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Unambiguous definitions of energy-momentum and spin tensors are cited. It is shown that moment of 

momentum (i.e. angular momentum) and spin are different concepts, but spin is absent in the modern 

classical electrodynamics. Nevertheless, angular momentum and spin of a rotating dipole radiation is 

calculated. We notice Jackson’s and Becker’s mistakes, which convinced them of the similarity between 

spin and angular momentum, and we show that the equality between these concepts is false. 
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A strange delusion is widespread that no unambiguous definition of the electrodynamics’ energy-

momentum tensor is possible. For example, R. Feynman wrote, “we do not know for certain what is the 

actual location in space of the electromagnetic field energy” [5 (27-4 “The ambiguity of the field 

energy”)]. The paper “Energy-momentum localization and spin” [1] is ignored. Now we call attention to 

this curious circumstance once more. 

 

1. What is the energy-momentum tensor? 

As an example of an unambiguous definition of the energy-momentum tensor we recall J. L. 

Synge’s definitions [2]: “We assign to a material continuum a symmetric energy-momentum tensor. The 

tensor embodies the mechanical properties of the matter, such as stress and density”. And we recall also 

that an electromagnetic field is a material continuum. Synge states the interpretation of the energy-

momentum tensor in terms of flux densities, and he makes the following statement concerning the 

energy-momentum tensor λµT  ( 3,2,1,, t====µλ ):  

4-momentum λdp  across a 3-target µdV  is µ
λµλ

dVTdp ==== .                                   (1.1) 

Note, Synge uses this definition for an electromagnetic field. 

If the 3-target is an infinitesimal 3-volume at rest relative to an observer’s laboratory, then 

)3,2,1(,0 ======== jdV j , and t

t
dVTdp

λλ ====  is the infinitesimal 4-momentum of the material continuum 

within the 3-volume, i.e. t

ttt
dVTdpdm ========  is the mass within the 3-volume, and t

iti
dVTdp ====  is the 3-

momentum within the 3-volume, i.e. ttT  and itT  are the mass and momentum density of the continuum, 

respectively. 

If the 3-target is a surface element jda , then dtdadVdV jjt ======== ,0 , and dtdaTdp j

jλλ ==== , i.e.  

j

tjt
daTdtdp ====/  and j

ijii
daTdtdpF ======== /                                    (1.2) 

are the mass-energy flux (power) across the surface element jda  and the force acting on the surface 

element jda , respectively, i.e. tjT  is mass-energy flux density in the continuum, and ijT  is stress tensor 

of the continuum. If the material continuum is an electromagnetic field, tjT  is called the Poynting vector, 

and ijT  is called the Maxwell stress tensor. 

At great length [3], “the component ijT of the stress tensor is the i th component of the force on 

unit area perpendicular to the jx -axis. For instance, the force on unit area perpendicular to the x -axis, 

normal to the area (i.e. along the x -axis), is xxT , and the tangential forces on unit area (along the y  and 

z  axis) are yxT  and zxT ”. In other words, xxT  is the pressue on a surface element xda . 

The local definition (1.1) of the energy-momentum tensor are valid not only for an 

electromagnetic field. If the material continuum is a solid body, the stress tensor depends on a 
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deformation of the body. The deformation is described mathemanically by the strain tensor ij
u  [3], and 

the stress tensor is determined by the form 

)3/(2 ijl

l

ijijl

l

ij
uuKuT δµδ −−−−++++==== ,                               (1.3) 

where K  and µ  are moduluses of compression and shear, respectively [3]. We present this form here to 

emphasize that if the deformation is known, the stress tensor is determined unambiguously, and tension 

sensors can check the stress. 

Analogically, if a pressure of light is measured, or Faraday’s tensions along lines of force and 

pressures at right angles to lines of force are measured, the Maxwell stress tensor ijT  is determined 

unambiguously, according to the local definition (1.1). My radio receiver determines the Poynting vector 
tjT  locally and unambiguously (in a frequency interval). Alan Corney [4] demonstrates the angular 

dependence of the Poynting vector in space around an electric dipole unambiguously (Fig. 1). In the 

Feynman’s Fig. 27-6 [5] (our Fig. 2) the Poynting vector is depicted (unambiguously) in space around an 

electric charge and a magnet (Feynman denotes the Poynting vector by S). 

 
It is important to examine the divergence of an energy-momentum tensor, λµ

µT∂∂∂∂ . Let µdV  be an 

element of a closed 3-surface V  which encloses a 4-volume Ω  of a material continuum. Then this 4-

volume supplies with the 4-momentum  

∫∫∫∫∫∫∫∫ ∂∂∂∂========
∂∂∂∂==== Ω

λµ
µ

Ω

µ
λµλ ΩdTdVTp

V

                    (1.4) 

the rest part of the 4-continuum. So, λµ
µT∂∂∂∂  is the external sources of the energy-momentum tensor λµT  

of the material continuum.  

Let the material continuum be an electromagnetic field, λµF , which interacts with an electric 4-

current λµ
λ

µ
Fj ∂∂∂∂==== . We know that an electromagnetic field acts on the 4-current by the Lorentz force 

density λµ
µ

λ
Fjf L ==== . Thus, the external 4-force density acting on the electromagnetic field, i.e. the 

external source of the energy-momentum tensor λµT , is λµ
µ

λ
Fjf −−−−==== , and 

λµ
µ

λµ
µ TFj ∂∂∂∂====−−−− ,                                 (1.5) 

where λµT  is the electrodynamics’ energy-momentum tensor. Equation (1.5) is a key to identify this 

tensor λµT  in terms of the electromagnetic field. 

As is known, the Maxwell energy-momentum tensor, 

4/αβ
αβ

λµµν
αν

λαλµ +−= FFgFFgT ,                                       (1.6) 

obeys Equation (1.5). But the Equation admits an addition to the tensor (1.6), for example, )( µαλ
α FA∂∂∂∂ , 

or µλ jA . Well! The Equation admits, but experiments admit no addition. Only the Maxwell tensor (1.6) 
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gives the true 4-momentum µ
λµλ

dVTdp ==== . across a 3-target µdV . Thus, electrodynamics’ energy-

momentum tensor (1.6) is unambiguous. 

 

2. What is the spin tensor? 

Jan Weyssenhoff and A. Raabe [6]: “By spin-fluid we mean a fluid each element of which 

possesses besides energy and linear momentum also a certain amount of angular momentum, proportional 

– just as the energy and the linear momentum – to the volume of the element”. In accordance with this 

sentence and analogically to (1.1) we define the 4-spin tensor µλνλµν ΥΥ −−−−====  by the form: 

4-spin λµ
dS  across a 3-target µdV  is ν

λµνλµ Υ dVdS ==== .                                   (2.1) 

According to this definition, spin tensor is unambiguous as well as energy momentum tensor. 

It is important to examine the divergence of a spin tensor, λµν
νΥ∂∂∂∂ . Let νdV  be an element of a 

closed 3-surface V  which encloses a small 4-volume Ω  of a material continuum with spin. Then this 4-

volume supplies with the angular 4-momentum  

∫∫∫∫∫∫∫∫ ∂∂∂∂++++++++====++++====
∂∂∂∂==== Ω

λµν
ν

µλµλ

Ω

ν
λµννµλλµ ΩΥΥ dfrTdVTrJ

V

)22()2( ][][][                     (2.2) 

the rest part of the 4-continuum. If the external sources are absent, 0,0 ======== µλµ fJ ,  
λµν

ν
λµ Υ∂∂∂∂====][2T .                          (2.3) 

Since the Maxwell tensor (1.7) is symmetric, an electrodynamics’ spin tensor, if it exists, is 

divergence-free in a free field as well as the electrodynamics’ energy-momentum tensor  

 

3. The canonical formalism 

Physicists tried to obtain electrodynamics’ energy-momentum and spin tensors from the canonical 

Lagrangian [7 (4-111)], 4/µν
µν−= FF

c
L . By the Lagrange formalism, the canonical energy-momentum 

tensor [7 (4-113)] 

4/
)(

αβ
αβ

λµµα
α

λλµ

αµ

α
λλµ +−∂=−

∂∂

∂
∂= FFgFAg

A
AT

c c

c
L

L

                                (3.1) 

and the canonical total angular momentum tensor [7 (4-147)] 
λµννµλλµν

ccc
TxJ Υ+= ][2                                                                          (3.2) 

are obtained. Here 

νµλ

αν

µ
α

λλµν −=
∂∂

∂
δ−=Υ ][][ 2

)(
2 FA

A
A

c

c

L

,                                                         (3.3) 

is the canonical spin tensor [7 (4-150)]. Its space component is AE × : 

AE×=Υ 0ij

c
.                                                                             (3.4) 

Here the sense of a total angular momentum tensor, λµν
J , is presented: 

ν
λµν

ν
νµλ

ν
λµνλµ Υ dVdVTxdVJdJ ++++======== ][2  is the total angular momentum in an element νdV , the 

corresponding integral is 

∫∫∫∫ ∫∫∫∫++++====++++====
V V

dVdVTxSLJ ν
λµν

ν
νµλλµλµλµ Υ][2 .                             (3.5) 

It consists of two terms: the first term involves a moment of momentum and represents an orbital angular 

momentum; the second term is spin.  

However, the canonical tensors (3.1), (3.2), (3.3) are not electrodynamics tensors. The canonical 

energy-momentum tensor has a wrong divergence. All these tensors obviously contradict experiments. 

For example, consider a uniform electric field: 

EAFFAAExA x

x

xx −=∂=−==∂=−= α
α 0

0

00 ,0,0, ,                           (3.6) 

where αA  is the magnetic vector potential from (3.1). The canonical energy density (3.1) is negative: 
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2/2/ 20

0

0000
EFFgT

x

x
c

−== .                                        (3.7) 

Another example: consider a circularly polarized plane wave (or a central part of a corresponding light 

beam), 

),cos(),sin(),sin(),cos( tzBtzBtzEtzE yxyx −=−=−−=−= )cos(),sin( tzAtzA yx −=−=        

(3.8) 

(for short we set 1=ω=k ). A calculation of components of the canonical spin tensor (6) yields 

1,1
0

=Υ=Υ
xyz

c

xy

c
,   )(sin 2

tzBA x

xzxy

c
−==Υ ,   )(cos2

tzBA y

yyzx

c
−==Υ .           (3.9) 

This result is absurd because, though 
0xy

c
Υ  and 

xyz

c
Υ  are adequate, the result means that there are spin 

fluxes in xy & - directions, i.e. in the directions, which are transverse to the direction of the wave 

propagation. 

An opinion exists that a change of the Lagrangian can help to obtain the Maxwell tensor (1.7) by 

the Lagrange formalism. A. Barut [8] presented a series of Lagrangians and field equations in Table 1. 

 
However, A. Barut did not show energy-momentum and spin tensors corresponding to these 

Lagrangians. So, we add Table 2. 

Table 2 

Electrodynamics’ Lagrangians, Energy-Momentum Tensors, and Spin Tensors 

Lagrangian Energy-momentum tensor Spin tensor 

4/µν
µν−== FFLL

c
I  4/

, σν
σν

λµµνλ

ν
λµλµ +−== FFgFATT

c
I  

νµλλµνλµν −=Υ=Υ ][2 FA
c

I  

2/)(4/ 2
,µ

µµν
µν −−= AFFLII  2/)( 2

,,
,

σ
σλµ

σ
σλµλµλµ +−= AgAATT III  σ

σνµλλµνλµν +Υ=Υ ,
][2 AgAIII  

2/
,

,
ν

µν
µ−= AALIII  ρσ

ρσ
λµµσλ

σ
λµ +−= ,

,

,,
AAgAATIII  

νµλλµν =Υ ],[2 AAIII  

σ
σ

µν
µν −−= jAFFLV 4/  

σ
σ

λµλµλµ += jAgTT IV  λµνλµν Υ=Υ IV  

It is clear, none of these energy-momentum tensors is the Maxwell tensor. And what is more, none 

of these tensors differs from the Maxwell tensor by a divergence of an antisymmetric quantity. In other 

words, none of these tensors has true divergence (1.6). A method is unknown to get a tensor with the true 

divergence in the frame of the standard Lagrange formalism.  

Nevertheless, physicists have created an illusion that the Maxwell tensor can be derived by so-

called Belinfante-Rosenfeld procedure [9,10]. A specific terms,  
µν

ν
λµνλ

ν
λµν

ν
λµ Υ FAFAt

st
∂∂∂∂++++∂∂∂∂====−∂−∂−∂−∂==== 2/

~
                            (3.10) 

and  

)
~

( ][ νκµλ
κ

λµν Υ−∂= xm
st

,                                                        (3.11) 

are added to the canonical tensors (3.1) and (3.2) (here µνλνλµµνλλµνλµν −=Υ+Υ−Υ=Υ FA
ccc

def

2
~

).  
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Unfortunately, this procedure does not give the Maxwell tensor. It gives strange tensors, an 

energy-momentum λµ

st
T  and a total angular momentum λµν

st
J : 

)(4/ µνλ
ν

αβ
αβ

λµµν
ν

λλµλµλµ
FAFFgFAtTT

stcst
∂∂∂∂++++++++−∂−∂−∂−∂====++++==== ,                           (3.12) 

)(2 ][ νκµλ
κ

λµνλµνλµνλµν
FAxJmJJ

cstcst
∂∂∂∂++++====++++==== .                                         (3.13) 

The energy-momentum tensor λµ

st
T  (3.12) is obviously invalid, as well as the canonical energy-

momentum tensor (3.1). So, the procedure [9,10] is unsuccessful, and the tensors (3.12), (3.13) are never 

used. But to make matter worse the procedure eliminates spin tensor at all: 
νµλλµνλµν −=Υ ][2

ststst
TxJ 02 ][ ====++++====++++==== νµλλµνλµνλµν

FAs
cstc
ΥΥ ;                                            (3.14) 

here  
νµλνµλλµνλµν ][][ 22 FAtxms

ststst
====−−−−====                                                   (3.15) 

is the Belinfante-Rosenfeld addend to the canonical spin tensor. As a top of the absurdity the form   

∫∫∫∫====
V

dVTxJ ν
νµλλµ ][2 ,                                                         (3.16) 

instead of (3.5), is proclaimed as the total angular momentum, though µνT  in (3.16) is the Maxwell tensor 

(1.7) instead of (3.12). 

 

4. The Humblet transformation 

Unfortunately, the form (3.16) raises the problem of electrodynamics’ spin. In particular, spin of 

the circularly polarized light beam [11, problem 7.28] 

),()]()[exp( 0 yxEi
k

itiikz yx ∂∂∂∂−−−−∂∂∂∂++++++++−−−−====
z

yxE ω ,    ci /EB −−−−====                   (4.1) 

is not seen by the form (3.16). To see the spin, the Humblet transformation of form (3.16) is performed 

[12,13]: 

SLAErBErJ ++++====××××++++∇∇∇∇××××====××××××××==== ∫∫∫∫ ∫∫∫∫∫∫∫∫ dVdVAEdV i

i

000 )()( εεε .                 (4.2) 

This transformation is presented as a decomposition of the moment of momentum J  (3.16) into orbital 

and spin parts. However, the transformation returns us to the discarded formula (3.5). Moreover, the first 

term on the right, which is posed as the orbital part, obviously is zero for a symmetric beam [14]. Thus, 

this transformation claims that the total moment of momentum in such a beam is spin. Ohanian [13] 

writes, “this angular momentum is the spin of the wave”. 

In our opinion, it is illogical to consider the term ∫∫∫∫ ×××× dVAE0ε  of the decomposition as spin in the 

frame of the standard electrodynamics with Maxwell energy-momentum tensor and zero spin tensor 

because AE ××××0ε  is a component of the canonical spin tensor (3.3) which is eliminated by the Belinfante-

Rosenfeld procedure and so is absent in the theory. Besides there is a serious geometrical objection 

against the identification of the density of moment of momentum, )(0 BEr ××××××××ε , with the density 

AE ××××0ε . The point is, )( BEr ××××××××  is localized on the surface of the beam [13]. A flow of circulating 

mass-energy flows there. On the contrary, AE ××××  is distributed over the beam’s body. Therefore a 

conclusion was made that integrating of quantity AE ××××  is simply a method by which the moment of 

momentum of the circulating flow can be calculated and that the moment of momentum is an orbital 

angular momentum [14], while spin is apart from the expression ∫∫∫∫ ×××××××× dV)(0 BErε . 

After all, Jackson [11] and Becker [15] agree that the term AE ××××0ε  plays the role of a spin tensor 

and that the Humblet identity  

∫∫∫∫∫∫∫∫ ××××====×××××××× dVdV AEBEr )(                                   (4.3) 

identifies moment of momentum with spin. To confirm this identifying, Jackson [11, problem 7.27] and 

Becker [15, V. 2, p. 320] consider an electromagnetic radiation produced by a source localized in a finite 
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region of space. They apply the Humblet transformation with the integration by parts to the radiation and 

obtain the same equality (4.2) 

But they are mistaken! The equalities (4.2), (4.3) are invalid in this case because the integration 

by parts cannot be used when radiating into space. A straight calculation presented in Section 8 for the 

radiation of a rotating dipole gives  

∫∫∫∫∫∫∫∫ ××××====×××××××× dVdV AEBEr 2)( .                                  (4.4) 

Somewhat such result must be expected if we attribute the sense of spin density to the integrand 

AE ××××  because when radiating into space photons are variously directed, and their spins are not parallel to 

each other as in a beam. But, the point is, result (4.4) proves the moment of momentum, ∫∫∫∫ ×××××××× dV)( BEr , 

is not spin, ∫∫∫∫ ×××× dVAE ! 

Besides, as in the case of the beam, the quantities )( BEr ××××××××  and AE ××××  are spatially separated in 

the case of the dipole radiation: moment of momentum, )(0 BEr ××××××××ε , is radiated mainly near the plane of 

rotating of the dipole, while spin, AE ××××0ε , exists near the rotating axis, where the radiation is circularly 

or elliptically polarized [16]. 

There is one more important circumstance, which prevent the interpretation of the integral 

∫∫∫∫ ×××××××× dV)(0 BErε  as spin of a radiation irrespectively of the sense of AE ×××× . Vectors E  and B  of a 

radiation are perpendicular to the direction of the propagation i.e. 0)( ====⋅⋅⋅⋅×××× kBE , where k  is the wave 

vector. So 0))(( ====⋅⋅⋅⋅×××××××× kBEr  for any radiation. Therefore the moment of momentum )( BEr ×××××××× must be 

calculated by the use of the non-radiative field, which is proportional to 2/1 r  in the case of a radiation 

into space. This indicate non-radiative nature of the moment of momentum ∫∫∫∫ ×××××××× dV)(0 BErε  while spin 

is an attribute of a radiation and must be calculated by the use of fields, which is proportional to r/1  

only. Heitler, when defending spin nature of the moment of momentum, refers to a subtle interference 

effect on this subject [17]. But this explanation seems to be not convincing. 

On our opinion, it is necessary to concede that )(0 BEr ××××××××ε  represents a moment of momentum, 

which has an orbital nature and does not represent spin of an electromagnetic radiation [18,19]. We use 

AE ××××0ε  as the spin density in Section 8, though spin density does not recognized in the modern 

electrodynamics. 

 

5. Scheme of the calculations 

There are two methods of calculations of energy, moment of momentum and spin fluxes of an 

electromagnetic radiation. These methods of course give identical results. 

1. Volume density (of mass-energy or of moment of momentum) is integrated over a thin spherical 

layer (of thickness dr ), which surrounds the source of the radiation, and then the integral is divided by 

dt  on the assumption cdtdr ====/ . So, the formulas for power of radiation and torque are obtained: 

∫∫∫∫==== dtdrdaTP
i

i

tt / ,   ∫∫∫∫==== dtdrdaTr
k

k

tjiij /2 ][τ  (J).                                   (5.1) 

Here components of the Maxwell energy-momentum tensor are used: ttT  is the volume density of mass-

energy and jtT  is volume density of momentum, which is equal to the Poynting vector because of the 

symmetry of the Maxwell energy-momentum tensor, 

0

22

0 2/2/ µε BET
tt ++++====  (J/m

3
),   BE ××××======== 0εtjjt

TT  (kg/m
2
sec).                    (5.2) 

2. However, it is more natural to integrate flux density components of the Maxwell tensor over a 

surface, which surrounds the source of the radiation:  

∫∫∫∫==== i

ti
daTP  (kg/sec),   ∫∫∫∫==== k

kjiij
daTr

][2τ ,                                     (5.3) 

here jkT  is the Maxwell stress tensor.  

The same two methods are applicable for a calculation of a spin radiation: 
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dtdrda
k

k

ijtij

s
/∫∫∫∫==== Υτ  (J),                                                (5.4) 

∫∫∫∫==== k

ijkij

s
daΥτ ,                                                   (5.5) 

where AE ××××==== 0εΥ ijt , λµνΥ  is a spin tensor. 

We show by a straight calculation that, in the field of a rotating dipole, the ratio of power to 

moment of momentum flux,  

ωτ ====/P ,                                                            (5.6) 

differs from the ratio of power to spin flux, 

ωτ 2/ ====
s

P ,                                                          (5.7) 

in accordance with formula (4.4), and thus a moment of momentum is not spin. It is important that the 

ratio 
s

P τ/  is the normal ratio of energy to spin for circularly polarized photons directed along the rotation 

axis )0( ====θ , 

[[[[ ]]]] ωωτ
θ

========
====

hh //
0s

P ,                                                          (5.8) 

rather than ratio (5.7). 

We use the complex expressions for electromagnetic fields [15, V.1, p.284], [5, p.36],  

)exp(
4

)(3(

4

)(3(

4

))((
5

0

2

4

0

2

32

0

22

tiikz
r

r

cr

ri

rc

r
ω

πεπε

ω

πε

ω
−−−−







 −−−−
−−−−

−−−−
++++

−−−−
====

rprprprprprp
E          (5.9) 

)exp(
44 32

2

tiikz
r

i

cr
ω

π

ω

π

ω
−−−−







 ××××
++++

××××
====

prpr
H                                                              (5.10) 

The calculation of the power P  by the method (5.3) is performed in [5, p.39] with a mistake. We 

give this calculation in Section 6, having corrected the mistake. The calculation of the moment of 

momentum flux xyτ  by the method (5.1) is performed in [5, p.41] with a mistake as well. We give this 

calculation in Section 7, having corrected the mistake. The calculation of the spin flux ij

s
τ  by the method 

(5.4) is performed in Section 8.  

 

6. Calculation of radiation power by method (5.3) 

We integrate the Poynting vector tiT  (5.2) over a spherical surface of radius r : 

∫∫∫∫∫∫∫∫∫∫∫∫ ××××ℜℜℜℜ====××××ℜℜℜℜ======== 2

00 2/)(2/)( crdrddaTP i

ti ΩΩµε rHErHE ,               (6.1) 

ϕθθΩ ddd sin==== , the line means complex conjugation. Substituting fields proportional to r/1  from (5.9), 

(5.10) yields 

∫∫∫∫
−−−−

==== Ω
επ

ω
d

rc

r
P

4

0

52

224

32

|)(| rprp
.                                        (6.2) 

This expression coincides with formula (2.71) in [5]. Using Cartesian components of the single dipole 

rotating in x-y plain yields  

)exp(),exp( tiiptip yx ωω −−−−====−−−−====  [C m].                                        (6.3) 

We obtain 

.cos1sin2/))((

/))((/])([])([

222

2422

θθ ++++====−−−−====−−−−++++−−−−++++====

====−−−−====−−−−⋅⋅⋅⋅−−−−

riyxiyxpppp

rrrr

yyxx

rpprpprrpprprp
                       (6.4) 

So,  

∫∫∫∫
++++

==== ϕθ
επ

θθω
dd

c
P

0

52

24

32

sin)cos1(
.                                        (6.5) 

This result was obtained also as a solution of problem 1 in [20, § 67], but formula (2.73) in [5] 

inexplicably gives half of the quantity: 
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Ω
επ

θω
d

c
dP

0

52

24

64

)cos1( ++++
==== . 

So, mass-energy flux in the field of a rotating dipole is 

0

5

4

6 επ

ω

c
P ====  (kg/sec).                                                   (6.6) 

This result is twice as much as the result [4, (2.74)]. 

 

7. Calculation of moment of momentum flux by method (5.1) 

We integrate the moment of momentum volume density over a spherical layer 

cdrcdrdtdrdaTr
k

k

tjiij

∫∫∫∫ ∫∫∫∫∫∫∫∫ −−−−ℜℜℜℜ====××××××××ℜℜℜℜ======== 2/])()([2/)(/2 22

00

][ ΩΩµετ HrEHrEHEr .   (7.1) 

The first term on the right is zero, and the second term needs the use of the electromagnetic field, which is 

proportional to 2/1 r  
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This expression coincides with formula (2.78) in [3]. Since (6.3) we obtain 

θ222222 sin/)(/)])([(/])[( iryxirpypxypxpr xyyx −−−−====++++−−−−====−−−−++++====×××× prrp .       (7.3) 

As ∫∫∫∫ ====
π

θθ
0

3 3/4sin d , the torque emitted by the radiator is equal to 
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Contrary to (7.4), formula (2.80) in [5] inexplicably gives half of quantity (7.4), 3

0

23 12/ cz επωτ ==== . 

However, somehow the ratio of power to moment of momentum flux is equal to frequency (5.6) 

ωτ ====/2
Pc .                                            (7.5) 

 

8. Calculation of spin flux by method (5.4) 

We integrate the spin volume density, AE ××××==== 0εΥ ijt , over a spherical layer  
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By the use E  from (2.9), which is proportional to r/1 , and since (3.3) we obtain 
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As ∫∫∫∫ ====
π

θθθ
0

2 3/2sincos d , the spin flux emitted by the radiator is equal to  
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This is half of the moment of momentum flux (7.4). 

This result (8.3) was obtained by method (5.5) and by the use of spherical coordinates in paper 

[16]. In that paper, also the Corney’s mistakes were indicated.  

 

9. Conclusions, comments, and acknowledgements 

A separate existence of spin and moment of momentum as different physical concepts is 

emphasized. These concepts originates in the Lagrange formalism with Noether's theorem where the 



 

9

canonical energy-momentum and spin tensor come into existence. We use the time component of the 

canonical spin tensor. We have ascertained the Humblet identity (4.3) for the light beam is accidental. 

I am deeply grateful to Professor Robert H. Romer for valiant publishing of my question [21] (was 

submitted on Oct. 7, 1999) and to Professor Timo Nieminen for valuable discussions (Newsgroups: 

sci.physics.electromag).  

Unfortunately, this paper was rejected several times.  
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… the ambiguity in the definition of the densities for the electromagnetic field could be understood as 
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