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Abstract 

This paper is endorsing the possibility that electromagnetic waves might be reflected differently by moving 
mirrors in comparison to resting mirrors following a logic conclusion on Huygen’s principle [1], thus the 
common law upon which the incident angel would equal the reflected angle would be not valid on such 
systems. A static ether concept [2] will be tested on the assumption that angles will be deflected in 
correlation of relative velocities of the transversal movement of the observation setup against the emerging 
center of one particular light wave front. Further on it will be demonstrated that reflection angles from any 
ray emerging from sources laying at the focal point of a parabolic mirror then will not be reflected parallel to 
the parable’s axis but on a distinct differing angle that proves to be quite identical with the resultant angle 
of both velocity components of ray and mirror at any transversal movement of source and observer. 
Moreover it will be shown that this applies on multiple reflection between two parabolic mirrors with 
congruent focal point as in principle being used for laser arrays as well.  

 

1. Introduction 

All following examinations are based on the assumption that electromagnetic waves propagate as follows, 
and particularly as waves at all, whereby conclusions from the Special Relativity [3] will be excluded. Merely 
classic mechanic and dynamic principles will be applied: 

- Individual light wave fronts move relatively to their emission point regarding velocity and direction, 
independently from the source’s and observer’s movement. 

- Individual light wave fronts are not affected from each other and not tied together by a medium, 
contrarily to sound waves. 

- The fixed reference system for each light wave front is only the emerging point of the said light wave 
front in space, not to be confused with the source’s position or velocity. 

- The classic Doppler- effect applies for any moving light source [4]. 

- The relative velocity between one wave front and the moving observer is varying accordingly to the 
observer’s velocity against absolute space. 

- The classic Doppler- effect applies for any moving observer [4]. 
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2. Reflection from moving mirrors 

A wave front is moving against a mirror that is tilted by 45 degrees and resting against the emerging point of 
the wave. The first edge of the front reaches the mirror prior to the adjacent edge and therefore will be 
reflected sooner. Considering the paths of four differing points on the wave front, those will be reflected 
displaced in time and thus we obtain the classic reflection angle according to Huygen’s principle [1]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Principle of classic reflection based on Huygen’s principle 
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A merely logical derivation from this principle must be that if now the mirror is moving off the light wave 
front, the later edge of the wave front will be reflected with additional time compared to the prior edge 
because the mirror has again moved forward after the first edge has already met. Using a graphic 
representation with cad, it already becomes visible that the reflection angle of the wave front has varied, 
whereby no change of wave length occurs. The issue was in the past already worked out by Paul Marmet [5] 
and also by Aleksandar Gjurchinovski [6], but with either significantly different mathematic results.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Principle of reflection from moving mirror, based on logical derivation from Huygen’s principle 
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Upon the geometric consideration the change of reflection angle in dependence of mirror’s velocity against 
the emerging point of wave can be obtained as follows: 

 

 

 

 

 

 

Fig. 3: Geometric situation at moving mirror and effective tilt angle 

Due to the time shift of wave front points hitting the mirror we can assume a new, virtual or effective tilt 
angle of the mirror as shown in fig. 3 to calculate the reflection angle. 
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α‘ is the new effective tilt angle of the mirror. Thus we obtain for the new reflected angle towards the 
perpendicular to the mirror: 
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The formula was double-checked by means of a cad image for several angles.  
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3. Refraction on a moving body 

A similar principle applies for refraction of a wave front from a moving body with a different refraction 
coefficient. According to classic physics (Snellius’s law) [7] the refraction can be inspected again by 
considering four points on the wave front. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Principle of classic refraction based upon Snellius’s law 
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We can easily obtain Snellius’s formula:  

1

2

n
sin( ) sin( )

n
      whereby n2 is the refraction coefficient of the refracting medium [7]. 

The situation changes analogically when the medium is moving: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Principle of refraction from a moving medium, based on logical derivation from Snellius’s law 
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Again applying the angle α‘ of the effective perpendicular on the refracting surface in analogy to the reflection 
principle above we obtain: 

 

 

 

 

 

 

Fig. 6: Geometric situation on moving body and effective tilt angle 
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Thus the new refraction angle to the actual perpendicular to the surface: 
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The formula was double-checked by means of a cad image for several angles. 

 

4. Reflection from moving parabolic mirrors 

We have established, that reflection angles vary upon the relation of c and v. Now we have to clear the 
interesting question, what this means for reflections on parabolic mirrors with a light source on its focal point. 
According to classic physics we would expect any beam to be reflected exactly parallel to the axis of the 
parable. 

The following survey shows it is not: 

First for better understanding an image with the setup of mirror and source (arbitrary dimensions): 
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Fig. 7: Systematic layout of a lamp with parabolic mirror 

Now we consider a light beam moving to the left under an angle α, whereby the whole setup is moving to 
the right under an angle β. 

 

 

 

 

 

 

 

 

 

Fig. 8: Principle of the beam propagation and movement of the mirror  

The determination of the meeting point now causes some trouble, since the mirror is roaming and 
additionally “bending” towards the beam. 

The problem can be solved if we define functions for the respective movements. l is the distance the light 
beam is travelling, s the distance of the transversally moving setup, α the angle of the beam to the parable’s 
axis, β the angle of the transverse movement of the setup to the parable’s axis. f is the distance between 
focal point and vertex of the parable. 
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Fig. 9: Definition of the geometric conditions using functions 

(1) is the function for the light beam propagation 

(2) is the function for the transversal movement of the mirror 

(3) is the function for the parable’s curve 

 (1) 1 1y x tan( )   and hence 1x l cos( )    and 1y l sin( )    
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From the mutual dependence of the functions we can derive the following equation, targeting the 
determination of l: 
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(1) and (4) will now be equated and resolved: 
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And after resolving the quadratic equation: 
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Following determination of l all other dimensions can now be determined: 
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Using the dimension of l and its angle und assuming values for c and v we can now determine the reflection 
angle on the moving parabolic mirror. The perpendicular to the tangent on the parable’s curve at the meeting 
time now is essential for determination of the meeting point. 

 

 

 

 

 

 

 

Fig. 10: Zoomed situation on parable’s tangent 

The tangent can be created by drawing a line from half of the x- dimension to the meeting point of parable 
and beam. In the following xParabel and yParabel is meant by x and y. We obtain the angle between tangent and 
perpendicular: 

x x
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y y
2

     

x
perpendicular tangent arctan 2

y
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And resultant the angle between perpendicular on the tangent and the beam: 

x
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y

 
    

 
 whereby α again is the angle of the beam to the parable’s axis. 

the above formula for reflection on moving mirrors
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now must be completed with the appropriate values for c and v. For v we have to find the respective velocity 
component v‘ of the tilted mirror directional to c. This is: 
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Fig. 11: Geometry of mirror movement directional to beam 
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Thus the angle between reflected beam and perpendicular to the mirror is: 
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The accuracy of the above approach was double-checked with cad. In particular the calculated relations of v 
and c must be correctly readable from the drawing. 

Further on the above formula was now used for an excel- routine. Realistic values were set for c = 300.000 
km/s and v = 350 km/s. The focal length is irrelevant since the whole geometry is then just zooming 
appropriately. The movement angle of the setup to the parable’s axis was chosen with 30 degrees. Now the 
reflection angles for varying angles of the starting ray towards parable’s axis were calculated. According to 
classic physics all angles would be expected to be equal and zero. Here is the output. 
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Starting ray angle to 
parable’s axis degree 

reflected ray angle to 
parable’s axis degree 

Deviation to average 
degree 

Deviation to average  
µrad 

0° 0,033355093022000 -0,000012863110222 -0,224503625424836 
10° 0,033349902302000 -0,000018053830222 -0,315098779973943 
20° 0,033348129868000 -0,000019826264222 -0,346033589048231 
30° 0,033349831918000 -0,000018124214222 -0,316327212514724 
45° 0,033358258536000 -0,000009697596222 -0,169254983606830 
60° 0,033371869592000 0,000003913459778 0,068302758266498 
70° 0,033382422981000 0,000014466848778 0,252494143560169 
80° 0,033393087636000 0,000025131503778 0,438627486899431 
90° 0,033403009335000 0,000035053202778 0,611793801841256 
Average 0,033367956132222 0,000000000000000 0,000000000000000 

 

According to the calculation the reflection angle is different from 0°. But also it becomes obvious that all 
angles diverge by less than  1 µrad! 

Of even more interest is to calculate the reflection angles now with varying angles of transverse mirror 
movement: 

The starting angle of the beam is now for convenience set to zero degrees, being of no much relevance as we 
have seen from the above table. 

transversal mirror movement 
angle degree 

reflected ray angle to 
parable’s axis degree 

0° 0,000000000000000 
10° 0,011580898419696 
20° 0,022812313440984 
30° 0,033355093033177 
45° 0,047188690356774 
60° 0,057822006159651 
70° 0,062763663542204 
80° 0,065802812190023 
90° 0,066845000284998 
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5. Terrestrial aberration 

Without applying the special relativity, the fact of absence of terrestrial aberration is hard to explain with 
common ether theories. This is the major topic of this paper, offering a new approach on the issue. 

First, neglecting the experimental facts, we should reflect now, how aberration would look like in classic 
physics if it would exist. 

 

 

 

 

 

 

 

Fig.12: Theoretical principle of terrestrial aberration in classic physics 

We imagine a light ray consisting of only one wave front section that would be projected against a wall from 
a parabolic mirror lamp. While the ray is proceeding, the wall together with the lamp would be shifting along 
the rotating direction of earth. We assume that the ray is not disturbed during this process regarding its 
velocity and direction, in respect to the emerging point and absolute space. That means, when the wave front 
section arrives at the wall, the wall has shifted transversely so the ray would hit on a differing point. 
Dependent on the direction of transversal movement, the meeting point would roam well distinguishable to 
one and the other side. Therefore aberration should be visible under such circumstances.  

Now we imagine, the ray would be arbitrarily going along another inclined path, so that it would meet at the 
same point as if the wall would not have shifted relatively, in other words, would compensate this theoretic 
aberration angle: 

 

 

 

 

 

 

 

 

Fig. 13: Geometry of a theoretic ray compensating aberration 
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No we have to identify its necessary angle to do so. 

According to the sine rule: 

sin( ) v

sin( ) c





  

v
sin( ) sin( )

c
   

 

With the same settings as before for c and v the excel- routine gives the following comparison:
 

transversal setup 
movement angle 
degree 

Reflected angle from 
parabolic mirror lamp 

degree 

Aberration compensating 
angle degree 

deviation in µrad 

0° 0,000000000000000 0,000000000000000 -0,000000000000000 
10° 0,011580898419696 0,011607525729929 -0,464734234513533 
20° 0,022812313440984 0,022862363114547 -0,873531593220237 
30° 0,033355093033177 0,033422539944790 -1,177170677946250 
45° 0,047188690356774 0,047266611959508 -1,359988526152570 
60° 0,057822006159651 0,057889543868554 -1,178755389612020 
70° 0,062763663542204 0,062813837328296 -0,875697765486524 
80° 0,065802812190023 0,065829563675850 -0,466901507486992 
90° 0,066845000284998 0,066845091262535 -0,001587857555416 

 

Thus the ostensible non- existence of terrestrial aberration explains itself easily although it might exist. Even 
the best laser arrays probably have divergence angles of approx. 100 µrad and the above determined 
deviation lays almost two orders of magnitude below. For this reason terrestrial aberration is simply not 
detectable by means of any state of the art technique. 

To what extend the performed calculations might be infected by rounding failure due to the excessive use of 
trigonometric methods is also questionable, perhaps the angles could even be equal. A mathematical proof 
would have to be conducted. 

It can be summarized that the deflection on moving parabolic mirrors makes any angle fit to compensate 
terrestrial aberration in any transversal movement direction. 

 

6. Reflection between two parabolic mirrors inside a laser array 

Now it should be undeceived in what behavior the emission angle would arise from a laser array, using some 
simplifications. 

Commonly rays are being reflected back and forth for a ten thousand times between two mirrors with 
identical focal points before they can escape from the one half translucent of the mirrors. We want to 
determine now the angle that the ray would have when leaving the instrument. 
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In analogy to the formerly conducted principle we determine the path of the wave front section having been 
reflected from the first mirror to meet the second mirror and produce the formula for calculation. 

2nd ray: 

 

 

 

 

 

 

 

 

 

Fig. 14: Geomety of the 2nd ray inside an array with two parabolic mirrors, v = 1/5 c 

Similarly to the above we can identify three functions for the movements: 

 

 

 

 

 

 

 

 

 

Fig. 15: Definition geometric relationships with functions 

(1) is the function for the ray 

(2) is the function for the transversal movement of the mirror 

(3) is the function for the parable’s curve 

 (1) 1 1y x tan( )   and resulting 1x l cos( )    and 1y l sin( )    
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 (2) 2 2y y tan( )    and resulting 2

v
x s cos( ) l cos( )

c
        and 2

v
y s sin( ) l sin( )

c
        

(3)          3 3y x 4 f  
  

2
3

3

y
x

4 f



 

From the mutual dependence of the functions we can derive the following equation, targeting the 
determination of l: 

1 2 3 altx 2 f x x x    
 

2 2
3 alt

1

y yv
x 2 f l cos( )

c 4 f 4 f
       

   
und: 

 
3 1 2 alt alt

v
y y y y l sin( ) l sin( ) y

c
          

 

Therefore: 

(4) 
 

2
2

alt alt

1

v
l sin( ) l sin( ) y y

v c
x 2 f l cos( )

c 4 f

         
       


 

(1) and (4) now be equated and resolved: 

2
2

alt alt

v
l sin( ) l sin( ) y y

v c
l cos( ) 2 f l cos( )

c 4 f

         
         

  

2
2

alt alt

v v
4 f l cos( ) 2 f l cos( ) l sin( ) l sin( ) y y

c c
                         
     

 
2

2 2 2 2
alt alt alt alt

v v v v
4 f l cos( ) 2 f l cos( ) l sin( ) l sin( ) y 2 l sin( ) sin( ) 2 l sin( ) y 2 l sin( ) y y

c c c c
                                           
   

 

 
2

22 2 2 2
alt alt alt alt

v v v v
l cos( ) 4 f 8 f l 4 f cos( ) l sin( ) l sin( ) y l 2 sin( ) sin( ) 2 l sin( ) y 2 l sin( ) y y 0

c c c c
                                         
 

 

2
2 2 2 2 2

alt alt alt2

v v v v
l sin( ) sin( ) 2 sin( ) sin( ) l cos( ) 4 f 4 f cos( ) 2 sin( ) y 2 sin( ) y 8 f 2 y 0

c c cc

                                      
    

2
2 2 2

alt alt

v v v
l sin( ) sin( ) l 4 f cos( ) cos( ) 2 y sin( ) sin( ) 8 f 2 y 0

c c c

                                  
        

And after resolving the quadratic equation: 
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 
2 2

2 2
alt alt alt

2

v v v v v
4 f cos( ) c os( ) 2 y sin( ) sin( ) 4 f cos( ) cos( ) 2 y sin( ) sin( ) 4 2 y 8 f sin( ) sin( )

c c c c c
l

v
2 sin( ) sin( )

c

                                                            
            

      
 


 

Parabel alt

v
y l sin( ) l sin( ) y

c
       

 

On the basis of the determined values we now find the reflection angle form the moving mirror, this time 
with modified operation signs due to the opposite direction of ray movement. 

x
tan arctan 2

y

x x
' 2 arctan sin 90 arctan 2 arctan 2

y yv
1

c x
sin 90 arctan 2

y

   
     

   
                                        





 
  

 

 

3rd ray 

In analogy to the above, again with modified operation signs, the relevant difference is here: 

1 2 3 altx 2 f x x x     

After this modification for l: 

 
2 2

2 2
alt alt alt

2

v v v v v
4 f cos( ) cos( ) 2 y sin( ) sin( ) 4 f cos( ) cos( ) 2 y sin( ) sin( ) 4 2 y 8 f sin( ) sin( )

c c c c c
l

v
2 sin( ) sin( )

c

                                                          
            

     












 

Reflection angle to be calculated according to the former ray. 

Now we have run through the whole cycle, follow-up rays to be determined in analogy. The image shows as 
this would look like: 
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Fig. 16: multiple ray sequence, v = 1/5 c 

On basis of above formula another excel- routine reveals the deviation after 10.000 reflections. 

We can see that the ray now performs an increasing divergence from the first ray. 

transversal setup 
movement angle degree 

Reflected angle from 
parabolic mirror degree 

1st ray 

Reflected angle from 
parabolic mirror degree 

10.000th ray 

Divergence of rays in 
µrad 

0° 0,000000000000000 0,000000000000000 0,000000000000000 
10° 0,011580898419696 0,011729368557654 -2,591292748256260 
20° 0,022812313440984 0,023050775846591 -4,161954120065270 
30° 0,033355093033177 0,033582638557864 -3,971418603977660 
45° 0,047188690356774 0,047188689080904 0,000022268131600 
60° 0,057822006159651 0,057427868292055 6,879003496334780 
70° 0,062763663542204 0,062108446861657 11,435688389528900 
80° 0,065802812190023 0,064960527944279 14,700633325914100 
90° 0,066845000284998 0,065934815523929 15,885720882128500 

 

A further result is another divergence of two following rays: 

transversal setup 
movement angle degree 

Reflected angle from 
parabolic mirror degree 

10.001st ray 

Reflected angle from 
parabolic mirror degree 

10.003rd ray 

Divergence of rays in 
µrad 

0° 0,000000000000000 0,000000000000000 0,000000000000000 
10° 0,011729309206553 0,011432428229051 5,181550543944580 
20° 0,023050680474458 0,022573851002817 8,322244250688590 
30° 0,033582547565273 0,033127547520961 7,941248869971810 
45° 0,047188689077823 0,047188691633885 -0,000044611695743 
60° 0,057428025888063 0,058216144009675 -13,755256116761000 
70° 0,062108708835951 0,063418880216460 -22,866804355283500 
80° 0,064960864716920 0,066645096415956 -29,395388514639900 
90° 0,065935179438785 0,067755185028176 -31,765089939572100 
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But there is a much smaller divergence between two rays leaving out one: 

transversal setup 
movement angle degree 

Reflected angle from 
parabolic mirror degree 

10.001st ray 

Reflected angle from 
parabolic mirror degree 

10.005th ray 

Divergence of rays in 
µrad 

0° 0,000000000000000 0,000000000000000 0,000000000000000 
10° 0,011729309206553 0,011729368557654 -0,001035872132266 
20° 0,023050680474458 0,023050775846591 -0,001664557736470 
30° 0,033582547565273 0,033582638557864 -0,001588120310114 
45° 0,047188689077823 0,047188689080904 -0,000000053760891 
60° 0,057428025888063 0,057427868292055 0,002750569231121 
70° 0,062108708835951 0,062108446861657 0,004572313978761 
80° 0,064960864716920 0,064960527944279 0,005877791412633 
90° 0,065935179438785 0,065934815523929 0,006351512425397 

 

Summarizing it can be stated that the beam has split in two diverging rays well below resolution of any laser 
array, whereby the mean of both is again extremely close to the aberration angle as before: 

transvers
al setup 

moveme
nt angle 

degree 

Reflected angle 
from parabolic 
mirror degree 

10.001st ray 

Reflected angle 
from parabolic 
mirror degree 

10.003rd ray 

Average degree Aberration 
compensation 

angle degree 

deviation in µrad 

0° 0,000000000000 0,000000000000 0,000000000000 0,000000000000 0,000000000000 
10° 0,011729309207 0,011432428229 0,011580868718 0,011607525730 -0,465252630362 
20° 0,023050680474 0,022573851003 0,022812265739 0,022862363115 -0,874364156236 
30° 0,033582547565 0,033127547521 0,033355047543 0,033422539945 -1,177964629265 
45° 0,047188689078 0,047188691634 0,047188690356 0,047266611960 -1,359988542197 
60° 0,057428025888 0,058216144010 0,057822084949 0,057889543869 -1,177380258335 
70° 0,062108708836 0,063418880216 0,062763794526 0,062813837328 -0,873411663395 
80° 0,064960864717 0,066645096416 0,065802980566 0,065829563676 -0,463962784669 
90° 0,065935179439 0,067755185028 0,066845182233 0,066845091263 0,001587742528 

 

These results can be estimated as equal to the deviation of a standard parabolic mirror lamp as shown above. 
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7. Conclusion and prospectives 

For no apparent reason the assumption, that reflection laws will not apply identically to moving mirrors and 
reflection angels could be subject to relative velocities of light and mirror, is neglected by the literature 
almost throughout. At the same time this assumption is simple and obvious, having thoroughly contemplated 
on the native reason for reflection as such.  

The approach used in this paper is offering a simple and obvious solution to the understanding of terrestrial 
aberration and shows that even in a static ether environment terrestrial aberration would be hard to detect.  

 

Florian Michael Schmitt 

Berlin 2018 
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