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Abstract A new extension to Newtonian celestial mechanics is examined.
We focus on the scenario of a point-like body with negligible mass orbiting
a spherically symmetric massive body. We take the implicitly time-dependent
mass of electrodynamics one step further. We let the mass of the orbiting body
vary not only with the velocity, but also with the position within the gravita-
tional field. We find a family of expressions for the gravitational acceleration
that explains the anomalous precession of perihelion of the planets and in the
strong field limit results in orbits in close agreement with the predictions of
the Schwarzschild solution. Regarding the orbital velocity of a body in circular
orbit and the acceleration of a body at rest, the new theory gives the same
results as classically. This is not the case with the post-Newtonian expansion
even if terms at the third post-Newtonian, 3PN, level are included. Arguably,
the major benefit of the new theory is that it presents a method that is much
less intricate and more practical to deal with than general relativity, while re-
producing most of its results, at least in the spherically symmetric case. While
the differences between the final expression and the corresponding expression
from the post-Newtonian expansion are small and subtle, the new theory gives
results that in several ways are closer to both the classical results and to what
the Schwarzschild solution predicts.
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1 Introduction

Although general relativity makes correct predictions, the sheer complexity
of the theory has led people all throughout the last century to try to find
alternative theories of gravity. We will show that most of the predictions of
the Schwarzschild solution of general relativity can be reproduced by mak-
ing a minor extension to the Newtonian theory. We will get an expression for
gravitational acceleration that can be directly compared to the corresponding
expression from the post-Newtonian expansion. We will see that the new the-
ory has some benefits.

On scales and in field strengths typical of the solar system the predictions
of general relativity is found to correspond very well with measurements (Will
2006). In the case of really strong fields, observed inspiraling rates of binary
pulsars agree with the predictions of general relativity (Psaltis 2008) and soon
detections of gravitational waves are expected to provide further evidence. On
very short length scales loop quantum gravity (Rovelli 2011) and string the-
ory (Mukhi 2011) try to combine general relativity with quantum mechanics.
Other efforts to create alternative theories of gravity are motivated by their
possible ability to better explain the observed expansion of the universe now
and at earlier epochs (Elizalde et al. 2011). Alternative theories of gravity that
give different results at large length scales are suggested to explain galaxy ro-
tation curves (Moffat 2006). The possibility that the unexpected acceleration
of the Pioneer spacecrafts could be explained with some new theory of gravity
has also been investigated (Turyshev and Toth 2010). Within the framework
of general relativity there are also research on new solutions to, for instance,
account for cosmic jets (Chicone et al. 2011).

We will limit the discussion to the case of one body of negligible mass mov-
ing in a spherically symmetric gravitational field. The more general situation
of a body moving under the gravitational influence of N point-like bodies is
briefly examined in Appendix B. The new theory is based upon introducing
an implicitly time-dependent mass into the Newtonian expression for gravita-
tion. By letting the mass vary with the velocity and with the radial distance
to the central mass, both of which vary with time, a new expression for the
gravitational acceleration is found. The new expression explains the anoma-
lous perihelion shifts of the planets and produces orbits as expected from the
Schwarzschild solution even in the strong field limit. The characteristic shapes
of strong field orbits expected from the Schwarzschild solution are reproduced
all the way down to the Schwarzschild radius. Infalling objects, as seen from
an external observer, will come to a halt at the Schwarzschild radius. The fact
that the strong field behaviour of the new expression is virtually impossible
to distinguish from what is expected from the Schwarzschild solution is the
strongest result of the investigation.

Regarding the orbital velocity of a body in circular orbit the new theory repro-
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duces the expression from the Schwarzschild solution and classical mechanics.
The post-Newtonian expansion on the other hand, does not reproduce this
velocity, not even if higher order terms are included. For the case of a static
test-particle the new theory reproduces the classical expression for the acceler-
ation. A natural extension of this work would be to see whether the new theory
is consistent with effects of general relativity such as gravitational radiation
and the geodetic effect. The assumption that the mass of the orbiting body
can be considered as varying with the Lorentz factor when calculating how it
will be accelerated by a gravitational field is not a very new one, as the mass
can be interpreted as varying with the Lorentz factor also in, for instance,
electrodynamics. The second assumption, that the mass of a body under the
influence of a spherically symmetric gravitational field can be assumed as vary-
ing also with the distance to the center of the gravitational field, is new. There
is no unique way to choose this dependence under the sole requirement that
it must explain the anomalous perihelion shift. We will discuss the options. In
section 2 we will start with classical mechanics and the classical Newtonian
formulation of gravity. We then make two assumptions, extending the Newto-
nian theory. The end result is a new expression for gravitational acceleration
that can be used directly in numerical celestial mechanics simulations and that
causes bodies to move like the Schwarzschild solution predicts.

2 Theory

In the theory presented here, the mass of an object in orbit in the gravitational
field can be perceived as varying with its relative velocity and radial distance
to the central mass. In this paper, unless specifically stated otherwise, m al-
ways represents the “invariant” mass of the orbiting body, the mass as it would
be interpreted if the body was at rest relative to the central mass and located
infinitely far away.

We assume the case of a point-like body of mass m orbiting a spherically
symmetric non-rotating body of mass M , m << M . According to the Newto-
nian formulation of gravity the acceleration of the orbiting body can be found
from the expression:

d

dt
(mv̄) = −GMm

r2
r̂. (1)

The velocity v and radial distance r of the body of mass m are, throughout
this paper, determined to be in relation to the center of the gravitational field.
Classically the assumption is made that the time derivative of the mass m is
zero in which case the expression for the gravitational acceleration of the body
of mass m can be written as:

dv̄

dt
= −GM

r2
r̂. (2)

We assume that the time derivative of the mass m is not zero and we substitute
m on both sides of (1) according to m = mγ where m is assumed invariant and
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γ is a yet unknown expression for how the mass of the orbiting body varies
with variables that vary with time. Instead of (2) we get

dv̄

dt
+
v

γ

dγ

dt
v̂ = −GM

r2
r̂. (3)

The primary objective of this paper is to find and motivate an expression
for γ that when put into (3) results in an expression for the gravitational
acceleration that can explain the anomalous precession of perihelion of the
planets. We also want our model to be consistent with other theories of physics
and experimental findings.

2.1 The Lorentz factor

In special relativity and electrodynamics as well as in preferred frame relativity
theories the mass can be seen as varying with the velocity according to the
Lorentz factor. We assume that the mass of the orbiting body can be perceived
as varying with the Lorentz factor:

γ = γ(v(t)) =
1√

1 − v2/c2
. (4)

Inserting (4) into (3) we get

dv̄

dt
= −GM

r2
(r̂ · v̂)

(
1 − v2

c2

)
v̂ +

GM

r2
(r̂ × v̂) × v̂. (5)

In (5) the acceleration is split up into the part tangential to the velocity vector
and the part perpendicular to the velocity vector using the scalar product and
the cross product. The difference between (2) and (5) is that the latter has one
extra term. By using (5) in a numerical simulation of the orbit of Mercury it
is seen that it produces an anomalous perihelion shift that is, within measure-
ment uncertainties, equal to one third of the observed anomalous perihelion
shift.

2.2 The Lorentz factor and general relativity

In general relativity the velocity of light is always constant and equal to c in
a gravitational field if measured by a local clock that measures proper time.
At the same time it is a well known fact that the speed of light will appear to
slow down in a gravitational field if a time-of-flight measurement is done with
external clocks. This well-established experimental fact is known as Shapiro
delay. The resolution to this apparent paradox is, according to the interpre-
tation that we do in this paper, the gravitational time dilation. Gravitational
time dilation causes clocks to slow down in a gravitational field by exactly the
same factor that light slows down with. Thus, in proper time, the speed of
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light is invariant even if it will be interpreted as varying by an external clock,
ideally at rest with respect to the gravitational field and positioned infinitely
far away, measuring coordinate time. The speed of light in a gravitational field
in coordinate time, c(r), is related to the invariant speed of light as:

c(r) = c

√
1 − 2GM

rc2
. (6)

To make our model consistent with the concept of gravitational time dilation
and the principle that the measured speed of light in a gravitational field
locally always will be measured to be constant and equal to c we have to
change (4) slightly.We replace the invariant c apparent in (4) with the speed
of light in a gravitational field in coordinate time as shown in (6). We then
get:

γ =

(
1 − v2

c2[1 − 2GM/(rc2)]

)−1/2

. (7)

We still let the mass of the orbiting body vary with the Lorentz factor, but
we compensate for the fact that the speed of light, as perceived with a non-
local clock, varies within a gravitational field. We take it as a fact for the
rest of this paper that the mass of the orbiting body must vary with the
velocity as shown in (7). Letting the mass vary with the velocity in any other
way would cause our model to have serious problems regarding consistency
with electrodynamics and findings attributed to general relativity. Note that
putting (7) into (3) results in

dv̄

dt
= −GM

r2
(r̂ · v̂)

(
1 − v2

c2[1 − 2GM/(rc2)]
− v4

c4[1 − 2GM/(rc2)]2

)
v̂

+
GM

r2
(r̂ × v̂) × v̂, (8)

which reduces to (5) in the weak field limit and thus do not help in explaining
the anomalous perihelion shift. We still have two thirds of the anomalous
perihelion shift left to explain.

2.3 Mass varying with depth within a gravitational field

The problem at hand is now to derive some kind of secondary implicit time-
dependence of the mass of the orbiting body that complements (7). The new
γ shall, when put into (3), produce an expression for the gravitational accel-
eration of the orbiting body that in the weak field limit explains all of the
anomalous perihelion shift. This can be achieved by letting the mass of the or-
biting body vary with depth in the driving gravitational field. A general class
of solutions to this problem is discussed in section 2.4. The method suggested
throughout the rest of this paper is to let the mass of the orbiting body vary
as

m(r) = m

(
1 − 2GM

rc2

)−1

. (9)
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Combining (9) with (7) we get a new expression for γ,

γ =

(
1 − v2

c2[1 − 2GM/(rc2)]

)−1/2(
1 − 2GM

rc2

)−1

. (10)

By inserting (10) into (3) a new expression for the gravitational acceleration
of the orbiting body is found as

dv̄

dt
= −GM

r2
(r̂ · v̂)

(
1 − 3

v2

c2[1 − 2GM/(rc2)]
+

v4

c4[1 − 2GM/(rc2)]2

)
v̂

+
GM

r2
(r̂ × v̂) × v̂. (11)

Expression (11) produces the correct value for the anomalous precession of
perihelion of Mercury and the other planets as we will see in section 3. The
reminder of this paper is dedicated to investigating the concequencies of (11)
and comparing it to other methods of computing the gravitational acceleration
including relativistic effects. What does it mean that the mass of a test-particle
can be perceived as varying with depth in a gravitational field? For our pur-
poses it is sufficient that (11) is an expression for the gravitational acceleration
that very much is able to reproduce the expected orbits from the Schwarzschild
solution. For the case of multiple bodies things get a bit more difficult. That
case will be discussed in Appendix B.

2.4 Alternative assumptions

Under the sole requirement that an expression for how the mass of the orbiting
body can be considered as varying within a gravitational field must be able
to explain the remaining two thirds of the anomalous perihelion shift that
(7) could not, (9) is not unique. From simulations it has been found that the
expression:

dv̄

dt
= −GM

r2
(r̂ · v̂)

(
1 − 3

v2

c2

)
v̂ +

GM

r2
(r̂ × v̂) × v̂ (12)

is able to explain all of the anomalous perihelion shift. To get the anomalous
precession right, we want to find an expression γr so that when we put (7)
times γr into (3), the resulting expression for the acceleration will in the weak
field limit reduce to (12). More specific we want an expression, γr, such that

dv̄

dt
= −GM

r2
(r̂ · v̂)

(
1 − v2

c2[1 − 2GM/(rc2)]
− v4

c4[1 − 2GM/(rc2)]2

)
v̂

−(r̂ · v̂)
v2

γr

dγr
dr

(
1 − v2

c2[1 − 2GM/(rc2)]

)
v̂

+
GM

r2
(r̂ × v̂) × v̂ (13)
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in the weak field limit reduces to (12). See Appendix A for details on the
kind of calculations needed to get to (13). A general class of solutions to this
problem is given by the expression

γr =

(
1 − aGM

rc2

)−2/a

, (14)

in which a is an arbitrary constant. A γr on this form leads to

dv̄

dt
= −GM

r2
(r̂ · v̂)

(
1 − v2

c2[1 − 2GM/(rc2)]
− v4

c4[1 − 2GM/(rc2)]2

)
v̂

+
GM

r2
(r̂ · v̂)

(
2v2

c2[1 − aGM/(rc2)]
− 2v4

c4[1 − 2GM/(rc2)][1 − aGM/(rc2)]

)
v̂

+
GM

r2
(r̂ × v̂) × v̂, (15)

which reduces to (12) in the weak field limit. In (9), a = 2. Choosing γr =

e2GM/(rc2) would also lead to an expression for the gravitational acceleration
that reduces to (12) in the weak field limit. If, for some reason, fine-tuning of
the strong field behaviour is wanted these alternative assumptions could be
investigated further. We do not follow up on any different way of choosing a in
(14) or using exponential functions since (11) does a good job at reproducing
the orbits expected from the Schwarzschild solution, even in the strong field
limit.

2.5 A brief note on the energy

According to the Schwarzschild solution of general relativity the energy of a
test-particle can be written as

E = mc2
(

1 − v2

c2[1 − 2GM/(rc2)]

)−1/2(
1 − 2GM

rc2

)1/2

. (16)

Expression (16) reduces to the classical expressions for potential and kinetic
energy in the slow velocity weak field limit. To check whether our model is
consistent with (16) we can multiply (10) with an expression equal to unity
according to:

γ =

(
1 − v2

c2[1 − 2GM/(rc2)]

)−1/2(
1 − 2GM

rc2

)−1 √
1 − 2GM/(rc2)√
1 − 2GM/(rc2)

. (17)

Expression (17) contains the expression for energy found in (16), except for
a constant factor. If (16) were to be the correct expression for energy of the
orbiting body in our theory it would have to remain constant during the orbit.
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This means we should be able to treat the part of (17) containing the expression
for the energy as a constant k and get

γ = k

(
1 − 2GM

rc2

)−3/2

. (18)

Inserting (18) into (3) results in

dv̄

dt
= −GM

r2
(r̂ · v̂)

(
1 − 3

v2

c2[1 − 2GM/(rc2)]

)
v̂ +

GM

r2
(r̂ × v̂) × v̂. (19)

As is seen (19) is not identical to (11) so (16) can not be the correct expression
for the energy according to our model. As (19) is not derived we are not going
to investigate how it would affect orbits. It is a bit of a flaw of our model at
its current state that we do not have an analytical solution of the equation of
motion and no analytically derived expression for the energy either.

3 Results

We are going to test analytically what our model says regarding the orbital
velocity of a body in circular orbit and the acceleration of a static test-particle.
By computer simulations we will investigate what the model predicts regard-
ing weak field perihelion shifts and strong field orbits. Our results will be
compared to the post-Newtonian expansion and the Schwarzschild solution.
The standard method to incorporate relativity into celestial mechanics com-
putations in weak fields such as those in our solar system is by applying the
post-Newtonian expansion (Brumberg 2007; Brumberg 2010). We are going to
focus on the version of the post-Newtonian expansion that is the most stan-
dard and used by for instance the Jet Propulsion Laboratory. This version is
derived from the isotropic, parametrized post-Newtonian (PPN) n-body point
mass metric (Moyer 2000; Seidelmann 2006) which is an approximate solution
to the Einstein field equations. Most of the terms of this expression vanish in
the case of only one point-like body of negligible mass moving in a spherically
symmetric gravitational field. Carried out to the first post-Newtonian, 1PN,
level, the only non-vanishing terms are, here written together with the classical
Newtonian acceleration:

dv̄

dt
= −GM

r2

(
1 − 4GM

rc2
+
v2

c2

)
r̂ +

4GM

r2
(r̂ · v̂)

v2

c2
v̂. (20)

Expression (20) can also be derived from the Schwarzschild isotropic one-body
point mass metric (Moyer 2000). We write the expression, (11), that we derived
to account for the gravitational acceleration in this new model once again:

dv̄

dt
= −GM

r2
(r̂ · v̂)

(
1 − 3

v2

c2[1 − 2GM/(rc2)]
+

v4

c4[1 − 2GM/(rc2)]2

)
v̂

+
GM

r2
(r̂ × v̂) × v̂. (21)
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3.1 Orbital velocity in circular motion

For thel case of a circular orbit all the non-classical terms of (21) vanish
while only one of the non-classical terms of (20) vanishes. By setting the right
part of (20) equal to the centrifugal term, that appears if we switch to polar
coordinates, the orbital velocity of a body in circular orbit using (20) becomes

v =

√
GM

r

[1 − 4GM/(rc2)]

[1 −GM/(rc2)]
. (22)

The expression for the gravitational acceleration from the post-Newtonian
expansion carried out to the third, 3PN, post-Newtonian order is more complex
than (20) (Blanchet and Iyer 2003). For the case of a circular orbit the 3PN
expression gives a slightly more complex expression for the orbital velocity:

v =

√√√√GM

r

[
1 − 4GM

rc2
+ 9

(
GM

rc2

)2

− 16

(
GM

rc2

)3
](

1 − GM

rc2

)−1/2

. (23)

The classical expression for the orbital velocity of a body in circular orbit,
v =

√
GM/r, is correct also according to the Schwarzschild solution. The only

way an expression that is supposed to account for relativistic effects can give
the classical expression for the orbital velocity of a body in circular motion is
if all other terms than the classical Newtonian term vanish in circular motion.
As an example, using the values c = 3 ·108m/s and GM/r = 9 · 108m2/s2 (22)
gives the orbital velocity 29 999.999 55 m/s. Including the higher order terms
of (23) still gives an orbital velocity of 29 999.999 550 00 m/s rounded off to 13
siginificant digits. Classically and according to our model the orbital velocity
will be 30 000 m/s. As the Earth has roughly a circular orbit around the Sun
with an orbital velocity of 30 000 m/s the difference in distance travelled in a
year using (20) instead of (21) would be approximately (30 000−29 999.999 55)·
365 · 24 · 60 · 60 = 14 191 metres.

3.2 Acceleration of a static test-particle

For the case of no motion at all (20) reduces to

dv̄

dt
= −GM

r2

(
1 − 4GM

rc2

)
r̂. (24)

Expression (21) on the other hand reduces to the classical result of ā =
−(GM/r2)r̂. Note that (24) is only the predicted acceleration of a static test
particle according to the post-Newtonian expansion as carried out to the first
post-Newtonian, 1PN, level. From higher order post-Newtonian expansions
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we can find the acceleration of a static test-particle according to the post-
Newtonian expansion carried out to the third, 3PN, level [2] as:

dv̄

dt
= −GM

r2

[
1 − 4GM

rc2
+ 9

(
GM

rc2

)2

− 16

(
GM

rc2

)3
]
r̂. (25)

3.3 Anomalous precession of perihelion

Table 1 shows simulated perihelion shifts of four planets using (21) and (20).
Initial conditions for the simulations are taken from tabulated values of the

Table 1 Anomalous perihelion shift of four planets

Planet Precession per revolution Precession per revolution
in radians using (20) in radians using (21)

Mercury 5.023 063 · 10−7 5.023 166 · 10−7

Venus 2.572 525 · 10−7 2.570 865 · 10−7

Earth 1.863 169 · 10−7 1.864 092 · 10−7

Mars 1.233 150 · 10−7 1.233 634 · 10−7

orbital velocites at aphelion and the aphelion distances of the planets. We
see that under solar system conditions (20) and (21) result in very much the
same perihelion precession. For the case of Mercury, a precession of 5.0232 ·
10−7 radians per revolution corresponds to 42.99 arcseconds per century if the
number of revolutions per century for Mercury is taken to be 414.9378. We see
that in the solar system our model gives almost identically the same result as
the post-Newtonian expansion does.

3.4 Strong field simulations

We numerically integrate orbits using classical Runge-Kutta based on our ex-
pression for gravitational acceleration, (21), to investigate what is expected
from the orbits in the strong field regime. The simulations are based on tab-
ulated values for the planet Mercury at aphelion. The mass of the Sun times
the gravitational constant is taken to be GM = 1.3278 · 1020Nm2/kg2. The
initial velocity is taken to be v = 38 860m/s and the initial radial distance
from the Sun is 6.982 · 1010m. In the simulations we then increase the initial
orbital velocity with a factor that we call the scale factor and we decrease
the initial radial distance by the square of the scale factor. Using the classical
Newtonian expression for gravitational acceleration this scheme would only
reproduce orbits of the same shape but at different distances from the Sun.
When we use (21) to calculate the acceleration this is no longer true.
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Fig. 1 Orbits using scale factors 1 (left) and 200 (right)

In Fig. 1 we see that at a scale factor of 200, corresponding to a planet
orbiting 40 000 times closer to a central mass of the same mass as the Sun than
the planet Mercury, the perihelion shift is easy to detect visually. In Fig. 2 we
see that using a scale factor of 1357 the perihelion shift between successive
perihelions is very close to π/2 radians. The scales on the axes of all of the
simulations show distance in metres.
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Fig. 2 Orbits using scale factors 600 (left) and 1357 (right)
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Fig. 3 Orbits using scale factors 1460 (left) and 1571 (right)

In Fig. 3 we see that using scale factors 1460 and 1571 we get anomalous
perihelion shifts of 2π/3 and π radians between successive perihelions. A scale
factor of 1571 means that we start the simulation with the orbiting planet
at a distance of 69 820 000 000/15712 ≈ 28 290 metres from the center of the
gravitational field and with an initial velocity of 38 860 · 1571 ≈ 6.1 · 107

metres per second in a direction perpendicular to the radial vector from the
central mass. In Fig. 4 we see that at a scale factor of 1668 the orbiting planet
circulates two times around the central mass before returning to its aphelion
distance. We also see that at a scale factor of 1682.167 the orbiting planet
circulates three times around the central mass between aphelions.
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Fig. 4 Orbits using scale factors 1668 (left) and 1682.167 (right)
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The strange shapes of the orbits in the strong field regime are expected
from the Schwarzschild solution. In Fig. 5 we see that at a scale factor of
1682.452 the orbiting planet circulates four times around the central mass
between aphelions. At a scale factor of 1682.457 54 the orbiting planet is very
close to being captured by the central mass.
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Fig. 5 Orbits using scale factors 1682.452 (left) and 1682.457 54 (right)
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Fig. 6 Orbit using scale factor 1682.457 55

In Fig. 6 we see the orbiting body spinning around in a circle before falling
down towards the Schwarzschild radius, which is at r = 2GM/c2 ≈ 2954.75
metres from the origin. Do note that the body does not cross the Schwarzschild
radius and fall in to r = 0, since it actually halts, or very nearly halts, at the
Schwarzschild radius. This is the expected behaviour from the Schwarzschild
solution of general relativity, if Schwarzschild coordinates are used. The fact
that our theory reproduces this behaviour at the Schwarzschild radius is the
strongest result of the entire investigation.

4 Discussion

We set out to find a way of letting the mass of a test-particle subject to a
Newtonian gravitational force from a spherically symmetric gravitational field
vary implicitly with time. Our goal was to explain the anomalous perihelion
shift. We assumed that the mass of the test-particle varies with velocity as in
electrodynamics, but compensating for the Shapiro effect. We decided that we
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could not let the mass vary with velocity in any other way without violating
other laws of physics. As this velocity-dependence could only explain one third
of the perihelion shift we set out to find how to let the mass of the test-particle
vary with position within a gravitational field. We found a family of solutions.
We chose one of the options although the weak field behaviour of all solutions
are virtually identical. If a different strong field behaviour is wanted the other
options could be investigated.

The new model explains all of the anomalous perihelion shift in the weak
field limit. Regarding the acceleration of a static test-particle our model re-
produces the classical expression. Regarding the orbital velocity of a body in
circular motion the new model reproduces the classical expression just as the
Schwarzschild solution does. The post-Newtonian expansion, even at the third
post-Newtonian level, predicts a slightly different orbital velocity. Our model
produces orbits of shapes that are expected from the Schwarzschild solution
also in the strong field limit. Even the fact that, according to the Schwarzschild
solution, a test-particle will come to a halt at the Schwarzschild radius is re-
produced.

We have found the orbits based on numerical integration and the new ex-
pression for gravitational acceleration. The fact that we have not found an
analytical solution to the equations of motion from our definition of the grav-
itational acceleration can be seen as the weakest point of the investigation.
A natural extension of this work would be to find such equations of motion
analytically and to extend the comparison with the Schwarzschild solution. An
idea on how to extend the theory to the case of a body under the gravitational
influence of N point-like bodies is discussed earlier (Agerhäll 2007) and in Ap-
pendix B. However, extending the theory to the situation of N bodies in a more
rigorous manner would also be a good extension. Another reinterpretation of
the Schwarzschild solution where the the problem of adding the contribution
from several bodies by simple superposition is claimed to have been found
(Montanus 2005). Other possible future work include to see whether the new
theory is or can be made compatible with phenomena attributed to general
relativity such as gravitational radiation and the geodetic effect.

Summarizing, we have found a new expression for gravitational acceleration
that very much produces the orbits expected from the Schwarzschild solu-
tion of general relativity right down to the Schwarzschild radius. We have not
tested the post-Newtonian expansion far into the strong field regime but as
the post-Newtonian expansion is a weak field expansion the new theory should
work better in the strong field Schwarzschild regime. As far as the perihelion
shift goes the expressions are equally good. The new theory reproduces the
classical acceleration for the case of no relative velocity. The new theory also
reproduces the classical expression, as does the Schwarzschild solution, for the
orbital velocity of a body in circular orbit. This is not the case for the post-
Newtonian expansion. While the two last results are nice, there is a coordinate
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freedom inherent in general relativity and what we have interpreted as a ra-
dial vector is under the general relativity formalism considered to be a gauge
dependent object, so one must be careful not to draw too strong conclusions
from them.

Appendix A: Derivation of the acceleration in detail

We show the derivation of (11) in detail. Expression (10) can be written:

γ = γrvγr =
1√

1− v2/c2 − 2GM/(rc2)

1√
1− 2GM/(rc2)

. (A.1)

We define γr = 1/
√

1− 2GM/(rc2) and γrv = 1/
√

1− v2/c2 − 2GM/(rc2). We insert

(A.1) into (3), dv̄
dt

+ v
γ

dγ
dt
v̂ = −GM

r2
r̂, and get

dv̄

dt
+

v

γrv

dγrv

dv

dv

dt
v̂ +

v

γrv

dγrv

dr

dr

dt
v̂ +

v

γr

dγr

dr

dr

dt
v̂ = −

GM

r2
r̂. (A.2)

To get further with the derivation (A.2) is split into the part tangential to the velocity vector
and the part perpendicular to the velocity vector. To get the tangential part we take the
scalar product of (A.2) and the unit vector in the direction of the velocity:

dv̄

dt
· v̂ +

v

γrv

dγrv

dv

dv

dt
v̂ · v̂ +

v

γrv

dγrv

dr

dr

dt
v̂ · v̂ +

v

γr

dγr

dr

dr

dt
v̂ · v̂ = −

GM

r2
r̂ · v̂. (A.3)

Identifying

dv̄

dt
· v̂ =

dv

dt
(A.4)

dr

dt
= v(r̂ · v̂) (A.5)

we can write (
1 +

v

γrv

dγrv

dv

)
dv

dt
+

v2

γrv

dγrv

dr
r̂ · v̂ +

v2

γr

dγr

dr
r̂ · v̂ = −

GM

r2
r̂ · v̂. (A.6)

Now we make the identifications

dγrv

dv
=

v

c2
γ3

rv (A.7)

dγrv

dr
= −

GM

r2c2
γ3

rv (A.8)

dγr

dr
= −

GM

r2c2
γ3

r (A.9)

and write(
1 +

v2γ2
rv

c2

)
dv

dt
+
v2

c2
GM

r2
γ2

rv(r̂ · v̂) +
v2

c2
GM

r2
γ2

r (r̂ · v̂) = −
GM

r2
r̂ · v̂. (A.10)

Realizing that 1 + v2γ2
rv/c

2 = γ2
rv/γ

2
r and rewriting we get:

γ2
rv

γ2
r

dv

dt
= −

GM

r2
(r̂ · v̂)

(
1−

v2

c2
γ2

rv −
v2

c2
γ2

r

)
. (A.11)
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Realizing that γ2
r /γ

2
rv = 1− v2/{c2[1− 2GM/(rc2)]} and rewriting we get:

dv

dt
= −

GM

r2
(r̂ · v̂)

(
1− 3

v2

c2[1− 2GM/(rc2)]
+

v4

c4[1− 2GM/(rc2)]2

)
. (A.12)

To get to the full expression for the gravitational acceleration in vector form we must take
also the part of (A.2) that is perpendicular to the velocity vector. We note that the three
non-classical terms of (A.2) vanish if we take the vector component of them in the direction
perpendicular to the velocity. For that reason, in the direction perpendicular to the velocity
we end up with the same acceleration as classically. We write the full expression as:

dv̄

dt
= −

GM

r2
(r̂ · v̂)

(
1− 3

v2

c2[1− 2GM/(rc2)]
+

v4

c4[1− 2GM/(rc2)]2

)
v̂

+
GM

r2
(r̂ × v̂)× v̂. (A.13)

We have to use the cross product twice to get the direction of the perpendicular acceleration
right. Expression (A.13) is identical to (11).

Appendix B: Outline to a generalization to the case of N point-like
bodies

For the case of a test-particle in a spherically symmetric field the questions of in reference
to what the distance and the velocity measures apparent in our model for gravitational
acceleration,

dv̄

dt
= −

GM

r2
(r̂ · v̂)

(
1− 3

v2

c2[1− 2GM/(rc2)]
+

v4

c4[1− 2GM/(rc2)]2

)
v̂

+
GM

r2
(r̂ × v̂)× v̂, (B.1)

are supposed to be measured, are easy to answer. They are measured in reference to the
center of the gravitational field. In the more general case of a test-particle influenced by
the gravitational field of N spherically symmetric bodies that are moving with respect to
each other, things get a bit more tricky. Under classical Newtonian gravity the superposition
principle is valid. The total gravitational acceleration of a body due to N other point-like
massive bodies is found by calculating the gravitational acceleration from each and every
of the N bodies, like the others did not exist, and then add them together to get the total
acceleration. This procedure does not work using (B.1). To see this we take the example of a
body, A, gravitationally accelerated by a system of N point-like massive bodies. We assume
that all of the N bodies have the mass M/N and are positioned at B. We also assume that
they have no motion relative to each other. The acceleration of A should be the same, no
matter the value of N, because the situations are physically equivalent. If we combine (B.1)
with the superposition principle, this will not be the case. If we try to generalize (B.1) so it
reads:

dv̄

dt
=

N∑
j=1

−
GMj

r2
j

(r̂j · v̂j)

(
1− 3

v2
j

c2[1− 2G
c2

∑N

i=1
Mi/ri]

+
v4
j

c4[1− 2G
c2

∑N

i=1
Mi/ri]2

)
v̂j

+
GMj

r2
j

(r̂j × v̂j)× v̂j , (B.2)
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the superposition principle will be valid in this example. By rj and vj we here mean the
position and velocity of the body to be accelerated relative to body j which has the mass
Mj . Using (B.2) the maximum achievable velocity (the local velocity of light) will depend
on all nearby masses as the the two later summation symbols in (B.2) indicate. Seemingly,
(B.2) should give reasonable results at least for the case of a static mass-configuration, where
all the N bodies are at rest relative to each other. In the more general case where the N
bodies move relative to each other we need further generalization. If we define

v̄e =

∑N

i=1
Miv̄i/ri∑N

i=1
Mi/ri

(B.3)

we get an“effective” value, v̄e, for the velocity of the body whose acceleration we are con-
cerned with, that is determined in relation to the N point-like bodies in the same way that
we determined the local maximum velocity. For clarity we could also define an effective
limiting velocity as

c2e = c2

(
1−

2G

c2

N∑
i=1

Mi

ri

)
(B.4)

and replace (B.2) with

dv̄

dt
=

N∑
j=1

−
GMj

r2
j

(r̂j · v̂e)
(

1− 3
v2
e

c2e
+
v4
e

c4e

)
v̂e +

GMj

r2
j

(r̂j × v̂e)× v̂e. (B.5)

This is just an outline on how our theory might be extended to the case of N point-like
bodies. At least to account for a scenario where the N point-like bodies accelerate relative
to each other and to account for gravitational radiation some further generalization will
have to be made.
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