thi,Nst

# , i � 1, 2, . . .
correspondingly.

Remark 3 .5.4.Of course the all theories Thi
#, Thi,st

# , Thi,Nst
# , i � 1, 2, . . . are

inconsistent,see
Part II,Proposition 2.10.(i)-(iii).
Remark 3 .5.5.(I)Let 
� be the set of the all sets of M provably definable in Th�

# ,

�Y	Y � 
� � ��������!X���X� � Y � X�
. �3. 5. 7�

and let �� � 	x � 
� : ���x  x�
 where ��A means ‘sentence A derivable in
Th�

# .Then, we have that �� � �� if and only if �����  ���, which immediately gives
us �� � �� if and only if ��  ��.We choose now ��A, i � 1, 2, . . . in the following
form

��A � �i�Bewi�#A� � �Bewi�#A� � A��. �3. 5. 8�

(II) Let 
�,st be the set of the all sets of Mst
ZFC provably definable in Th�,st

# ,

�Y	Y � 
�,st � ��,st������!X���X� � Y � X�
. �3. 5. 9�

and let ��,st be the set ��,st � 	x � 
�,st : ��,st�x  x�
, where ��,stA means ‘sentence
A derivable in Th�,st

# .Then, we have that ��,st � ��,st if and only if ��,st���,st  ��,st�,
which immediately gives us ��,st � ��,st if and only if ��,st  ��,st.We choose now
��,stA, i � 1, 2, . . . in the following form

��,stA � �i�Bewi,st�#A� � �Bewi,st�#A� � A��. �3. 5. 10�

(III) Let 
�,Nst be the set of the all sets of MNst
ZFC�PA� provably definable in Th�,Nst

# ,

�Y	Y � 
�,Nst � ��,Nst������!X���X� � Y � X�
. �3. 5. 11�

and let ��,Nst be the set ��,Nst � 	x � 
�,Nst : ��,Nst�x  x�
 where ��,NstA means
‘sentence A derivable in Th�,Nst

# .Then, we have that ��,Nst � ��,Nst if and only if
��,Nst���,Nst  ��,Nst�, which immediately gives us ��,Nst � ��,Nst if and only if
��,Nst  ��,Nst.We choose now ��,NstA, i � 1, 2, . . . in the following form



��,NstA � �i�Bewi,Nst�#A� � �Bewi,Nst�#A� � A��. �3. 5. 12�

Remark 3 .5.6.Notice that definitions (3.5.8),(3.5.10) and (3.5.12) holds as definitions
of a

predicate really asserting provability in Th�
# , Th�,st

# and Th�,Nst
# correspondingly.

Remark 3 .5.7.Of course all the theories Th�
# , Th�,st

# and Th�,Nst
# are inconsistent,see

Part II,Proposition 2.14.(i)-(iii).
Remark 3 .5.8.Notice that under naive consideration the set 
� and �� can be defined
directly using a truth predicate,which of couse is not available in the language of ZFC2

Hs

(but iff ZFC2
Hs is consistent) by well-known Tarski’s undefinability theorem [10].

Theorem 3 .5.1. Tarski ’s undefinability theorem : (I) Let Th� be first order theory
with

formal language �,which includes negation and has a Gödel numbering g��� such that
for

every �-formula A�x� there is a formula B such that B � A�g�B�� holds. Assume that
Th�

has a standard model Mst
Th� and Con�Th�,st� where

Th�,st � Th� � �Mst
Th� . �3. 5. 13�

Let T�be the set of Gödel numbers of �-sentences true in Mst
Th� . Then there is no

�-formula True�n� (truth predicate) which defines T�.That is, there is no �-formula
True�n� such that for every �-formula A,

True�g�A�� � A �3. 5. 14�

holds.
(II) Let Th�

Hs be second order theory with Henkin semantics and formal language �,
which

includes negation and has a Gödel numbering
g��� such that for every �-formula A�x� there is a formula B such that B � A�g�B��

holds.

Assume that Th�
Hs has a standard model Mst

Th�
Hs

and Con�Th�,st
Hs �,where

Th�,st
Hs � Th�

Hs � �Mst
Th�

Hs

�3. 5. 15�

Let T�be the set of Gödel numbers of the all �-sentences true in M. Then there is no
�-formula True�n� (truth predicate) which defines T�.That is, there is no �-formula
True�n� such that for every �-formula A,

True�g�A�� � A �3. 5. 16�

holds.
Remark 3 .5.9.Notice that the proof of Tarski’s undefinability theorem in this form is

again by simple reductio ad absurdum. Suppose that an �- formula True(n) defines T�.
In particular, if A is a sentence of Th� then True�g�A�� holds in � if and only if A is true in
Mst

Th� . Hence for all A, the Tarski T-sentence True�g�A�� � A is true in Mst
Th� . But the

diagonal lemma yields a counterexample to this equivalence, by giving a "Liar" sentence
S such that S � �True�g�S�� holds in Mst

Th� . Thus no �-formula True�n� can define T�.
Remark 3 .5.10.Notice that the formal machinery of this proof is wholly elementary

except for the diagonalization that the diagonal lemma requires. The proof of the
diagonal lemma is likewise surprisingly simple; for example, it does not invoke recursive



functions in any way. The proof does assume that every �-formula has a Gödel number,
but the specifics of a coding method are not required.

Remark 3 .5.11.The undefinability theorem does not prevent truth in one consistent
theory from being defined in a stronger theory. For example, the set of (codes for)
formulas of first-order Peano arithmetic that are true in � is definable by a formula in
second order arithmetic. Similarly, the set of true formulas of the standard model of
second order arithmetic (or n-th order arithmetic for any n) can be defined by a formula
in first-order ZFC.

Remark1. 3. 5. 12.Notice that it is widely believed on ubnormal part of mathematical
comunity that Tarski’s undefinability theorem blocking any possible definition of the

sets

i��,
�,
i,st,
i,st,
�,st,
�,Nst, and the sets ����,st. Correspondingly Tarski’s

undefinability
theorem blocking the biconditionals

�i � �i � �i  �i , i � �,

�� � �� � ��  ��,etc.
�3. 5. 17�

Thus in contrast with naive definition of the sets 
� and �� there is no any problem
which arises from Tarski’s undefinability theorem.
Remark 3 .5.13.(I) We define again the set 
� but now by using generalized truth
predicate True�

# �g�A�, A� such that

True��g�A�, A� � �i�Bewi�#A� � �Bewi�#A� � A�� �

True��g�A�� � �True��g�A�� � A� � A,

True��g�A�� � �iBewi�#A�.

�3. 5. 18�

holds.
(II) We define the set 
�,st using generalized truth predicate True�,st

# �g�A�, A� such that

True�,st�g�A�, A� � �i�Bewi,st�#A� � �Bewi,st�#A� � A�� �

True�,st�g�A�� � �True�,st�g�A�� � A� � A,

True�,st�g�A�� � �iBewi,st�#A�

�3. 5. 19�

holds.Thus in contrast with naive definition of the sets 
� and �� there is no any
problem

which arises from Tarski’s undefinability theorem.
(III) We define the set 
�,Nst using generalized truth predicate True�,Nst

# �g�A�, A� such
that

True�,Nst�g�A�, A� � �i�Bewi,Nst�#A� � �Bewi,Nst�#A� � A�� �

True�,Nst�g�A�� � �True�,Nst�g�A�� � A� � A,

True�,Nst�g�A�� � �iBewi,Nst�#A�

�3. 5. 20�

holds.Thus in contrast with naive definition of the sets 
�,Nst and ��,Nst there is no any
problem which arises from Tarski’s undefinability theorem.
Remark 3 .5.14.In order to prove that set theory ZFC2

Hs � �MZFC2
Hs

is inconsistent
without

any refference to the set 
�,notice that by the properties of the extension Th�
# follows



that
definition given by formula (1.5.18) is correct, i.e.,for every ZFC2

Hs-formula � such that
MZFC2

Hs
� � the following equivalence � � True��g���,�� holds.

Theorem 3 .5.2.(Generalized Tarski ’s undefinability theorem ) (see Part II, section
2,

Proposition 2.30).Let Th� be a first order theory or the second order theory with
Henkin

semantics and with formal language �,which includes negation and has a Gödel
encoding

g��� such that for every �-formula A�x� there is a formula B such that the equivalence
B � A�g�B�� � �A�g�B� � B�holds. Assume that Th� has an standard Model Mst

Th.
Then there is no �-formula True�n�, n � �, such that for every �-formula A such that
M � A, the following equivalence

A � True�g�A�� � �True�g�A�� � A� �3. 5. 21�

holds.
Theorem 3 .5.3. (i) Set theory Th1

#� ZFC2
Hs � �MZFC2

Hs
is inconsistent;

(ii) Set theory Th1,st
# � ZFC � �Mst

ZFC is inconsistent;(iii) Set theory Th1,Nst
# � ZFC � �MNst

ZFC

is
inconsistent; (see Part.II, section 2, Proposition 2.31.(i)-(iii)).
Proof .(i) Notice that by the properties of the extension Th�

# of the theory
ZFC2

Hs � �MZFC2
Hs

� Th1
# follows that

MZFC2
Hs

� � � Th�
# � �. �3. 5. 22�

Therefore formula (3.5.18) gives generalized "truth predicate" for the set theory
Th1

#.By
Theorem 3.5.2 one obtains a contradiction.
(ii) Notice that by the properties of the extension Th�,Nst

# of the theoryZFC � �Mst
ZFC �

Th1,st
# follows that

Mst
ZFC � � � Th�,st

# � �. �3. 5. 23�

Therefore formula (3.5.19) gives generalized "truth predicate" for the set theory
Th1,st

# .By
Theorem 3.5.2 one obtains a contradiction.
(iii) Notice that by the properties of the extension Th�,Nst

# of the theory
ZFC � �MNst

ZFC � Th1,st
# follows that

MNst
ZFC � � � Th�,Nst

# � �. �3. 5. 24�

Therefore (3.5.20) gives generalized "truth predicate" for the set theory Th1,Nst
# .By

Theorem 3.5.2 one obtains a contradiction.

Part II.Generalized Löbs Theorem.

1.

2.Generalized Löbs Theorem
Remark 2 .1.In this section we use second-order arithmetic Z2

Hs with Henkin semantics.



Notice that any standard model Mst
Z2

Hs

of second-order arithmetic Z2
Hs consists of a set � of

usual natural numbers (which forms the range of individual variables) together with a
constant 0 (an element of �), a function S from � to �, two binary operations � and · on
�, a binary relation � on �, and a collection D � 2� of subsets of �, which is the range of
the set variables. Omitting D produces a model of the first order Peano arithmetic.

When D � 2� is the full powerset of �, the model Mst
Z2 is called a full model. The use of

full second-order semantics is equivalent to limiting the models of second-order
arithmetic to the full models. In fact, the axioms of second-order arithmetic Z2

fss have only
one full model. This follows from the fact that the axioms of Peano arithmetic with the
second-order induction axiom have only one model under second-order semantics, see
section 3.

Let Th be some fixed, but unspecified, consistent formal theory. For later
convenience, we assume that the encoding is done in some fixed formal second order
theory S and that Th contains S.We assume throughout this paper that formal second
order theory S has an �-model M�

S .The sense in which S is contained in Th is better
exemplified than explained: if S is a formal system of a second order arithmetic Z2

Hs and
Th is, say, ZFC2

Hs, then Th contains S in the sense that there is a well-known
embedding, or interpretation, of S in Th. Since encoding is to take place in M�

S , it will
have to have a large supply of constants and closed terms to be used as codes. (e.g. in
formal arithmetic, one has 0, 1, . . . .) S will also have certain function symbols to be
described shortly.To each formula, �, of the language of Th is assigned a closed term,
���c, called the code of �. We note that if ��x� is a formula with free variable x, then
���x��c is a closed term encoding the formula ��x� with x viewed as a syntactic object
and not as a parameter. Corresponding to the logical connectives and quantifiers are the
function symbols, neg���, imp���, etc., such that for all formulae
�,� : S � neg����c� � ����c, S � imp����c, ���c� � ��  ��c etc. Of particular

importance is the substitution operator, represented by the function symbol sub��, ��. For
formulae ��x�, terms t with codes �t�c :

S � sub����x��c, �t�c� � ���t��c. �2. 1�

It is well known [8] that one can also encode derivations and have a binary relation
ProvTh�x, y� (read "x proves y " or "x is a proof of y") such that for closed t1, t2 : S
� ProvTh�t1, t2� iff t1 is the code of a derivation in Th of the formula with code t2 . It
follows that

Th � � iff S � ProvTh�t, ���c� �2. 2�

for some closed term t.Thus one can define

PrTh�y� � �xProvTh�x, y�, �2. 3�

and therefore one obtain a predicate asserting provability.
Remark 2 .2. (I)We note that it is not always the case that [8]:

Th � � iff S � PrTh����c�, �2. 4�

unless S is fairly sound,e.g. this is a case when S and Th replaced by S� � S � M�
Th and

Th� � Th � M�
Th correspondingly (see Designation 2.1 below).

(II)Notice that it is always the case that:



Th� � �� iff S� � PrTh����� �c�, �2. 5�

i.e. that is the case when predicate PrTh��y�, y � M�
Th :

PrTh��y� � �x�x � M�
Th�ProvTh��x, y� �2. 6�

really asserts provability.
It is well known [8] that the above encoding can be carried out in such a way that the

following important conditions D1, D2 and D3 are meet for all sentences [8]:

D1. Th � � implies S � PrTh����c�,

D2. S � PrTh����c�  PrTh��PrTh����c��c�,

D3. S � PrTh����c� � PrTh���  ��c�  PrTh����c�.

�2. 7�

Conditions D1, D2 and D3 are called the Derivability Conditions.
Remark 2 .3.From (2.5)-(2.6) follows that

D4. Th� � � iff S� � PrTh����� �c�,

D5. S� � PrTh����� �c� � PrTh���PrTh����� �c��c�,

D6. S� � PrTh����� �c� � PrTh�����  �� �c�  PrTh����� �c�.

�2. 8�

Conditions D4, D5 and D6 are called the Strong Derivability Conditions.
Definition 2 .1. Let � be well formed formula (wff) of Th. Then wff � is called
Th-sentence iff it has no free variables.
Designation 2 .1.(i) Assume that a theory Th has an �-model M�

Th and � is a
Th-sentence, then:
�M�

Th � � � M�
Th (we will write �� instead �M�

Th) is a Th-sentence � with all quantifiers
relativized to �-model M�

Th [11] and
Th� � Th �M�

Th is a theory Th relativized to model M�
Th, i.e., any Th�-sentence has the

form �� for some Th-sentence �.
(ii) Assume that a theory Th has a standard model Mst

Th and � is a
Th-sentence, then:
(iii) Assume that a theory Th has a non-standard model MNst

Th and � is a
Th-sentence, then:
�MNst

Th � � � MNst
Th (we will write �Nst instead �MNst

Th ) is a Th-sentence with all quantifiers

relativized to non-standard model MNst
Th ,and

ThNst � Th �MNst
Th is a theory Th relativized to model MNst

Th , i.e., any ThNst-sentence has a
form �Nst for some Th-sentence �.
(iv) Assume that a theory Th has a model M � MTh and � is a Th-sentence, then:
�MTh is a Th-sentence with all quantifiers relativized to model MTh,and
ThM is a theory Th relativized to model MTh, i.e. any ThM-sentence has a form �M for
some Th-sentence �.
Designation 2 .2. (i) Assume that a theory Th with a lenguage � has an �-model M�

Th

and
there exists Th-sentence S� such that: (a) S� expressible by lenguage � and (b)

S�asserts
that Th has a model M�

Th;we denote such Th-sentence S� by Con�Th; M�
Th�.

(ii) Assume that a theory Th with a lenguage � has a non-standard model MNst
Th and

there



exists Th-sentence S� such that: (a) S� expressible by lenguage � and (b) S� asserts
that Th has a non-standard model MNst

Th ;we denote such Th-sentence S� by
Con�Th; MNst

Th �.
(iii) Assume that a theory Th with a lenguage � has an model MTh and there exists
Th-sentence S� such that: (a) S� expressible by lenguage � and (b) S� asserts that

Th
has a model MTh;we denote such Th-sentence S� by Con�Th; MTh�
Remark 2. 4. We emphasize that: (i) it is well known that there exist a ZFC-sentence
Con�ZFC; MZFC� [10],[11],(ii) obviously there exists a ZFC2

Hs-sentence
Con ZFC2

Hs; MZFC2
Hs

and there exists a Z2
Hs-sentence Con Z2

Hs; MZ2
Hs

.

Designation 2 .3. Let Con�Th� be the formula:

Con�Th� �

�t1�t1 � M�
Th��t1

� �t1
� � M�

Th��t2�t2 � M�
Th��t2

� �t2
� � M�

Th�

��ProvTh�t1, ���c� � ProvTh�t2, neg����c���,

t1
� � ���c, t2

� � neg����c�

or

Con�Th� �

���t1�t1 � M�
Th��t2�t2 � M�

Th���ProvTh�t1, ���c� � ProvTh�t2, neg����c���

�2. 9�

and where t1, t1
� , t2, t2

� is a closed term.

Lemma 2 .1. (I) Assume that: (i) Con�Th; MTh�, (ii) MTh � Con�Th� and
(iii) Th � PrTh����c�,where � is a closed formula.Then Th � PrTh�����c�,

(II) Assume that: (i) Con�Th; M�
Th� (ii) M�

Th � Con�Th� and (iii) Th� � PrTh����� �c�,
where
�� is a closed formula.Then Th� � PrTh������ �c�.

Proof . (I) Let ConTh��� be the formula :

ConTh��� �

�t1�t1 � M�
Th��t2�t2 � M�

Th���ProvTh�t1, ���c� � ProvTh�t2, neg����c���,

�t1�t1 � M�
Th��t2�t2 � M�

Th���ProvTh�t1, ���c� � ProvTh�t2, neg����c����

�	��t1�t1 � M�
Th���t2�t2 � M�

Th��ProvTh�t1, ���c� � ProvTh�t2, neg����c���
.

�2. 10�

where t1, t2 is a closed term. From (i)-(ii) follows that theory Th �Con�Th� is consistent.

We note that Th �Con�Th� � ConTh��� for any closed �. Suppose that
Th � PrTh�����c�, then (iii) gives

Th � PrTh����c� � PrTh�����c�. �2. 11�

From (2.3) and (2.11) we obtain

�t1�t2�ProvTh�t1, ���c� � ProvTh�t2, neg����c���. �2. 12�

But the formula (2.10) contradicts the formula (2.12). Therefore Th � PrTh�����c�.
(II) This case is trivial becourse formula PrTh������ �c� by the Strong Derivability



Condition D4,see formulae (2.8), really asserts provability of the Th�-sentence ���.But
this is a contradiction.

Lemma 2 .2. (I) Assume that: (i) Con�Th; MTh�, (ii) MTh � Con�Th� and
(iii) Th � PrTh�����c�,where � is a closed formula.Then Th � PrTh����c�,

(II) Assume that: (i) Con�Th; M�
Th� (ii) M�

Th � Con�Th� and (iii) Th� � PrTh������ �c�,
where �� is a closed formula.Then Th� � PrTh����� �c�.
Proof . Similarly as Lemma 2.1 above.
Example 2 .1. (i) Let Th � PA be Peano arithmetic and � � 0 � 1. Then obviously
by Löbs theorem PA � PrPA�0 � 1�, and therefore by Lemma 2.1 PA � PrPA�0 � 1�.

(ii) Let PA�� PA � �Con�PA� and � � 0 � 1. Then obviously by Löbs theorem

PA� � PrPA��0 � 1�,

and therefore

PA� � PrPA��0 � 1�.

However obviously

PA� � �PrPA�0 � 1�� � �PrPA�0 � 1��.

Remark 2 .5.Notice that there is no standard model of PA�.
Assumption 2 .1. Let Th be a first order a second order theory with the Henkin

semantics. We assume now that:
(i) the language of Th consists of:
numerals 0,1,...
countable set of the numerical variables: 	v0, v1, . . . 

countable set � of the set variables: � � 	x, y, z, X, Y, Z,
,�, . . . 

countable set of the n-ary function symbols: f0

n, f1
n, . . .

countable set of the n-ary relation symbols: R0
n, R1

n, . . .
connectives: �,
quantifier:�.
(ii) Th contains ZFC2

Hs or ZFC
(iii) Th has an �-model M�

Th or
(iv) Th has a nonstandard model MNst

Th �PA�.
Definition 2 .1. A Th-wff � (well-formed formula �) is closed - i.e. � is a sentence - if it
has no free variables; a wff is open if it has free variables.We’ll use the slang ‘k-place
open wff’ to mean a wff with k distinct free variables.
Definition 2 .2.We will say that,Th�

# is a nice theory or a nice extension of the Th iff
the

following
(i) Th�

# contains Th;
(ii) Let � be any closed formula of Th, then Th � PrTh����c� implies Th�

# � �;
(iii) Let �� be any closed formula of Th�

# , then M�
Th � �� implies Th�

# � ��, i.e.
Con�Th � ��; M�

Th� implies Th�
# � ��.

Remark 2 .6.Notice that formulae Con�Th � ��; M�
Th� and Con�Th�

# � ��; M�
Th� are

expressible in Th�
# .

Definition 2 .3.Let L be a classical propositional logic L. Recall that a set Δ of L-wff’s is
said to be L-consistent, or consistent for short, if � � � and there are other equivalent
formulations of consistency:(1) Δ is consistent, (2) Ded�Δ� :� 	A � Δ � A
 is not the



set
of all wff’s,(3) there is a formula such that Δ � A. (4) there are no formula A such that
Δ � A and Δ � �A.
We will say that,Th�

# is a maximally nice theory or a maximally nice extension of the
Th iff

Th�
# is consistent and for any consistent nice extension Th�

#� of the Th :
Ded�Th�

# � 	 Ded�Th�
#�� implies Ded�Th�

# � � Ded�Th�
#��.

Remark 2 .7. We note that a theory Th�
# depend on model M�

Th or MNst
Th , i.e.

Th�
# � Th�

# �M�
Th � or Th�

# � Th�
# �MNst

Th � correspondingly. We will consider now the case
Th�

# � Th�
# �M�

Th � without loss of generality.
Remark 2 .8.a. Notice that in order to prove the statements: (i) �Con�ZFC2

Hs; M�
Th�,

(ii) �Con�ZFC; M�
Th� the following Proposition 2.1 is not necessary, see Proposition

2.18.
Proposition 2 .1.(Generalized Löbs Theorem ).
(I) Assume that:

(i) Con�Th�,where predicate Con�Th� defined by formula 2.9
(ii) Th has an �-model M�

Th, and
(iii) the statement �M�

Th is expressible by lenguage of Th as a single sentence of Th.
Then theory Th can be extended to a maximally consistent nice theory
Th�,st

# � Th�,st
# �M�

Th �.Below we write for short Th�,st
# � Th�

# � Th�
# �M�

Th �.
Remark 2 .8.b. We emphasize that (iii) valid for ZFC despite the fact that the axioms
of ZFC are infinite, see [10] Chapter II,section 7,p.78.
(II) Assume that:

(i) Con�Th� ,where predicate Con�Th� defined by formula 2.9,
(ii ) Th has an �-model M�

Th and
(iii) the statement �M�

Th is expressible by lenguage of Th as a single sentence of Th.
Then theory Th� � Th �M�

Th can be extended to a maximally consistent nice theory
Th�

# .
(III) Assume that:

(i) Con�Th� ,where predicate Con�Th� defined by formula 2.9,
(ii) Th has a nonstandard model MNst

Th �PA� and
(iii) the statement �MNst

Th �PA� is expressible by lenguage of Th as a single sentence of
Th.

Then theory Th can be extended to a maximally consistent nice theory
Th�,Nst

# � Th�,Nst
# �MNst

Th �.
Remark 2 .8.c. We emphasize that (iii) valid for ZFC despite the fact that the axioms
of ZFC are infinite, see [10] Ch.II,section 7,p.78.
Proof .(I) Let �1. . . �i. . . be an enumeration of all closed wff’s of the theory Th (this

can
be achieved if the set of propositional variables can be enumerated). Define a chain
	 � 	Thi,st

# |i � �
, Th1,st
# � Th of consistent theories inductively as follows: assume

that
theory Thi,st

# is defined. Notice that below we write for short Thi,st
# � Thi

#.
(i) Suppose that the statement (2.13) is satisfied



Thi
# � PrTh i

#���i �c� � �Thi
# � �i � and M�

Th � �i. �2. 13�

Then we define a theory Thi�1
# as follows Thi�1

# � Thi
# � 	�i
.We will rewrite the

condition
(2.13) using predicate PrTh i�1

#
# ��� symbolically as follows:

Thi�1
# � PrTh i�1

#
# ���i �c�,

PrTh i�1
#

# ���i �c� � PrTh i
#���i �c� � �M�

Th � �i �,

M�
Th � �i � Con�Thi

# ��i; M�
Th�,

i.e.

PrTh i�1
#

# ���i �c� � PrTh i
#���i �c� � Con�Thi��i; M�

Th�,

PrTh i�1
#

# ���i �c� � PrTh i�1
# ���i �c�,

PrTh i�1
# ���i �c� � �i,

PrTh i�1
#

# ���i �c� � �i.

�2. 14�

(ii) Suppose that the statement (2.15) is satisfied

Thi
# � PrTh i

#����i �c� � �Thi
# � ��i � and M�

Th � ��i. �2. 15�

Then we define a theory Thi�1
# as follows Thi�1

# � Thi
# � 	�i
.We will rewrite the

condition
(2.15) using predicate PrTh i�1

#
# ���, symbolically as follows:

Thi�1
# � PrTh i�1

#
# ����i �c�,

PrTh i�1
#

# ����i �c� � PrTh i
#����i �c� � �M�

Th � ��i �,

M�
Th � ��i � Con�Thi

#���i; M�
Th�,

i.e.

PrTh i�1
#

# ����i �c� � PrTh i
#����i �c� � Con�Thi���i; M�

Th�,

PrTh i�1
#

# ����i �c� � PrTh i�1
# ����i �c�,

PrTh i�1
# ����i �c� � ��i,

PrTh i�1
#

# ���i �c� � ��i.

�2. 16�

(iii) Suppose that the statement (2.17) is satisfied

Thi
# � PrTh i

#���i �c� and �Thi
# � �i � � �M�

Th � �i �. �2. 17�

Then we define a theory Thi�1
# as follows Thi�1

# � Thi
# � 	�i
.Using Lemma 2.1and

predicate PrTh i�1
#

# ���,we will rewrite the condition (2.17) symbolically as follows:



Thi�1
# � PrTh i�1

#
# ���i �c�,

PrTh i�1
#

# ���i �c� � PrTh i
#���i �c� � �M�

Th � �i �,

M�
Th � �i � Con�Thi

#��i; M�
Th�,

i.e.

PrTh i�1
#

# ���i �c� � PrTh i
#���i �c� � Con�Thi��i; M�

Th�,

PrTh i�1
#

# ���i �c� � PrTh i�1
# ���i �c�,

PrTh i�1
# ���i �c� � �i,

PrTh i�1
#

# ���i �c� � �i.

�2. 18�

Remark 2 .9.Notice that predicate PrTh i�1
#

# ���i �c� is expressible in Thi
# because Thi

# is a

finite extension of the recursive theory Th and Con�Thi
#��i; MTh� � Thi

#.

(iv) Suppose that a statement (2.19) is satisfied

Thi
# � PrTh i

#����i �c� and �Thi
# � ��i � � �M�

Th � ��i �. �2. 19�

Then we define theory Thi�1
# as follows: Thi�1

# � Thi
# � 	��i
. Using Lemma 2.2 and

predicate PrTh i�1
#

# ���,we will rewrite the condition (2.15) symbolically as follows

Thi
# � PrTh i

#
# ����i �c� ,

PrTh i
#

# ����i �c� � PrTh i
#����i �c� � �M�

Th � ��i �,

M�
Th � ��i � Con�Thi

#���i; M�
Th�,

i.e.

PrTh i
#

# ����i �c� � PrTh i
#����i �c� � Con�Thi

#���i; M�
Th�,

PrTh i�1
#

# ���i �c� � PrTh i�1
# ���i �c�,

PrTh i�1
# ���i �c� � �i,

PrTh i�1
#

# ���i �c� � �i.

�2. 20�

Remark 2 .10. Notice that predicate PrTh i
#

# ����i �c� is expressible in Thi
# because Thi

# is

a finite extension of the recursive theory Th and Con�Thi
# ���i; M�

Th� � Thi
#.

(v) Suppose that the statement (2.21) is satisfied

Thi
# � PrTh i

#���i �c� and Thi
# � PrTh i

#���i �c� � �i. �2. 21�

We will rewrite now the conditions (2.21) symbolically as follows

Thi
# � PrTh i

#
� ���i �c�

PrTh i
#

� ���i �c� � PrTh i
#���i �c� � PrTh i

#���i �c� � �i

�2. 22�

Then we define a theory Thi�1
# as follows: Thi�1

# � Thi
#.

(iv) Suppose that the statement (2.23) is satisfied

Thi
# � PrTh i

#����i �c� and Thi
# � PrTh i

#����i �c� � ��i. �2. 23�



We will rewrite now the condition (2.23) symbolically as follows

Thi
# � PrTh i

#
� ����i �c�

PrTh i
#

� ����i �c� � PrTh i
#����i �c� � PrTh i

#����i �c� � ��i

�2. 24�

Then we define a theory Thi�1
# as follows: Thi�1

# � Thi
#.We define now a theory Th�

# as
follows:

Th�
# � �

i��
Thi

#. �2. 25�

First, notice that each Thi
# is consistent. This is done by induction on i and by Lemmas

2.1-2.2. By assumption, the case is true when i � 1.Now, suppose Thi
# is consistent.

Then its deductive closure Ded�Thi
#� is also consistent. If the statement (2.14) is

satisfied,i.e. Thi�1
# � PrTh i�1

#
# ���i �c� and Thi�1

# � �i, then clearly Thi�1
# � Thi

# � 	�i
 is

consistent since it is a subset of closure Ded�Thi�1
# �. If a statement (2.16) is satisfied,i.e.

Thi�1
# � PrTh i�1

#
# ����i �c� and Thi�1

# � ��i, then clearly Thi�1
# � Thi

# � 	��i
 is consistent

since it is a subset of closure Ded�Thi�1
# �. If the statement (2.18) is satisfied,i.e.

Thi
# � PrTh i

#���i �c� and �Thi
# � �i � � �M�

Th � �i � then clearly Thi�1
# � Thi

# � 	�i
 is

consistent by Lemma 2.1 and by one of the standard properties of consistency: � � 	A

is consistent iff � � �A. If the statement (2.20) is satisfied,i.e. Thi

# � PrTh i
#����i �c� and

�Thi
# � ��i � � �M�

Th � ��i � then clearly Thi�1
# � Thi

# � 	��i
 is consistent by Lemma
2.2 and by one of the standard properties of consistency: � � 	�A
 is consistent iff
� � A.Next, notice Ded�Th�

# � is maximally consistent nice extension of the
Ded�Th�. Ded�Th�

# � is consistent because, by the standard Lemma 2.3 below, it is the
union of a chain of consistent sets. To see that Ded�Th�

# � is maximal, pick any wff �.

Then � is some �i in the enumerated list of all wff’s. Therefore for any � such that
Thi � PrTh i����c� or Thi

# � PrTh i
#�����c�, either � � Th�

# or �� � Th�
# .Since

Ded�Thi�1
# � 	 Ded�Th�

# �, we have � � Ded�Th�
# � or �� � Ded�Th�

# �,which implies that
Ded�Th�

# � is maximally consistent nice extension of the Ded�Th�.

Proof .(II) Let ��,1. . . ��,i. . . be an enumeration of all closed wff’s of the theory Th�

(this can be achieved if the set of propositional variables can be enumerated). Define a
chain 	 � 	Th�,i

# |i � �
, Th�,1
# � Th� of consistent theories inductively as follows:

assume that theory Th�,i
# is defined.

(i) Suppose that a statement (2.26) is satisfied

Th�,i
# � PrTh�,i

# ����,i �c� and M�
Th � �i. �2. 26�

Then we define a theory Th�,i�1
# as follows

Th�,i�1
# � Th�,i

# � 	��,i
. �2. 27�

We will rewrite now the conditions (2.26) and (2.27) symbolically as follows

Th�,i�1
# � PrTh�,i�1

# ����,i �c� � Th�,i�1
# � ��,i,

PrTh�,i�1
#

# ���i �c� � PrTh�,i�1
# ���i �c� � ��,i.

�2. 28�

(ii) Suppose that a statement (2.29) is satisfied



Th�,i
# � PrTh�,i

# �����,i �c� and M�
Th � ��i. �2. 29�

Then we define theory Th�,i�1
# as follows:

Th�,i�1
# � Th�,i

# � 	���,i
. �2. 30�

We will rewrite the conditions (2.25) and (2.26) symbolically as follows

Th�,i�1 � PrTh�,i�1�����,i �c� � Th�,i�1 � ���,i,

PrTh�,i�1
# ����i �c� � PrTh�,i�1����i �c�.

�2. 31�

(iii) Suppose that the following statement (2.32) is satisfied

Th�,i � PrTh�,i����,i �c�, �2. 32�

and therefore by Derivability Conditions (2.8)

Th�,i � ��,i. �2. 33�

We will rewrite now the conditions (2.28) and (2.29) symbolically as follows

PrTh�,i
� ����,i �c� � Th�,i � PrTh�,i����,i �c� �2. 34�

Then we define a theory Th�,i�1 as follows: Th�,i�1 � Th�,i.
(iv) Suppose that the following statement (2.35) is satisfied

Th�,i � PrTh�,i�����,i �c�, �2. 35�

and therefore by Derivability Conditions (2.8)

Th�,i � ���,i. �2. 36�

We will rewrite now the conditions (2.35) and (2.36) symbolically as follows

PrTh�,i
� �����,i �c� � Th�,i � PrTh�,i�����,i �c� �2. 37�

Then we define a theory Th�,i�1 as follows: Th�,i�1 � Th�,i.We define now a theory
Th�;�

# as follows:

Th�;�
# � �

i��
Th�,i. �2. 38�

First, notice that each Th�,i is consistent. This is done by induction on i.Now, suppose
Th�,i is consistent. Then its deductive closure Ded�Th�,i� is also consistent. If statement
(2.22) is satisfied,i.e. Th�,i � PrTh�,i����,i �c� and M�

Th � �i then clearly
Th�,i�1 � Th�,i � 	��,i
 is consistent.If statement (2.25) is satisfied,i.e.
Th�,i� PrTh�,i�����,i �c� and M�

Th � ��i, then clearly Th�,i�1 � Th�,i � 	���,i
 is
consistent. If the statement (2.28) is satisfied,i.e. Th�,i � PrTh�,i����,i �c�, then clearly
Th�,i�1 � Th�,i is also consistent. If the statement (2.35) is satisfied,i.e.
Th�,i � PrTh�,i�����,i �c�, then clearly Th�,i�1 � Th�,i is also consistent.Next, notice
Ded�Th�;�

# � is a maximally consistent nice extension of the Ded�Th�;��.The set
Ded�Th�;�

# � is consistent because, by the standard Lemma 2.3 belov, it is the union of a
chain of consistent sets.

Lemma 2 .3. The union of a chain 	 � 	�i|i � �
 of consistent sets �i, ordered by 	,
is



consistent.
Definition 2 .4. (I) We define now predicate PrTh�

# ����c� and predicate PrTh�
# �����c�

asserting provability in Th�
# by the following formulae

PrTh�
# ����c� � �i�� � Thi

#� PrTh i
#

# ����c� � PrTh i
#

� ����c� �

���� � Th�
# � � Con�Th�

# ��; M�
Th��,

Con�Th�
# ��; M�

Th� �

PrTh�
# �����c� � �i�� � Thi

#� PrTh i
#

# �����c� � PrTh i
#

� �����c� �

���� � Th�
# � � Con�Th�

# ���; M�
Th��,

Con�Th�
# ���; M�

Th� �

�2. 39�

(II) We define now predicate PrTh�;�
# ���� �c� and predicate PrTh�;�

# ����� �c�

asserting provability in Th�;�
# by the following formulae

PrTh�;�
# ���� �c� �

�i��� � Th�,i
# � PrTh�,i

#
# ���� �c� � PrTh�,i

#
� ���� �c� �

����� � Th�;�
# � � Con�Th�;�

# ���; M�
Th��,

Con�Th�;�
# ���; M�

Th� �

PrTh�;�
# ����� �c� �

�i��� � Th�,i
# � PrTh�,i

#
# ����� �c� � PrTh�,i

#
� ����� �c� �

����� � Th�;�
# � � Con�Th�;�

# � ���; M�
Th��,

Con�Th�;�
# � ���; M�

Th� �

�2. 40�

Remark 2 .11.(I) Notice that both predicate PrTh�
# ����c� and predicate PrTh�

# �����c�
are

expressible in Th�
# because for any i � �, Thi

# is an finite extension of the recursive
theory

Th and Con�Thi
#��; MTh� � Thi, Con�Thi

#���; MTh� � Thi.

(II) Notice that both predicate PrTh�;�
# ���� �c� and predicate PrTh�;�

# ����� �c� are

expressible
in Th�;�

# because for any i � �, Th�,i
# is an finite extension of the recursive theory Th�

and
Con�Th�,i

# ���; MTh� � Th�,i
# , Con�Th�,i

# ����; MTh� � Th�,i
# .

Definition 2 .5.Let � � ��x� be one-place open Th-wff such that the following
condition:

Th � Th1
# � �!x����x��� �2. 41�

is satisfied.
Remark 2 .12.We rewrite now the condition (2.41) using only the language of the

theory
Th1

# :



	Th1
# � �!x����x���
 � PrTh1

#���!x����x����c� �

� PrTh1
#���!x����x����c� � �!x����x��� .

�2. 42�

Definition 2 .6. We will say that, a set y is a Th1
#-set if there exist one-place open wff

��x�
such that y � x�. We write y�Th1

# � iff y is a Th1
#-set.

Remark 2 .13. Note that

y�Th1
# � � �� �y � x�� � PrTh1

#���!x����x����c�

PrTh1
#���!x����x����c� � �!x����x��� .

�2. 43�

Definition 2 .7.Let 
1 be a collection such that :

�x x � 
1 � x is a Th1
#-set . �2. 44�

Proposition 2 .2. Collection 
1 is a Th1
#-set.

Proof . Let us consider an one-place open wff ��x� such that conditions (2.41) are
satisfied, i.e. Th1

# � �!x����x���.We note that there exists countable collection �� of
the

one-place open wff’s �� � 	�n�x�
n�� such that: (i) ��x� � �� and (ii)

Th � Th1
# � �!x�����x��� � 	�n�n � �����x�� � �n�x���
�

or in the equivalent form

Th � Th1
# �

PrTh1
#���!x����x����c� �

PrTh1
#���!x����x����c� � �!x����x��� �

PrTh1
#���n�n � �����x�� � �n�x����c� �

PrTh1
#���n�n � �����x�� � �n�x����c� � �n�n � �����x�� � �n�x���

�2. 45�

or in the following equivalent form

Th1
# � �!x1���1�x1�� � 	�n�n � ����1�x1� � �n,1�x1��
�

or

Th1
# �

PrTh1
#���!x1��x1��c� �

PrTh1
#���!x1��x1��c� � �!x1��x1� �

PrTh1
#���n�n � �����x1� � �n�x1���c� �

PrTh1
#���n�n � �����x1� � �n�x1���c� � �n�n � �����x1� � �n�x1��,

�2. 46�

where we have set ��x� � �1�x1�,�n�x1� � �n,1�x1� and x� � x1. We note that any
collection ��k � 	�n,k�x�
n��, k � 1, 2, . . . such as mentioned above, defines an unique
set x�k , i.e. ��k1

���k2
� 
 iff x�k1

� x�k2
.We note that collections ��k , k � 1, 2, . . are

not a part of the ZFC2
Hs or ZFC,i.e. collection ��k is not a set in sense of ZFC2

Hs or ZFC.
However this is no problem, because by using Gödel numbering one can to replace any
collection ��k , k � 1, 2, . . by collection �k � g���k � of the corresponding Gödel numbers



such that

�k � g���k � � 	g��n,k�xk��
n��, k � 1, 2, . . . . �2. 47�

It is easy to prove that any collection �k � g���k �, k � 1, 2, . . is a Th1
#-set.This is done

by Gödel encoding [7],[10] (2.47), by the statament (2.45) and by axiom schemata of
separation [10]. Let gn,k � g��n,k�xk��, k � 1, 2, . . be a Gödel number of the wff �n,k�xk�.
Therefore g��k� � 	gn,k
n��, where we have set �k � ��k , k � 1, 2, . . and

�k1�k2�	gn,k1
n�� � 	gn,k2
n�� � 
 � xk1 � xk2 �. �2. 48�

Let 		gn,k
n��
k�� be a family of the sets 	gn,k
n��, k � 1, 2, . . . .By the axiom of choice
[10] one obtains unique set 
1

� � 	gk
k�� such that �k�gk � 	gn,k
n�� �.Finally one obtains
a set 
1 from the set 
1

� by the axiom schema of replacement [10].

Proposition 2 .3. Any collection �k � g���k �, k � 1, 2, . . is a Th1
#-set.

Proof . We define gn,k � g��n,k�xk�� � ��n,k�xk��c, vk � �xk �c. Therefore
gn,k � g��n,k�xk�� � Fr�gn,k, vk� (see [7]). Let us define now predicate ��gn,k, vk�

��gn,k, vk� � PrTh1
#���!xk��1,k�x1���c� �

��!xk�vk � �xk �c� �n�n � �� PrTh1
#����1,k�xk���c� � PrTh1

#�Fr�gn,k, vk�� .
�2. 49�

We define now a set �k such that

�k � �k
� � 	gk
,

�n�n � ���gn,k � �k
� � ��gn,k, vk��

�2. 50�

Obviously definitions (2.45) and (2.50) are equivalent.
Definition 2 .7.We define now the following Th1

#-set �1 � 
1 :

�x x � �1 � �x � 
1� � PrTh1
#��x  x�c� � PrTh1

#��x  x�c� � x  x . �2. 51�

Proposition 2 .4. (i) Th1
# � ��1, (ii) �1 is a countable Th1

#-set.
Proof .(i) Statement Th1

# � ��1 follows immediately from the statement �
1 and the
axiom schema of separation [4], (ii) follows immediately from countability of a set

1.Notice that �1 is nonempty countable set such that � � �1, because for any

n � � :
Th1

# � n  n.
Proposition 2 .5. A set �1 is inconsistent.
Proof .From formula (2.51) we obtain

Th1
# � �1 � �1 � PrTh1

#���1  �1 �c� � PrTh1
#���1  �1 �c� � �1  �1 . �2. 52�

From (2.52) we obtain

Th1
# � �1 � �1 � �1  �1 �2. 53�

and therefore

Th1
# � ��1 � �1� � ��1  �1�. �2. 54�

But this is a contradiction.
Definition 2 .8. Let � � ��x� be one-place open Th-wff such that the following



condition:

Thi
# � �!x����x��� �2. 55�

is satisfied.
Remark 2 .14.We rewrite now the condition (2.55) using only the lenguage of the

theory
Thi

# :

	Thi
# � �!x����x���
 � PrTh i

#���!x����x����c� �

� PrTh i
#���!x����x����c� � �!x����x��� .

�2. 56�

Definition 2 .9. We will say that, a set y is a Thi
#-set if there exist one-place open wff

��x�
such that y � x�. We write y�Thi

# � iff y is a Thi
#-set.

Remark 2 .15. Note that

y�Thi
# � � �� �y � x�� � PrTh i

#���!x����x����c�

PrTh i
#���!x����x����c� � �!x����x��� .

�2. 57�

Definition 2 .10.Let 
i be a collection such that :

�x x � 
i � x is a Thi
#-set . �2. 58�

Proposition 2 .6. Collection 
i is a Thi
#-set.

Proof . Let us consider an one-place open wff ��x� such that conditions (2.51) are
satisfied, i.e. Thi

# � �!x����x���.We note that there exists countable collection �� of
the one-place open wff’s �� � 	�n�x�
n�� such that: (i) ��x� � �� and (ii)

Thi
# � �!x�����x��� � 	�n�n � �����x�� � �n�x���
�

or in the equivalent form

Thi
# � PrTh i

#���!x����x����c� �

PrTh i
#���!x����x����c� � �!x����x��� �

PrTh i
#���n�n � �����x�� � �n�x����c� �

PrTh i
#���n�n � �����x�� � �n�x����c� � �n�n � �����x�� � �n�x���

�2. 59�

or in the following equivalent form

Thi
# � �!x1���1�x1�� � 	�n�n � ����1�x1� � �n,1�x1��
�

or

Thi
# �

PrTh i
#���!x1��x1��c� �

PrTh i
#���!x1��x1��c� � �!x1��x1� �

PrTh i
#���n�n � �����x1� � �n�x1���c� �

PrTh i
#���n�n � �����x1� � �n�x1���c� � �n�n � �����x1� � �n�x1��.

�2. 60�

where we have set ��x� � �1�x1�,�n�x1� � �n,1�x1� and x� � x1. We note that any
collection ��k � 	�n,k�x�
n��, k � 1, 2, . . . such as mentioned above, defines an unique



set x�k , i.e. ��k1
���k2

� 
 iff x�k1
� x�k2

.We note that collections ��k , k � 1, 2, . . are

not a part of the ZFC2
Hs, i.e. collection ��k there is no set in the sense of ZFC2

Hs. However
that is no problem, because by using Gödel numbering one can to replace any collection
��k , k � 1, 2, . . by collection �k � g���k � of the corresponding Gödel numbers such that

�k � g���k � � 	g��n,k�xk��
n��, k � 1, 2, . . . . �2. 61�

It is easy to prove that any collection �k � g���k �, k � 1, 2, . . is a Thi
#-set.This is done

by Gödel encoding [7],[10] (2.61), by the statament (2.55) and by the axiom schema of
separation [10]. Let gn,k � g��n,k�xk��, k � 1, 2, . . be a Gödel number of the wff �n,k�xk�.
Therefore g��k� � 	gn,k
n��, where we have set �k � ��k , k � 1, 2, . . and

�k1�k2�	gn,k1
n�� � 	gn,k2
n�� � 
 � xk1 � xk2 �. �2. 62�

Let 		gn,k
n��
k�� be a family of the all sets 	gn,k
n��. By axiom of choice [10] one
obtains a unique set 
i

� � 	gk
k�� such that �k�gk � 	gn,k
n�� �.Finally for any i � � one
obtains a set 
i from the set 
i

� by the axiom schema of replacement [10].

Proposition 2 .8. Any collection �k � g���k �, k � 1, 2, . . is a Thi
#-set.

Proof . We define gn,k � g��n,k�xk�� � ��n,k�xk��c, vk � �xk �c. Therefore
gn,k � g��n,k�xk�� � Fr�gn,k, vk� (see [7]). Let us define now predicate �i�gn,k, vk�

�i�gn,k, vk� � PrTh i
#���!xk��1,k�x1���c� �

��!xk�vk � �xk �c� �n�n � �� PrTh i
#����1,k�xk���c� � PrTh i

#�Fr�gn,k, vk�� .
�2. 63�

We define now a set �k such that

�k � �k
� � 	gk
,

�n�n � ���gn,k � �k
� � �i�gn,k, vk��.

�2. 64�

Obviously definitions (2.59) and (2.64) are equivalent.
Definition 2 .11.We define now the following Thi

#-set �i � 
i :

�x x � �i � �x � 
i� � PrTh i
#��x  x�c� � PrTh i

#��x  x�c� � x  x . �2. 65�

Proposition 2 .9. (i) Thi
# � ��i, (ii) �i is a countable Thi

#-set,i � �.
Proof .(i) Statement Thi

# � ��i follows immediately by using statement �
i and axiom
schema of separation [4]. (ii) follows immediately from countability of a set 
i.
Proposition 2 .10. Any set �i, i � � is inconsistent.
Proof .From the formula (2.65) we obtain

Thi
# � �i � �i � PrTh i

#���i  �i �c� � PrTh i
#���i  �i �c� � �i  �i . �2. 66�

From the formla (2.66) we obtain

Thi
# � �i � �i � �i  �i �2. 67�

and therefore

Thi
# � ��i � �i� � ��i  �i�. �2. 68�

But this is a contradiction.
Definition 2 .12. A Th�

# -wff �� that is: (i) Th-wff � or (ii) well-formed formula �� which
contains predicate PrTh�

# ����c� given by formula (2.39).An Th�
# -wff �� (well-formed

formula ��) is closed - i.e. �� is a sentence - if it has no free variables; a wff is open if
it



has free variables.
Definition 2 .13.Let � � ��x� be one-place open Th�

# -wff such that the following
condition:

Th�
# � �!x����x��� �2. 69�

is satisfied.
Remark 2 .16.We rewrite now the condition (2.69) using only the lenguage of the

theory Th�
# :

	Th�
# � �!x����x���
 � PrTh�

# ���!x����x����c� �

�	PrTh�
# ���!x����x����c� � �!x����x���
.

�2. 70�

Definition 2 .14.We will say that, a set y is a Th�
# -set if there exists one-place open wff

��x� such that y � x�. We write y�Th�
# � iff y is a Th�

# -set.

Definition 2 .15. Let 
� be a collection such that : �x x � 
� � x is a Th�
# -set .

Proposition 2 .11. Collection 
� is a Th�
# -set.

Proof . Let us consider an one-place open wff ��x� such that condition (2.69) is
satisfied, i.e. Th�

# � �!x����x���.We note that there exists countable collection �� of
the one-place open wff’s �� � 	�n�x�
n�� such that: (i) ��x� � �� and (ii)

Th�
# � �!x�����x��� � 	�n�n � �����x�� � �n�x���
�

or in the equivalent form

Th�
# � PrTh�

# ���!x����x����c� �

	PrTh�
# ���!x����x����c� � �!x����x���
 �

�PrTh�
# ���n�n � �����x�� � �n�x����c�� �

PrTh�
# ���n�n � �����x�� � �n�x����c� � �n�n � �����x�� � �n�x���

�2. 71�

or in the following equivalent form

Th�
# � �!x1���1�x1�� � 	�n�n � ����1�x1� � �n,1�x1��
�

or

Th�
# � PrTh i

#���!x1��x1��c� �

	PrTh�
# ���!x1��x1��c� � �!x1��x1�
 �

PrTh i
#���n�n � �����x1� � �n�x1���c� �

PrTh i
#���n�n � �����x1� � �n�x1���c� � �n�n � �����x1� � �n�x1��.

�2. 72�

where we set ��x� � �1�x1�,�n�x1� � �n,1�x1� and x� � x1. We note that any collection
��k � 	�n,k�x�
n��, k � 1, 2, . . . such as mentioned above defines a unique set x�k , i.e.
��k1

���k2
� 
 iff x�k1

� x�k2
.We note that collections ��k , k � 1, 2, . . are not a part of

the ZFC2
Hs, i.e. collection ��k there is no set in sense of ZFC2

Hs. However that is not a
problem, because by using Gödel numbering one can to replace any collection
��k , k � 1, 2, . . by collection �k � g���k � of the corresponding Gödel numbers such that

�k � g���k � � 	g��n,k�xk��
n��, k � 1, 2, . . . . �2. 73�

It is easy to prove that any collection �k � g���k �, k � 1, 2, . . is a Th#-set.This is done by
Gödel encoding [8],[10] by the statament (2.66) and by axiom schema of separation [9].



Let gn,k � g��n,k�xk��, k � 1, 2, . . be a Gödel number of the wff �n,k�xk�. Therefore
g��k� � 	gn,k
n��, where we have set �k � ��k , k � 1, 2, . . and

�k1�k2�	gn,k1
n���	gn,k2
n�� � 
 � xk1 � xk2 �. �2. 74�

Let 		gn,k
n��
k�� be a family of the sets 	gn,k
n��, k � 1, 2, . . . . By axiom of choice [9] one
obtains an unique set 
� � 	gk
k�� such that �k�gk � 	gn,k
n�� �.Finally one obtains a set

� from the set 
�

� by axiom schema of replacement [9].Thus one can define Th�
# -set

�� � 
� :

�x�x � �� � �x � 
�� � �PrTh�
# ��x  x�c� � 	PrTh�

# ��x  x�c� � x  x
��. �2. 75�

Proposition 2 .12. Any collection �k � g���k �, k � 1, 2, . . is a Th�
# -set.

Proof . We define gn,k � g��n,k�xk�� � ��n,k�xk��c, vk � �xk �c. Therefore
gn,k � g��n,k�xk�� � Fr�gn,k, vk� (see [10]). Let us define now predicate ���gn,k, vk�

���gn,k, vk� �

PrTh�
# ���!xk��1,k�x1���c� � �PrTh�

# ���!xk��1,k�x1���c� � �!x1��x1��

��!xk�vk � �xk �c���n�n � ���PrTh�
# ����1,k�xk���c� � PrTh�

# �Fr�gn,k, vk����.

�2. 76�

We define now a set �k such that

�k � �k
� � 	gk
,

�n�n � ���gn,k � �k
� � ��gn,k, vk��

�2. 77�

Obviously definitions (2.70) and (2.77) are equivalent by Proposition 2.1.
Proposition 2 .13. (i) Th�

# � ���, (ii) �� is a countable Th�
# -set.

Proof .(i) Statement Th�
# � ��� follows immediately from the statement �
� and

axiom
schema of separation [9], (ii) follows immediately from countability of the set 
�.
Proposition 2 .14. Set �� is inconsistent.
Proof .From the formula (2.75) we obtain

Th�
# � �� � �� � PrTh�

# ����  �� �c� � 	PrTh�
# ����  �� �c� � ��  ��
. �2. 78�

From (2.74) one obtains

Th�
# � �� � �� � ��  �� �2. 79�

and therefore

Th�
# � ��� � ��� � ���  ���. �2. 80�

But this is a contradiction.
Definition 2 .16.An Th�;�

# -wff ��;� that is: (i) Th�-wff �� or (ii) well-formed formula
��;�

which contains predicate PrTh�;�
# ����c� given by formula (2.36).An Th�;�

# -wff ��;�

(well-formed formula ��;�) is closed - i.e. ��;� is a sentence - if it has no free
variables; a

wff is open if it has free variables.
Definition 2 .17.Let � � ��x� be one-place open Th-wff such that the following

condition:



Th� � Th�,1
# � �!x����x��� �2. 81�

is satisfied.
Remark 2 .17.We rewrite now the condition (2.81) using only the lenguage of the

theory
Th�,1

# :

	Th�,1
# � �!x����x���
 � PrTh�,1

# ���!x����x����c�. �2. 82�

Definition 2 .18. We will say that, a set y is a Th�,1
# -set if there exist one-place open

wff
��x� such that y � x�. We write y�Th�,1

# � iff y is a Th�,1
# -set.

Remark 2 .18. Note that

y�Th�,1
# � � �� �y � x�� � PrTh�,1

# ���!x����x����c�

PrTh�,1
# ���!x����x����c� � �!x����x��� .

�2. 83�

Definition 2 .19.Let 
�,1 be a collection such that :

�x x � 
�,1 � x is a Th�,1
# -set . �2. 84�

Proposition 2 .15. Collection 
�,1 is a Th�,1
# -set.

Proof . Let us consider an one-place open wff ��x� such that conditions (2.37) are
satisfied, i.e. Th�,1

# � �!x����x���.We note that there exists countable collection �� of
the one-place open wff’s �� � 	�n�x�
n�� such that: (i) ��x� � �� and (ii)

Th�� Th�,1
# � �!x�����x��� � 	�n�n � �����x�� � �n�x���
�

or in the equivalent form

Th�� Th�,1
# � PrTh�,1

# ���!x����x����c� �

PrTh�,1
# ���n�n � �����x�� � �n�x����c� ,

�2. 85�

or in the following equivalent form

Th�,1
# � �!x1���1�x1�� � 	�n�n � ����1�x1� � �n,1�x1��
�

or

Th�,1
# � PrTh�,1

# ���!x1��x1��c� �

PrTh�,1
# ���n�n � �����x1� � �n�x1���c� ,

�2. 86�

where we have set ��x� � �1�x1�,�n�x1� � �n,1�x1� and x� � x1. We note that any
collection ��k � 	�n,k�x�
n��, k � 1, 2, . . . such as mentioned above, defines an unique
set x�k , i.e. ��k1

���k2
� 
 iff x�k1

� x�k2
.We note that collections ��k , k � 1, 2, . . are

not a part of the ZFC2
Hs, i.e. collection ��k is not a set in the sense of ZFC2. However that

is not a problem, because by using Gödel numbering one can to replace any collection
��k , k � 1, 2, . . by collection �k � g���k � of the corresponding Gödel numbers such that

�k � g���k � � 	g��n,k�xk��
n��, k � 1, 2, . . . . �2. 87�

It is easy to prove that any collection �k � g���k �, k � 1, 2, . . is a Th�,1
# -set.This is

done by Gödel encoding [7],[10] (2.87), by the statament (2.85) and by the axiom
schema of separation [7]. Let gn,k � g��n,k�xk��, k � 1, 2, . . be a Gödel number of the wff



�n,k�xk�. Therefore g��k� � 	gn,k
n��, where we have set �k � ��k , k � 1, 2, . . and

�k1�k2�	gn,k1
n�� � 	gn,k2
n�� � 
 � xk1 � xk2 �. �2. 88�

Let 		gn,k
n��
k�� be a family of the sets 	gn,k
n��, k � 1, 2, . . . . By the axiom of choice [7]
one obtains an unique set 
1

� � 	gk
k�� such that �k�gk � 	gn,k
n�� �.Finally one obtains a
set 
�,1 from the set 
�,1

� by the axiom schema of replacement [7].

Proposition 2 .16. Any collection �k � g���k �, k � 1, 2, . . is a Th�,1
# -set.

Proof . We define gn,k � g��n,k�xk�� � ��n,k�xk��c, vk � �xk �c. Therefore
gn,k � g��n,k�xk�� � Fr�gn,k, vk� (see [10]). Let us define now predicate ��gn,k, vk�

��gn,k, vk� � PrTh�,1
# ���!xk��1,k�x1���c� �

��!xk�vk � �xk �c� �n�n � �� PrTh�,1
# ����1,k�xk���c� � PrTh�,1

# �Fr�gn,k, vk�� .
�2. 89�

We define now a set �k such that

�k � �k
� � 	gk
,

�n�n � ���gn,k � �k
� � ��gn,k, vk��

�2. 90�

Obviously definitions (2.85) and (2.90) are equivalent.
Definition 2 .20.We define now the following Th�,1

# -set ��,1 � 
�,1 :

�x x � ��,1 � �x � 
�,1� � PrTh�,1
# ��x  x�c� . �2. 91�

Proposition 2 .17. (i) Th�,1
# � ���,1, (ii) ��,1 is a countable Th�,1

# -set.
Proof .(i) Statement Th�,1

# � ���,1 follows immediately from the statement �
�,1 and
axiom schema of separation [7], (ii) follows immediately from countability of the set


�,1.
Proposition 2 .18. A set ��,1 is inconsistent.
Proof .From formla (2.87) we obtain

Th�,1
# � ��,1 � ��,1 � PrTh�,1

# ����,1  ��,1 �c�. �2. 92�

From (2.92) we obtain

Th�,1
# � ��,1 � ��,1 � ��,1  ��,1 �2. 93�

and therefore

Th�,1
# � ���,1 � ��,1� � ���,1  ��,1�. �2. 94�

But this is a contradiction.
Definition 2 .21. Let � � ��x� be one-place open Th-wff such that the following

condition:

Th�,i
# � �!x����x��� �2. 95�

is satisfied.
Remark 2 .19.We rewrite now the condition (2.95) using only the lenguage of the

theory
Th�,i

# :

	Th�,i
# � �!x����x���
 � PrTh�,i

# ���!x����x����c�. �2. 96�



Definition 2 .22. We will say that, a set y is a Th�,i
# -set if there exist one-place open wff

��x� such that y � x�. We write y�Th�,i
# � iff y is a Th�,i

# -set.

Remark 2 .20. Note that

y�Th�,i
# � � �� �y � x�� � PrTh�,i

# ���!x����x����c� . �2. 97�

Definition 2 .23.Let 
�,i be a collection such that :

�x x � 
�,i � x is a Th�,i
# -set . �2. 98�

Proposition 2 .19. Collection 
�,i is a Th�,i
# -set.

Proof . Let us consider an one-place open wff ��x� such that conditions (2.95) is
satisfied, i.e. Th�,i

# � �!x����x���.We note that there exists countable collection �� of
the one-place open wff’s �� � 	�n�x�
n�� such that: (i) ��x� � �� and (ii)

Th�,i
# � �!x�����x��� � 	�n�n � �����x�� � �n�x���
�

or in the equivalent form

Th�,i
# � PrTh�,i

# ���!x����x����c� �

PrTh�,i
# ���n�n � �����x�� � �n�x����c� ,

�2. 99�

or in the following equivalent form

Th�,i
# � �!x1���1�x1�� � 	�n�n � ����1�x1� � �n,1�x1��
�

or

Th�,i
# �

PrTh�,i
# ���!x1��x1��c� �

PrTh�,i
# ���n�n � �����x1� � �n�x1���c� .

�2. 100�

where we have set ��x� � �1�x1�,�n�x1� � �n,1�x1� and x� � x1. We note that any
collection ��k � 	�n,k�x�
n��, k � 1, 2, . . . such as mentioned above, defines an unique
set x�k , i.e. ��k1

���k2
� 
 iff x�k1

� x�k2
.We note that collections ��k , k � 1, 2, . . is not

a part of the ZFCst, i.e. collection ��k is not a set in the sense of ZFCst. However that is
not a problem, because by using Gödel numbering one can to replace any collection
��k , k � 1, 2, . . by collection �k � g���k � of the corresponding Gödel numbers such that

�k � g���k � � 	g��n,k�xk��
n��, k � 1, 2, . . . . �2. 101�

It is easy to prove that any collection �k � g���k �, k � 1, 2, . . is a Th�,i
# -set.This is done

by Gödel encoding [8],[10] (2.101), by the statament (2.95) and by axiom schema of
separation [9]. Let gn,k � g��n,k�xk��, k � 1, 2, . . be a Gödel number of the wff �n,k�xk�.
Therefore g��k� � 	gn,k
n��, where we have set �k � ��k , k � 1, 2, . . and

�k1�k2�	gn,k1
n�� � 	gn,k2
n�� � 
 � xk1 � xk2 �. �2. 102�

Let 		gn,k
n��
k�� be the family of the sets 	gn,k
n��. By axiom of choice [9] one obtains
an unique set 
i

� � 	gk
k�� such that �k�gk � 	gn,k
n�� �.Finally one obtains a set 
�,i

from the set 
i
� by axiom schema of replacement [9].

Proposition 2 .20. Any collection �k � g���k �, k � 1, 2, . . is a Th�,i
# -set.

Proof . We define gn,k � g��n,k�xk�� � ��n,k�xk��c, vk � �xk �c. Therefore
gn,k � g��n,k�xk�� � Fr�gn,k, vk� (see [10]). Let us define now predicate ��,i�gn,k, vk�



��,i�gn,k, vk� � PrTh�,i
# ���!xk��1,k�x1���c� �

��!xk�vk � �xk �c� �n�n � �� PrTh�,i
# ����1,k�xk���c� � PrTh�,i

# �Fr�gn,k, vk�� .
�2. 103�

We define now a set �k such that

�k � �k
� � 	gk
,

�n�n � ���gn,k � �k
� � ��,i�gn,k, vk��.

�2. 104�

Obviously definitions (2.95) and (2.104) are equivalent.
Definition 2 .24.We define now the following Th�,i

# -set ��,i � 
�,i :

�x x � ��,i � �x � 
�,i� � PrTh�,i
# ��x  x�c� . �2. 105�

Proposition 2 .21. (i) Th�,i
# � ���,i, (ii) ��,i is a countable Th�,i

# -set,i � �.
Proof .(i) Statement Th�,i

# � ���,i follows immediately by using statement �
�,i and
axiom

schema of separation [9]. (ii) follows immediately from countability of a set 
�,i.
Proposition 2 .22. Any set ��,i, i � � is inconsistent.
Proof .From formla (2.105) we obtain

Th�,i
# � ��,i � ��,i � PrTh�,i

# ����,i  ��,i �c�. �2. 106�

From (2.106) we obtain

Th�,i
# � ��,i � ��,i � ��,i  ��,i �2. 107�

and therefore

Th�,i
# � ���,i � ��,� � ���,i  ��,i�. �2. 108�

But this is a contradiction.
Definition 2 .25.Let � � ��x� be one-place open Th�;�

# -wff such that the following
condition:

Th�;�
# � �!x����x��� �2. 109�

is satisfied.
Remark 2 .20.We rewrite now the condition (2.109) using only the lenguage of the

theory
Th�

# in the following equivalent form

1. Th�;�
# � �!x����x��� � Th�;�

# � PrTh�;�
# ���!x����x����c�

or

2. Th�;�
# � �!x����x��� � Th�;�

# � PrTh�;�
# ���!x����x����c� �

� PrTh�;�
# ���!x����x����c� � �!x����x���

�2. 110�

Definition 2 .26.We will say that: (i) a set y is a Th�;�
# -set if there exist one-place open

wff
��x� such that y � x�, i.e. Th�;�

# � PrTh�;�
# ���!x����x����c� � �y � x��;

(ii) a set y is a Th�;�
# -set if there exist one-place open wff

We write y�Th�;�
# � iff y is a Th�;�

# -set.



Definition 2 .27. Let 
�;� be a collection such that : �x x � 
�;� � x �Th�;�
# � .

Proposition 2 .23. Collection 
�;� is a Th�;�
# -set.

Proof . Let us consider an one-place open wff ��x� such that condition (2.109) is
satisfied, i.e. Th�;�

# � �!x����x���.We note that there exists countable collection �� of
the one-place open wff’s �� � 	�n�x�
n�� such that: (i) ��x� � �� and (ii)

Th�;�
# � �!x�����x��� � 	�n�n � �����x�� � �n�x���
�

or in the equivalent form

Th�;�
# � PrTh�;�

# ���!x����x����c� �

PrTh�;�
# ���n�n � �����x�� � �n�x����c� ,

�2. 111�

or in the following equivalent form

Th�;�
# � �!x1���1�x1�� � 	�n�n � ����1�x1� � �n,1�x1��
�

or

Th�;�
# � PrTh�;�

# ���!x1��x1��c� �

PrTh�;�
# ���n�n � �����x1� � �n�x1���c� ,

�2. 112�

where we set ��x� � �1�x1�,�n�x1� � �n,1�x1� and x� � x1. We note that any collection
��k � 	�n,k�x�
n��, k � 1, 2, . . . such as mentioned above defines unique set x�k , i.e.
��k1

���k2
� 
 iff x�k1

� x�k2
.We note that the collections ��k , k � 1, 2, . . is not a part

of the ZFC, i.e. collection ��k is not a set in the sense of ZFC. However that is not a
problem, because by using Gödel numbering one can to replace any collection
��k , k � 1, 2, . . by collection �k � g���k � of the corresponding Gödel numbers such that

�k � g���k � � 	g��n,k�xk��
n��, k � 1, 2, . . . . �2. 113�

It is easy to prove that any collection �k � g���k �, k � 1, 2, . . is a Th�;�
# -set.This is done

by Gödel encoding [8],[10] by the statament (2.109) and by axiom schema of separation
[9]. Let gn,k � g��n,k�xk��, k � 1, 2, . . be a Gödel number of the wff �n,k�xk�. Therefore
g��k� � 	gn,k
n��, where we have set �k � ��k , k � 1, 2, . . and

�k1�k2�	gn,k1
n���	gn,k2
n�� � 
 � xk1 � xk2 �. �2. 114�

Let 		gn,k
n��
k�� be the family of thesets 	gn,k
n��. By axiom of choice [9] one obtains
unique set 
� � 	gk
k�� such that �k�gk � 	gn,k
n�� �.Finally one obtains a set 
�;� from
the set 
�;�

� by axiom schema of replacement [9].Thus one can define Th�;�
# -set

��;� � 
�;� :

�x x � ��;� � �x � 
�;�� � PrTh�;�
# ��x  x�c� . �2. 115�



Proposition 2 .24. Any collection �k � g���k �, k � 1, 2, . . is a Th�;�
# -set.

Proof . We define gn,k � g��n,k�xk�� � ��n,k�xk��c, vk � �xk �c. Therefore
gn,k � g��n,k�xk�� � Fr�gn,k, vk� (see [7]). Let us define now predicate ��;��gn,k, vk�

��;��gn,k, vk� � PrTh�;�
# ���!xk��1,k�x1���c� �

�!xk�vk � �xk �c� �n�n � �� PrTh�;�
# ����1,k�xk���c� � PrTh�;�

# �Fr�gn,k, vk�� .
�2. 116�

We define now a set �k such that

�k � �k
� � 	gk
,

�n�n � ���gn,k � �k
� � ��;��gn,k, vk��

�2. 117�

Obviously definitions (2.114) and (2.117) is equivalent by Proposition 2.1.
Proposition 2 .25. (i) Th�;�

# � ���;�, (ii) ��;� is a countable Th�;�
# -set.

Proof .(i) Statement Th�;�
# � ���;� follows immediately from the statement �
 and

axiom
schema of separation [9], (ii) follows immediately from countability of the set 
�.
Proposition 2 .26. Set ��;� is inconsistent.
Proof .From the formula (2.119) we obtain

Th�;�
# � ��;� � ��;� � PrTh�;�

# ����;�  ��;� �c�. �2. 118�

From the formula (2.118) and Proposition 2.1 we obtain

Th�;�
# � ��;� � ��;� � ��;�  ��;� �2. 115�

and therefore

Th�;�
# � ���;� � ��;�� � ���;�  ��;��. �2. 116�

But this is a contradiction.
Proposition 2 .26.Assume that (i) Con�Th� and (ii) Th has an nonstandard model MNst

Th

and M�
Z2 � MNst

Th .Then theory Th can be extended to a maximally consistent nice theory
Th�

# � Th�
# �MNst

Th �.
Proof . Let �1. . . �i. . . be an enumeration of all wff’s of the theory Th (this can be

achieved if the set of propositional variables can be enumerated). Define a chain
	 � 	ThNst,i

# |i � �
, ThNst,1
# � Th of consistent theories inductively as follows: assume

that theory Thi is defined. (i) Suppose that a statement (2.117) is satisfied

ThNst,i
# � PrThNst,i

# ���i �c� and �ThNst,i
# � �i � � �MNst

Th � �i �. �2. 117�

Then we define a theory ThNst,i�1 as follows ThNst,i�1 � ThNst,i � 	�i
.Using Lemma 2.1
we will rewrite the condition (2.117) symbolically as follows

ThNst,i
# � PrThNst,i

#
# ���i �c�,

PrTh i
# ���i �c� � PrThNst,i

# ���i �c� � �MNst
Th � �i �.

�2. 118�

(ii) Suppose that the statement (2.119) is satisfied

ThNst,i
# � PrThNst,i

# ����i �c� and �ThNst,i
# � ��i � � �MNst

Th � ��i �. �2. 119�

Then we define theory Thi�1 as follows: Thi�1 � Thi � 	��i
. Using Lemma 2.2 we will
rewrite the condition (2.119) symbolically as follows



ThNst,i
# � PrThNst,i

#
# ����i �c� ,

PrThNst,i
#

# ����i �c� � PrThNst,i
# ����i �c� � �M�

Th � ��i �.
�2. 120�

(iii) Suppose that a statement (2.121) is satisfied

ThNst,i
# � PrThNst,i

# ���i �c� and ThNst,i
# � PrThNst,i

# ���i �c� � �i. �2. 121�

We will rewrite the condition (2.121) symbolically as follows

ThNst,i
# � PrThNst,i

#
� ���i �c�,

PrThNst,i
#

� ���i �c� � PrTh i���i �c� � �PrTh i���i �c� � �i �
�2. 122�

Then we define a theory ThNst,i�1
# as follows: ThNst,i�1

# � ThNst,i
# .

(iv) Suppose that the statement (2.123) is satisfied

ThNst,i�1
# � PrThNst,i

# ����i �c� and ThNst,i
# � PrThNst,i

# ����i �c� � ��i. �2. 123�

We will rewrite the condition (2.123) symbolically as follows

ThNst,i
# � PrThNst,i

#
� ����i �c�,

PrThNst,i
#

� ����i �c� � PrThNst,i
# ����i �c� � PrThNst,i

# ����i �c� � ��i

�2. 124�

Then we define a theory ThNst,i�1
# as follows: ThNst,i�1

# � ThNst,i
# .We define now a theory

Th�;Nst
# as follows:

Th�;Nst
# � �

i��
ThNst,i

# . �2. 125�

First, notice that each ThNst,i
# is consistent. This is done by induction on i and by Lemmas

2.1-2.2. By assumption, the case is true when i � 1.Now, suppose ThNst,i
# is consistent.

Then its deductive closure Ded�ThNst,i
# � � 	A|ThNst,i

# � A
 is also consistent. If a statement
(2.121) is satisfied,i.e. ThNst,i

# � PrThNst,i
# ���i �c� and ThNst,i

# � �i, then clearly

ThNst,i�1
# � ThNst,i

# � 	�i
 is consistent since it is a subset of closure Ded�ThNst,i
# �. If a

statement (2.123) is satisfied,i.e. ThNst,i
# � PrThNst,i

# ����i �c� and ThNst,i
# � ��i, then clearly

ThNst,i�1
# � ThNst,i

# � 	��i
 is consistent since it is a subset of closure Ded�ThNst,i
# �. If a

statement (2.117) is satisfied,i.e. ThNst,i
# � PrThNst,i

# ���i �c� and �ThNst,i
# � �i � � �MNst

Th � �i �

then clearly ThNst,i�1
# � ThNst,i

# � 	�i
 is consistent by Lemma 2.1 and by one of the
standard properties of consistency: � � 	A
 is consistent iff � � �A. If a statement
(2.119) is satisfied,i.e. ThNst,i

# � PrThNst,i
# ����i �c� and �ThNst,i

# � ��i � � �MNst
Th � ��i � then

clearly ThNst,i�1
# � ThNst,i

# � 	��i
 is consistent by Lemma 2.2 and by one of the standard
properties of consistency: � � 	�A
 is consistent iff � � A.Next, notice Ded�Th�;Nst

# � is
maximally consistent nice extension of the Ded�Th�. Ded�Th�;Nst

# � is consistent because,
by the standard Lemma 2.3 above, it is the union of a chain of consistent sets. To see
that Ded�Th�;Nst

# � is maximal, pick any wff �. Then � is some �i in the enumerated list of
all wff’s. Therefore for any � such that ThNst,i

# � PrThNst,i
# ����c� or ThNst,i

# � PrThNst,i
# �����c�,

either � � Th�;Nst
# or �� � Th�;Nst

# .Since Ded�ThNst,i�1
# � 	 Ded�Th�;Nst

# �, we have
� � Ded�Th�;Nst

# � or �� � Ded�Th�;Nst
# �,which implies that Ded�Th�;Nst

# � is maximally



consistent nice extension of the Ded�Th�.
Definition 2 .28. We define now predicate PrTh#���i �c� asserting provability in Th�;Nst

# :

PrTh�;Nst
# ���i �c� � PrTh�;Nst

#
# ���i �c� � PrTh�;Nst

#
� ���i �c� ,

PrTh�;Nst
# ����i �c� � PrTh�;Nst

#
# ����i �c� � PrTh�;Nst

#
� ����i �c� .

�2. 126�

Definition 2 .29. Let � � ��x� be one-place open wff such that the conditions:
��� Th�;Nst

# � �!x����x��� or
�� �� Th�;Nst

# � PrTh�;Nst
# ���!x����x����c� and MNst

Th � �!x����x��� is satisfied.

Then we said that, a set y is a Th#-set iff there is exist one-place open wff ��x� such
that

y � x�. We write y�Th�;Nst
# � iff y is a Th�;Nst

# -set.

Remark 2 .21. Note that ���� � �� ��� � Th�;Nst
# � �!x����x���.

Remark 2 .22. Note that y�Th�;Nst
# � � �� �y � x�� � PrTh�;Nst

# ���!x����x����c�

Definition 2 .30.Let 
�;Nst
# be a collection such that : �x x � 
�;Nst

# � x is a Th#-set .

Proposition 2 .27.Collection 
�;Nst
# is a Th�;Nst

# -set.
Proof . Let us consider an one-place open wff ��x� such that conditions (�) or (� �) is

satisfied, i.e. Th# � �!x����x���.We note that there exists countable collection �� of
the one-place open wff’s �� � 	�n�x�
n�� such that: (i) ��x� � �� and (ii)

Th�;Nst
# � �!x� ���x��� � �n n � M�

Z2
Hs

���x�� � �n�x���

or

Th�;Nst
# � �!x� PrTh�;Nst

# ����x���c� � �n n � M�
Z2

Hs

PrTh�;Nst
# ����x�� � �n�x���c�

and

MNst
Th � �!x� ���x��� � �n n � M�

Z2
Hs

���x�� � �n�x���

�2. 127�

or of the equivalent form

Th�;Nst
# � �!x1 ��1�x1�� � �n n � M�

Z2
Hs

��1�x1� � �n,1�x1��

or

Th�;Nst
# � �!x� PrTh�;Nst

# ����x1��c� � �n n � M�
Z2

Hs

PrTh�;Nst
# ����x1� � �n�x1��c�

and

MNst
Th � �!x� ���x1�� � �n n � M�

Z2
Hs

���x1� � �n�x1��

�2. 128�

where we set ��x� � �1�x1�,�n�x1� � �n,1�x1� and x� � x1. We note that any collection
��k � 	�n,k�x�
n��, k � 1, 2, . . . such above defines an unique set x�k , i.e.
��k1

���k2
� 
 iff x�k1

� x�k2
.We note that collections ��k , k � 1, 2, . . is no part of the

ZFC2
Hs, i.e. collection ��k there is no set in sense of ZFC2

Hs. However that is no problem,
because by using Gödel numbering one can to replace any collection ��k , k � 1, 2, . . by
collection �k � g���k � of the corresponding Gödel numbers such that

�k � g���k � � 	g��n,k�xk��
n��, k � 1, 2, . . . . �2. 129�

It is easy to prove that any collection �k � g���k �, k � 1, 2, . . is a Th�;Nst
# -set.This is done



by Gödel encoding [8],[10] (2.129) and by axiom schema of separation [9]. Let
gn,k � g��n,k�xk��, k � 1, 2, . . be a Gödel number of the wff �n,k�xk�.Therefore
g��k� � 	gn,k
n��, where we set �k � ��k , k � 1, 2, . . and

�k1�k2�	gn,k1
n���	gn,k2
n�� � 
 � xk1 � xk2 �. �2. 130�

Let 		gn,k
n��
k�� be a family of the all sets 	gn,k
n��. By axiom of choice [9] one obtain
unique set 
�;Nst

#� � 	gk
k�� such that �k�gk � 	gn,k
n�� �.Finally one obtain a set 
�;Nst
#

from a set 
�;Nst
#� by axiom schema of replacement [9].Thus we can define a Th�;Nst

# -set

��;Nst
# � 
�;Nst

# :

�x x � ��;Nst
# � �x � 
�;Nst

# � � PrTh�;Nst
# ��x  x�c� �

PrTh�;Nst
# ��x  x�c � x  x� .

�2. 131�

Proposition 2 .28. Any collection �k � g���k �, k � 1, 2, . . is a Th�;Nst
# -set.

Proof . We define gn,k � g��n,k�xk�� � ��n,k�xk��c, vk � �xk �c. Therefore
gn,k � g��n,k�xk�� � Fr�gn,k, vk� (see [10]). Let us define now predicate ���gn,k, vk�

���gn,k, vk� � PrTh�;Nst
# ���!xk��1,k�x1���c� �

��!xk�vk � �xk �c�

�n n � Mst
Z2

Hs

PrTh�;Nst
# ����1,k�xk���c� � PrTh�;Nst

# �Fr�gn,k, vk�� .

�2. 132�

We define now a set �k such that

�k � �k
� � 	gk
,

�n�n � ���gn,k � �k
� � ���gn,k, vk��

�2. 133�

But obviously definitions (2.29) and (2.133) is equivalent by Proposition 2.26.
Proposition 2 .28. (i) Th�;Nst

# � ���;Nst
# , (ii) ��;Nst

# is a countable Th�;Nst
# -set.

Proof .(i) Statement Th# � ��c follows immediately from the statement �
�;Nst
# and

axiom
schema of separation [9]. (ii) follows immediately from countability of the set 
�;Nst

# .
Proposition 2 .29. A set ��;Nst

# is inconsistent.
Proof .From formla (2.131) we obtain

Th�;Nst
# � ��;Nst

# � ��;Nst
# � ��;Nst

#  ��;Nst
#c . �2. 134�

From formula (2.41) and Proposition 2.6 one obtains

Th�;Nst
# � ��;Nst

# � ��;Nst
# � ��;Nst

#  ��;Nst
# �2. 135�

and therefore

Th�;Nst
# � ���;Nst

# � ��;Nst
# � � ���;Nst

#  ��;Nst
# �. �2. 136�

But this is a contradiction.

2.3.Proof of the inconsistensy of the set theory
ZFC2

Hs � �MZFC2
Hs using Generalized Tarski’s undefinability

theorem.
In this section we will prove that a set theory ZFC2

Hs � �MZFC2
Hs

is inconsistent, without



any refference to the set 
� and inconsistent set ��.
Proposition 2 .30.(Generalized Tarski’s undefinability theorem).Let Th�

Hs be second
order

theory with Henkin semantics and with formal language �, which includes negation
and

has a Gödel encoding g��� such that for every �-formula A�x� there is a formula B
such

that B � A�g�B�� � �A�g�B� � B� holds. Assume that Th�
Hs has an standard Model M.

Then there is no �-formula True�n� such that for every �-formula A such that M � A,
the

following equivalence

A � True�g�A�� � �True�g�A�� � A� �2. 137�

holds.
Proof .The diagonal lemma yields a counterexample to this equivalence, by giving a

"Liar"
sentence S such that S � �True�g�S�� holds.
Remark 2 .23. Above we defined the set 
� (see Definition 2.10) in fact using

generalized
"truth predicate" True�

# ����c,�� such that

True�
# ����c,�� � PrTh�

# ����c� � 	PrTh�
# ����c� � �
. �2. 138�

In order to prove that set theory ZFC2
Hs � �MZFC2

Hs
is inconsistent without any refference

to
the set 
�,notice that by the properties of the nice extension Th�

# follows that definition
given by (2.138) is correct, i.e.,for every ZFC2

Hs-formula � such that MZFC2
Hs

� � the
following equivalence

� � PrTh�
# ����c� � 	PrTh�

# ����c� � �
. �2. 139�

holds.
Proposition 2 .31.Set theory Th1

# � ZFC2
Hs � �MZFC2

Hs
is inconsistent.

Proof .Notice that by the properties of the nice extension Th�
# of theTh1

# follows that

MZFC2
Hs

� � � Th�
# � �. �2. 140�

Therefore (2.138) gives generalized "truth predicate" for set theory Th1
#.By Proposition

2.30 one obtains a contradiction.
Remark 2 .24.A cardinal � is inaccessible if and only if � has the following reflection

property: for all subsets U � Vκ, there exists α � κ such that �Vα,�, U � Vα� is an
elementary substructure of �Vκ,�, U�. (In fact, the set of such α is closed unbounded in
κ.) Equivalently, κ is Πn

0 -indescribable for all n � 0.
Remark 2 .25.Under ZFC it can be shown that κ is inaccessible if and only if �Vκ,�� is a

model of second order ZFC, [5].
Remark 2 .26. By the reflection property, there exists α � κ such that �Vα,�� is a

standard model of (first order) ZFC. Hence, the existence of an inaccessible cardinal is a
stronger hypothesis than the existence of the standard model of ZFC2

Hs.



3.Derivation inconsistent countable set in set theory ZFC2

with the full semantics.
Let Th � Thfss be an second order theory with the full second order semantics.We

assume now that Th contains ZFC2
fss.We will write for short Th, instead Thfss.

Remark 3 .1.Notice that M is a model of ZFC2
fss if and only if it is isomorphic to a model

of
the form Vκ,� ��Vκ � Vκ�, for κ a strongly inaccessible ordinal.
Remark 3 .2.Notice that a standard model for the language of first-order set theory is

an ordered pair 	D, I
 .Its domain, D, is a nonempty set and its interpretation function, I,
assigns a set of ordered pairs to the two-place predicate "�" .A sentence is true in 	D, I

just in case it is satisfied by all assignments of first-order variables to members of D and
second-order variables to subsets of D; a sentence is satisfiable just in case it is true in
some standard model; finally, a sentence is valid just in case it is true in all standard
models.

Remark 3 .3.Notice that:
(I)The assumption that D and I be sets is not without consequence. An immediate

effect of this stipulation is that no standard model provides the language of set theory
with its intended interpretation. In other words, there is no standard model 	D, I
 in which
D consists of all sets and I assigns the standard element-set relation to "�" . For it is a
theorem of ZFC that there is no set of all sets and that there is no set of ordered-pairs
	x, y
 for x an element of y.

(II)Thus, on the standard definition of model:
(1) it is not at all obvious that the validity of a sentence is a guarantee of its truth;
(2) similarly, it is far from evident that the truth of a sentence is a guarantee of its
satisfiability in some standard model.
(3)If there is a connection between satisfiability, truth, and validity, it is not one that

can be
“read off” standard model theory.
(III) Nevertheless this is not a problem in the first-order case since set theory provides

us
with two reassuring results for the language of first-order set theory. One result is the

first
order completeness theorem according to which first-order sentences are provable, if
true in all models. Granted the truth of the axioms of the first-order predicate calculus
and the truth preserving character of its rules of inference, we know that a sentence
of the first-order language of set theory is true, if it is provable. Thus, since valid
sentences are provable and provable sentences are true, we know that valid

sentences
are true. The connection between truth and satisfiability immediately follows: if ϕ is
unsatisfiable, then �ϕ, its negation, is true in all models and hence valid. Therefore,
�ϕ is true and ϕ is false.
Definition 3 .1. The language of second order arithmetic Z2 is a two-sorted
language: there are two kinds of terms, numeric terms and set terms.
0 is a numeric term,
1.There are in nitely many numeric variables, x0, x1, . . . , xn, . . . each of which



is a numeric term;
2.If s is a numeric term then Ss is a numeric term;
3.If s, t are numeric terms then �st and �st are numeric terms (abbreviated
s � t and s � t);
3.There are infinitely many set variables, X0, X1, . . . , Xn. . . each of which is
a set term;

4.If t is a numeric term and S then � tS is an atomic formula (abbreviated
t � S);

5.If s and t are numeric terms then � st and � st are atomic formulas
(abbreviated s � t and s � t correspondingly).
The formulas are built from the atomic formulas in the usual way.
As the examples in the definition suggest, we use upper case letters for
set variables and lower case letters for numeric terms. (Note that the only
set terms are the variables.) It will be more convenient to work with
functions instead of sets, but within arithmetic, these are equivalent: one can
use the pairing operation, and say that X represents a function if for each
n there is exactly one m such that the pair �n, m� belongs to X.
We have to consider what we intend the semantics of this language to
be. One possibility is the semantics of full second order logic: a model
consists of a set M, representing the numeric objects, and interpretations
of the various functions and relations (probably with the requirement that
equality be the genuine equality relation), and a statement �X��X� is satisfied by the
model if for every possible subset of M, the corresponding statement holds.
Remark 3 .1.Full second order logic has no corresponding proof system. An easy
way to see this is to observe that it has no compactness theorem. For example, the

only
model (up to isomorphism) of Peano arithmetic together with the second order

induction
axiom: �X�0 � X � �x�x � X � Sx � X� � �x�x � X�� is the standard model �. This

is
easily seen: any model of Peano arithmetic has an initial segment isomorphic to �;
applying the induction axiom to this set, we see that it must be the whole of the model.
Remark 3 .2.There is no completeness theorem for second-order logic. Nor do the

axioms
of second-order ZFC imply a reflection principle which ensures that if a sentence of
second-order set theory is true, then it is true in some standard model. Thus there
may be sentences of the language of second-order set theory that are true but
unsatisfiable, or sentences that are valid, but false. To make this possibility vivid, let Z
be the conjunction of all the axioms of second-order ZFC. Z is surely true. But the
existence of a model for Z requires the existence of strongly inaccessible cardinals.
The axioms of second-order ZFC don’t entail the existence of strongly inaccessible
cardinals, and hence the satisfiability of Z is independent of second-order ZFC. Thus,
Z is true but its unsatisfiability is consistent with second-order ZFC [5].
Thus with respect to ZFC2

fss, this is a semantically defined system and thus it is not
standard to speak about it being contradictory if anything, one might attempt to prove

that



it has no models, which to be what is being done in section 2 for ZFC2
Hs.

Definition 3 .2. Using formula (2.3) one can define predicate PrTh
# �y� really asserting

provability in Th � ZFC2
fss

PrTh
# �y� � PrTh�y� � �PrTh�y� � ��,

PrTh�y� � �x x � M�
Z2

fss

ProvTh�x, y�,

y � ���c.

�3. 1�

Theorem 3 .1.[12].(Löb’s Theorem for ZFC2
fss) Let � be any closed formula with code

y � ���c � M�
Z2 , then Th � PrTh����c� implies Th � � (see [12] Theorem 5.1).

Proof . Assume that
(#) Th � PrTh����c�.
Note that
(1) Th � ��. Otherwise one obtains Th � PrTh�����c� � PrTh����c�, but this is a
contradiction.
(2) Assume now that (2.i) Th � PrTh����c� and (2.ii) Th � �.
From (1) and (2.ii) follows that
(3) Th � �� and Th � �.
Let Th�� be a theory
(4)Th�� � Th �	��
.From (3) follows that
(5) Con�Th���.
From (4) and (5) follows that
(6) Th�� � PrTh�������c�.
From (4) and (#) follows that
(7) Th�� � PrTh������c�.
From (6) and (7) follows that
(8) Th�� � PrTh������c� � PrTh�������c�,but this is a contradiction.
Definition 3 .3. Let � � ��x� be one-place open wff such that:

Th � �!x����x��� �3. 2�

Then we will says that, a set y is a Th-set iff there is exist one-place open wff ��x�
such

that y � x�. We write y�Th� iff y is a Th-set.
Remark 3 .2. Note that

y�Th� �

����y � x�� � PrTh���!x����x����c� � ��PrTh���!x����x����c� � �!x����x������
�3. 3�

Definition 3 .4. Let 
 be a collection such that : �x x � 
 � x is a Th-set .

Proposition 3 .1. Collection 
 is a Th-set.
Definition 3 .4. We define now a Th-set �c � 
 :

�x�x � �c � �x � 
� � PrTh��x  x�c� � �PrTh��x  x�c� � x  x��. �3. 4�

Proposition 3 .2. (i) Th � ��c, (ii) �c is a countable Th-set.
Proof .(i) Statement Th � ��c follows immediately by using statement �
 and axiom
schema of separation [4], (ii) follows immediately from countability of a set 
.
Proposition 3 .3. A set �c is inconsistent.



Proof .From formla (3.2) one obtains

Th � �c � �c � PrTh���c  �c �c� � �PrTh���c  �c �c� � �c  �c �. �3. 5�

From formula (3.4) and definition 3.5 one obtains

Th � �c � �c � �c  �c �3. 6�

and therefore

Th � ��c � �c� � ��c  �c�. �3. 7�

But this is a contradiction.
Thus finally we obtain:
Theorem 3 .2.[12].�Con�ZFC2

fss�.
It well known that under ZFC it can be shown that κ is inaccessible if and only if �Vκ,��

is a
model of ZFC2 [5],[11].Thus finally we obtain.
Theorem 3 .3.[12].�Con�ZFC � �Mst

ZFC�Mst
ZFC � Hk��.

4.Consistency Results in Topology.
Definition 4 .1.[19].A Lindelöf space is indestructible if it remains Lindelöf after forcing
with any countably closed partial order.
Theorem 4 .1.[20].If it is consistent with ZFC that there is an inaccessible cardinal,

then it
is consistent with ZFC that every Lindelöf T3 indestructible space of weight � �1 has

size
� �1.
Corollary 4 .1.[20] The existence of an inaccessible cardinal and the statement:
��T3,� �1,� �1 � � “every Lindelöf T3 indestructible space of weight � �1 has size

� �1”
are equiconsistent.
Theorem 4 .2.[12].�Con�ZFC � ��T3,� �1,� �1 ��.
Proof.Theorem 4.2 immediately follows from Theorem 3.3 and Corollary 4.1.
Definition 4 .2.The �1-Borel Conjecture is the statement: BC��1 � � “a Lindelöf space

is
indestructible if and only if all of its continuous images in �0; 1��1 have cardinality

� �1".
Theorem 4 .3.[12]. If it is consistent with ZFC that there is an inaccessible cardinal,

then it
is consistent with ZFC that the �1-Borel Conjecture holds.
Corollary 4 .2.The �1-Borel Conjecture and the existence of an inaccessible cardinal

are
equiconsistent.
Theorem 4 .4.[12] �Con�ZFC � BC��1 ��.
Proof.Theorem 4.4 immediately follows from Theorem 3.3 and Corollary 4.2.
Theorem 4 .5.[20]. If �2 is not weakly compact in L, then there is a Lindelöf T3

indestructible space of pseudocharacter � �1 and size �2.
Corollary 4 .3.The existence of a weakly compact cardinal and the statement:



��T3,� �1,�2 � � “there is no Lindelöf T3 indestructible space of pseudocharacter
� �1

and size �2 are equiconsistent.
Theorem 4 .6.[12].There is a Lindelöf T3 indestructible space of pseudocharacter � �1

and
size �2 in L.
Proof.Theorem 4.6 immediately follows from Theorem 3.3 and Theorem 4.5.

Theorem 4 .7.[12]. �Con ZFC � ��T3,� �1,�2 � .

Proof.Theorem 3.7 immediately follows from Theorem 3.3 and Corollary 4.3.

5.Conclusion.
In this paper we have proved that the second order ZFC with the full second-order

semantic is inconsistent,i.e. �Con�ZFC2
fss�.Main result is: let k be an inaccessible cardinal

and Hk is a set of all sets having hereditary size less then k, then
�Con�ZFC � �V � Hk��.This result also was obtained in [7],[12],[13] by using essentially
another approach. For the first time this result has been declared to AMS in [14],[15]. An
important applications in topology and homotopy theory are obtained in [16],[17],[18].
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