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Abstract: In previous papers relating to the concept of Combined Gravitational Action (CGA) we have 

established the CGA-theoretical foundations as an alternative gravity theory that already allowed us to resolve -in 

its context- some unexpected and defiant problems occurred inside and outside the Solar System. All that has been 

done without exploring fully the CGA-formalism, hence, the main purpose of the present paper is to explore and 

exploit profoundly the CGA-equations in order to investigate, among other things, the secular perigee precession 

of the Moon; the secular perihelion advance of the planets; the CGA-effects in the non-compact and compact 

stellar objects.    
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1. Introduction 

 

Basing only on Euclidean geometry and Galilean relativity principle, we were able to formulate a 

coherent alternative gravity theory exclusively founded on the concept of Combined Gravitational Action. 

We have previously [1,2] shown that the theory (CGA) is very capable of predicting and explaining, in its 

context, the anomalous Pioneer 10’s deceleration; the observed secular increase of the Astronomical Unit 

[3]; the secular perihelion precession of the inner planets and the angular deflection of light passing near 

the massive object. These two last phenomena are known as the crucial tests support the general relativity 

theory (GRT). Here, our main motivation is the following: since in the previous papers [1,2] we did not 

explore and exploit fully the CGA-formalism, hence, now it is time to do this in order to study, among 

other things, the CGA-effects in the non-compact stellar objects like, e.g., the eclipsing binary star 

systems and the compact stellar objects like ,e.g., the binary neutron stars and pulsars. 

       Before the advent of the CGA as an alternative gravity theory, it was always stressed that the study of 

such compact stellar objects is exclusively belonging to GR-domain because their strong compactness is 

enough to bend the local space-time in such a way that some observable GR-effects should occur. 

However, as we shall see, the CGA is also able to investigate, predict and explain the same type of effects 

in compact stellar objects and all that in the framework of Euclidean geometry and Galilean relativity 

principle. This reflects a tangible fact that the propagation of gravitational field and the action of 

gravitational force both are independent of the topology of space-time. But why shall the CGA arrive at 

the same results as GRT or even better in some cases? Because if we take the concept of the curvature of 

space-time apart, we find that contrary to the Newton’s gravity theory, the CGA and GRT take, at the 
same time, in full consideration the relative motion of the test-body and the light speed in local vacuum 

which in CGA is playing the role of a specific kinematical parameter of normalization and in GRT is 

considered as the speed of gravity propagation. The main consequence of the CGA-formalism [1,2] is the 

dynamic gravitational field (DGF),Λ , which is in reality an induced field, it is more precisely a sort of 

gravitational induction due to the relative motion of material body in the vicinity of the gravitational 

source. Certainly, the static gravitational field 

 

                                                                             rγ ,                                                                   (1) 

 

is in general always stronger than DGF but Λ  has its proper role and effects. For example, as an 

additional field, Λ  is responsible for the perihelion advance of Mercury and other planets of the System  
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Solar as we have already seen in [1,2]. Curiously, in his 1912 argument, Einstein himself noted that the 

inertia of energy and the equality of inertial and gravitational mass lead us to expect that “gravitation acts 
more strongly on a moving body than on the same body in case it is at rest.” It seems Einstein’s remark 

reflects very well the expression of the combined gravitational field [4]: 

 

                                                                              Λγg  .                                                                    (2) 

  

It is clear from (2), that the combined gravitational field, g , may be reduced to the static gravitational 

field, γ , only for the case 0Λ , that is, when the material test-body under the action of field is at the 

relative rest with respect to the main gravitational source. Moreover, as we know from [2], the combined 

gravitational field is derived from the combined gravitational potential energy (CGPE) which, here, is 

velocity-dependent-CGPE defined by the expression  
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where GMmk  ; G  being the Newton’s gravitational constant; M and m  are the masses of the 

gravitational source A and the moving test-body B ; 2
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is the relative 

distance between A  and B ; 222

zyx vvvv  is the velocity of the test-body B relative to the inertial 

reference frame of source A ; and w  is a specific kinematical parameter having the dimensions of a 

constant velocity defined by  
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where 0c  is the light speed in local vacuum and escv  is the escape velocity at the surface of the 

gravitational source A. It is worthwhile to note that the expression (3) constitutes a fundamental solution 

to a system of three second order PDEs, called ‘potential equations’ because  vr,UU   is a common 

solution to these three equations. Indeed, it is easy to show under some appropriate boundary conditions 

that the combined potential field U  is really a fundamental solution to the following equations: 
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Since Eqs.(5-7) are homogeneous and admit the same potential function U as a fundamental solution 

hence this implies, among other things, that the test-body B is in state of motion at the relative velocity, v , 

sufficiently far from the main gravitational source A. also, as we shall see, the same fundamental solution 

is the origin of the CGA-equations of motion and the CGA-field equations because, as we have 

previously seen in the second paper [2], the potential function U  is a basic part of the CGA-Lagrangian. 
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2. CGA-Equations of motion 

 

Now, we are arrived at the first part of our main subject, that is to say, the exploration and exploitation of 

the CGA as an alternative gravity theory. Thus, we shall show the relationship between CGA-equations 

of motion and those of Newton. For a moving test-body B of mass m characterized by the CGA-

Lagrangian [2] and evolving under the action of the combined gravitational field g , there is a system of 

partial differential equations of motion derived from the CGA-Lagrangian like so:  
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Where UTL   is the CGA-Lagrangian; 2 ½ vmT   and  vrUU ,  are, respectively, the kinetic 

energy and the combined gravitational potential energy that characterized the test-body B. With  

zyx vzvyvx   ,, , 222

zyx vvvv   and 2
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0 )()()( zzyyxxr  . After performing 

some differential and algebraic calculations, we get the analytical expressions of the expected CGA-

equations of motion 
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Or in compact form, we have 
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where                                      

                                                                             
r

GM
r  ,                                                         (11) 

is the static gravitational potential. Further, it is clear from (10), when 1)/2( 2 rwGM  and 

1)/( 2 wv ,  Eq.(10) reduces to the well-known classical equation of motion  
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                                                   3. CGA-Field Equations 

 

Since during its motion, the test-body is characterized by the CGPE and evolving under the action of the 

combined gravitational field g , therefore, the CGA-field equations derived from the potential function 

 vr,UU  are: 
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After performing some differential and algebraic calculations, we obtain the analytical expressions of the 

expected CGA-field equations  
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Or in compact form, we have 
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Noting that the last quantity, on the right hand side of Eq.(15) is the rate change of new physical quantity 

called in the context of CGA 'gravitational momentum' as we will see. Moreover, let us now deduce the 

classical field equation. To this aim, it is best to note that for the case 1)/( 2 wv  and 

1)/2( 2 rwGM , Eq.(15) reduces to the following well-known classical field equation 
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4. Generalization of Newton’s law of Gravitation 

 

In this section, we shall generalize, in the framework of the CGA, the famous Newton’s law of 
gravitation. So, in prior paper [1] we have already seen that the law of universal gravitational attraction 
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is not really a single force in the common classical sense, but a resultant of two forces that make between 

them an extremely small angle, θ , especially when the test-body is in state of motion.The extreme 

smallness of that angle means that the resultant force F  and its two components, namely, the static force 

SF and the dynamic force DF are almost in perfect superposition, and the resultant should be of the form 

),,( θvrFF  as we shall soon seen. First, we have from Eqs.(1), (2) and (15) the following expression of 

the dynamic gravitational field (DGF): 
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And without loss of generality, let us neglecting the second term in the right hand side of (18) and 

multiplying the two sides of Eqs.(1) and (18) by the mass, m , of the moving test-body B, we get after 

addition the expression of the resultant force                                                                                                                                      

                                                                                     DS FFF  .                                                         (19) 

 

Therefore, by using Eq.(19) and the well-known definition of the scalar product of two vectors 
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where θ  is between A
 
and B , which is, in our case, ranged between SF  and DF or equivalently is 

between γ  and Λ .  So, we have from (19) and (20)  
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Again, by taking into account Eq.(1) and the above considerations, we have mSF  and 

2

D )(v/wmF , thus after substitution in (22), we get the expected expression 
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where GMmk   and 0esc cwv  . 

 

Again, as it is easy to remark it, the expression of CGA-law of gravitation (23) is in excellent agreement 

with Einstein's claim, that's, " gravitation acts more strongly on a moving body than on the same body in 

case it is at rest." But why was the CGA-law (23) unknown? Because conceptually and physically, the 

famous Newton's law of gravitation (17) represents a limiting case for stationary or slowly moving 
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material objects, and also because the angle, θ , ranged between SF  and DF is generally very small, 

perhaps, that's why the physicists have used the classical form (17), without forgetting that GRT itself is 

founded on this same law with some modifications when velocities become relativistic and gravitational 

field becomes very strong; for this reason GRT reduces to Newton's gravity in the weak-field and low-

velocity limit. Thus according to above considerations, Eq.(23) should be regarded as correction,  

modification and generalization of the classical form (17). Although GRT does not consider gravity as a 

force properly speaking but interpreted as a curvature of space-time, however, it seems by applying the 

general force in Schwarzschild coordinate, Ridgely [5] was remarkably able to derive one expression of 

the gravitational force defined in the context of GRT 
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where re  is a unit vector pointing in the r-coordinate direction. From Eq.(24), it is straightforward to see 

that there is a singularity, that is to say when )/2( 2
cGMr  , F  becomes infinite. Such 

singularity/infinity is inherited from GRT. However, any coherent physical theory should prohibit the 

appearance of singularities/infinities in its formalism. Further, one of the most fundamental and profound 

distinction between a theory of physics and theory of mathematics is with respect to the concept of 

infinity. While in mathematics we can associate and attribute, in a perfectly logical and coherent way, the 

infinite value to the parameters, such associations are strictly meaningless when related to a theory of 

physics. And this is because in Nature nothing is infinite. All physical parameters of phenomena and 

objects of Nature are defined and characterized by finite values and only finite values. Nature cannot be 

d e s c r i b e d  t h r o u g h  i n f i n i t e  c o n c e p t s  a n d  v a l u e s  a s  

they are devoid of any meaning in the real physical world.  Now, returning to Eq.(24) and writing it 

without singularity by supposing the quantity )/2( 2
rcGM  to be sufficiently less than unity, we obtain 
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Let us show that Eq.(25) is an important particular case of Eq.(23) when the moving test-body B  of mass 

m  evolving inside the vicinity of the main gravitational source A  of mass M . Thus, by taking into 

account the above consideration and the definition (4), we get 
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Since in general  0θ , thus when the test-body B  orbiting the gravitational source A  at the relative 

radial distance r with the orbital velocity   2/1
/ rGMv  , we obtain after substitution in (26), the 

following expression: 
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Since  GMmk   and cc 0 , therefore, Eq.(25) coincides perfectly with Eq.(27). 
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5. Role and Effects of Dynamic Gravitational Field 

 

In terms of fields, the existence of the combined gravitational field (2) means for example that the Sun is 

really exerting on the Earth two gravitational fields, γ  and Λ , via g  which is their resultant. The 

Newtonian gravity theory has ignored or missed the existence of Λ . Therefore such an omission implies 

γg   and that’s why the famous Newton’s law of gravitation (17) is unable to explain qualitatively and 

quantitatively the well-observed extra-precession of Mercury perihelion, ysec/centurarc11.43 . However, 

if historically, the GRT was capable of explaining the secular perihelion advance of Mercury this exploit 

is due in great part to the extra-field Λ or equivalently to the extra-force DF that may be deduced from 

Eq.(25) which as we know is, at the same time, a direct consequence of GRT for a test-body orbiting the 

main gravitational source and coincided perfectly with CGA-Eq.(27). Therefore, physically, the secular 

perihelion advance of Mercury and other planets of the Solar System is not caused by the curvature of 

space-time but causally is due to the couple  D,FΛ that acting on each planet as an extra field-force as 

we shall see. Now, returning to Eq.(18). Since, without loss of generality, we have already neglected the 

second term in right hand side of Eq.(18), accordingly the reduced expression of the dynamic 

gravitational field (DGF) ,Λ , takes the form  
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Therefore, after performing some differential and algebraic calculations, we get the expression of theΛ -
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 From (29), we arrive at the expression of the magnitude  
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Eq.(31) means that DGF,Λ , may play a double role, that is to say, when perceived/interpreted as an 

extra-gravitational acceleration 0)Λ(  or an extra-gravitational deceleration 0)Λ(  . More explicitly, we 

summarize the above considerations as follows: 1) When the velocity vector v  of the moving test-

body B is directed towards the gravitational source A , the DGF,Λ , acting on B as an extra-gravitational 

acceleration of magnitude   
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2) And when the velocity vector v  of the same moving test-body B is directed on the opposite side of the 

gravitational source A , the DGF,Λ , acting on B as an extra-gravitational deceleration of magnitude   
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Since in [1], we have already studied in detail the role and effects of DGF, therefore, in the present work 

we focus our interest only in the case 0Λ  , i.e., when Λ  playing the role of an extra-gravitational 

acceleration. So, let us consider a fixed observer in the inertial reference frame of the supposed stationary 

gravitational source A , and the moving test-body B is relatively situated far from A  at a certain radial 

distance and supposing the following effects: 

1) Time contraction:  When the DGF,Λ , playing the role of an extra-gravitational acceleration 0)Λ(  , 

i.e., when the test-body B starts to approach progressively the supposed stationary gravitational source A , 

and the velocity vector, v , of B is directed towards A , the fixed observer should have the impression that 

the moving test-body B gains the time with respect to him, such ‘time gain’ is called-time contraction-. 

The amount of this temporal contraction is given by 

 

                                                                                                 
3221 Λ

2

1Λ
2

1 -
vrt

-
vt  ,                                           (34)  

 where t  is the apparent duration of the relative motion of the test-body B .  

 

2) Space contraction: Also, at the same time, the fixed observer should have the impression that the initial 

relative distance between A  and B  is in progressive contraction with respect to him, such-spatial 

shortening- is called, space contraction. The amount of this apparent variation in form of contraction is 

given by  

                                                                              222 Λ
2

1Λ
2

1  vrtr .                                           (35)   

 

3) Velocity increment: Furthermore, the same fixed observer should notice that the relative velocity of 

test-body B is very slightly increasing with respect to him. Such small augmentation is called velocity  

increment. The amount of this increment is given by  

                                             

                                                                                   1 vrtv .                                                 (36)   

 

 

5.1. CGA-Effects in the Inner Solar System 

 

The structural simplicity and the mathematical beauty that should characterize any modern physical 

theory do not fully suffice by themselves as intrinsic quality but also the well established theory should be 

characterized by its proper power of prediction and description of new effects without, of course, 

forgetting the old ones. Based on these lines of thought, the CGA as an alternative gravitational theory 

should be firstly tested locally, in the inner solar system (ISS) and secondly at global level, i.e., in the 

outer solar system (OSS) which is our next purpose in this paper.  As we know it, according to the CGA-

formalism, the famous Newton’s universal law of gravitation (17) is not really a single force in common 

classical sense, but a resultant F of two forces SF  and DF that make between them a very small 

angle, θ .The smallness of that angle means that the resultant and its two components are almost in perfect 

superposition. Thus the main CGA-prediction is the existence of the DGF,Λ , that is phenomenological a 

sort of gravitational induction caused by the motion of test-body in the static gravitational field, γ . In this 

sense, we said that the test-body is evolving in the combined gravitational field, g , which is in fact the 
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resultant of γ  and Λ . Furthermore, since Λ  may be acted/behaved like an extra-gravitational 

acceleration or deceleration, therefore as an additional field Λ  or force DF , how the couple  D,FΛ  can 

appear its effects in ISS? 

       In terms of field-force, in spite of their weak magnitude with respect to  S,Fγ , the couple  D,FΛ  

has its proper effects in addition to those that have been already mentioned. These new-old additional 

effects are: the CGA-secular perigee precessions for the satellites and the CGA-secular perihelion 

precessions for the planets, particularly, when the DGF playing the role of an extra-gravitational 

acceleration. Einstein’s GRT explains such secular celestial phenomena as a result of the local curvature 
of space-time around the Sun. However, like Newton’s gravity theory, GRT does not take explicitly into 

account the existence of  D,FΛ  as an additional gravitational field-force induced by the test-body  

during its motion in vicinity of the main gravitational source. Accordingly, in the context of CGA, 

we explain the above mentioned secular celestial phenomena as a direct consequence of  D,FΛ . 

 

 

               5.2. Average magnitude of  
i

i D,FΛ  in ISS  

 

Now, we wish to determine in the ISS the average magnitude of  
i

i D,FΛ for each planet. The ISS gives 

us a very good opportunity to test the CGA because in such a system, the Sun plays the role of the 

principal gravitational source A of mass M , and each planet iP may be separately played the role of the 

test-body iB of mass im , where subscript (i = 1,2,3 ...9) denotes the order of each planet iP in the ISS. For 

our purpose, Pluto is always considered as planet since for as long as this celestial body orbits the Sun 

like exactly the other planets. Thus according to the CGA, and in terms of field, the Sun as principal 

gravitational source is permanently exerting on each planet, iP , during its orbital motion at average radial 

distance , ir , with average orbital velocity, iv , a certain DGF, iΛ , acting as an additional field. In such a 

case, the average radial distance between the planet and the Sun’s centre of gravity is  
 

                                                                           
2

maxmin

ii

i

rr
r


 ,                                                            (37) 

 

Since )1(min

iii ear   and )1(max

iii ear  , where ia  and ie  are, respectively, the semi-major axis and 

orbital eccentricity of planet iP . Hence, by substituting these relations in (37), we get immediately  

 

                                                                                     ii ar  .                                                                  (38) 

 

Further, for the case when the DGF plays the role of an extra-gravitational acceleration, we find after 

substitution in (32):  

                                                                            

2

2
Λ 








w

v

a

GM i

i

i ,                                                         (39) 

 

Since we are dealing with the ISS, therefore we can, on average, consider each planet, iP , being relatively 

in vicinity of the Sun. Consequently, according to the definition (4), we obtain from (39), for the case 

0cw  : 

                                                                            

2

0

2
Λ 










c

v

a

GM i

i

i .                                                      (40) 
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Furthermore, we have for the average orbital velocity the expression 

 

                                                                                

2/1











i

i
a

GM
v ,                                                         (41) 

 

hence by substituting (41) in (40), we get the important formula of the average magnitude of DGF as an 

extra-gravitational acceleration           

                                                                               

2

0

1Λ 









ii

i
ac

GM

a
.                                                       (42) 

 

Or in terms of force, the Sun as principal gravitational source, is permanently acting on each planet a 

certain dynamic gravitational force, which behaves like an additional force. The average magnitude of 

this force is given by  

                                                                                                          

2

0

D 









ii

i

i ac

GM

a

m
F .                                                     (43) 

 

Where im  is the mass of planet iP . Now, from the formulae (42) and (43), the predicted average 

magnitude  
i

i FD,Λ  of the couple  
i

i D,FΛ  for each planet is computed and listed in columns 4 and 5 of 

Table1; where for the values of the mass of the Sun and of the physical constants we take 

kg109891.1 30

sun  MM ;  21311 -s-kgm1067384.6 G   a n d   -1

0 sm299792458c . 

 

 

 
                                                                                                  Predicted CGA-effects 
                                                                        

                          Planet                     ia                             im                                   iΛ                                       
i

FD                                           

                                   m                        kg                         -2sm                          N                                                
   

                               Mercury          57.9210
9 
           3.28680010

23 
         1.00910710

-9 
  

            
3.31489310

14 
                          

                   
 

                            Venus             108.2510
9
           4.87044010

24
        

  
1.54489210

-10               
1.34473510

14                      
 

                            Earth             149.6010
9
           5.97220010

24
          5.85636710

-11 
         3.49723610

14
                          

   
                 

                            Mars              227.9510
9
           6.39432010

23
          1.65448610

-11 
         1.05793110

12
     

                            Jupiter           778.3010
9
          1.89977010

27
          4.16040610

-13 
          7.89662810

14
    

                            Saturn             1.42810
12 

         5.68915210
26

          6.72972210
-14 

          3.82864110
13

        

                            Uranus            2.87010
12  

        8.72496010
25

          8.28964710
-15 

          7.23268410
11

     

                            Neptune          4.49710
12

          1.03384810
26           

   2.15483010
-15              

 2.22776710
11

          

                            Pluto               5.90010
12

          1.25496010
22

          9.54169910
-16 

          1.19744510
7
                 

   

                             

                      Table 1. Above, column 1 gives the planet’s name; column 2 gives the semi-major axis of each  

                      planet; column 3 gives the mass of each planet; columns 4 and 5 give, respectively, the values  

                      of iΛ and 
i

FD for each planet.         
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5.3. CGA-Formula for the Perigee and Perihelion precessions 

 

After we have calculated the values of the average magnitude  
i

i FD,Λ of the couple  
i

i D,FΛ for each 

planet in ISS, at present, we will show that in despite of its weak average magnitude, the dynamic 

gravitational field Λ  or equivalently the dynamic gravitational force 
i

DF is the main responsible for the  

observed secular perigee precessions for the satellites and the observed secular perihelion precessions for 

the planets in ISS. Hence, since the radial distance between the moving /orbiting test-body B and the main 

gravitational source A , undergoes a certain apparent variation with respect to the fixed observer in A' s 

inertial reference frame; therefore, with the help of the equation (35), we derive the expected CGA- 

formula as follows: Let the test-body B orbiting the main gravitational source A  at a radial distance r  

with average orbital velocity v  during each average orbital period P . According to the equation (35), 

under the influence of Λ  as an additional gravitational field, the radial distance r  undergoes a certain 

variation rΔ  when Λ  playing the role of an extra-gravitational acceleration, i.e., when the velocity 

vector v  of B  is directed towards the supposed stationary gravitational source A . This radial distance 

variation should induce a small secular advance of the perigee (if B is a satellite and A is a planet) or  

secular advance of the perihelion (if B is a planet and A  is a star). The relative position of the celestial 

test-body moving along a Keplerian ellipse oscillates between a minimum radial distance of 

)1(min ear   and a maximum radial distance of )1(max ear  over one orbital revolution. If during this 

temporal interval )( Pt  the ellipse processes in its plan by a very small amount Δ , the related variation 

rΔ  of the radial distance r  would be approximately written as: 

 

                                                                            arΔ ,                                                                     (44) 

From where we get 

                                                                    
a

r
d/rev)ra(Δ ,                                                                (45) 

 

where a is the semi-major axis and (rad/rev) means that Δ  is expressed in ‘radian per revolution’. Also, 
we have according to the equation (35) and the fact that )( Pt  : 

 

                                                                         2Λ
2

1Δ P
a

 .                                                                   (46) 

 

Here P is the average orbital period expressed in seconds. Further, since here we are dealing with the 

average orbital parameters, thus according to (42), and by omitting the subscript‘i’, we can finally obtain, 

after substituting (42) in (46), the expected CGA-formula: 

 

                                                                                              

2

2

02

1










ac

GMP ,                                                               (47) 

 

where M is the mass of the principal gravitational source. Also, we can express (46) in terms of the 

magnitude of the dynamic gravitational force, since mF /Λ D , where m  is the mass of the orbiting test-

body, thus after substitution in (46), we get 

                                                                         
am

PF
2

D

2

1Δ  .                                                                 (48) 
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The CGA-formulae (47) and (48) show us that  D,FΛ  are explicitly responsible for the mentioned 

secular orbital precessions. Besides to what was already mentioned, it is worthwhile to note that, 

phenomenologically, during its orbital motion, the celestial test-body undergoes a certain apparent 

change in its orbital period and orbital velocity caused by the DGF when it behaves like an extra-

gravitational acceleration. Hence, according to the equations (34) and (36), the change in orbital period 

and orbital velocity are, in the case of orbital motion, of the form                                       

 

                                                                             21Λ
2

1Δ PvP
 ,                                                          (49) 

        

                                                                                   Pv ΛΔ  .                                                              (50) 

 

More explicitly, after omitting the subscript ‘i’ in (44) and by taking into account the expression of the 

average orbital velocity 12  Pav  , we can rewrite the above formulae as follows: 

 

                                                                          

2

2

0
4











ac

GMPP
P


,                                                         (51) 

  

                                                                             

2

0











ac

GM

a

P
v  .                                                         (52)        

              

                      

5.4. Calculation of the secular perigee precession of the Moon 

 

Without doubt, one of the most important celestial bodies, the Moon, is literally at the Earth’s doorstep.  
The Moon is important for what it can tell us about, for example, the formation and evolution of the solar 

system (SS). It is important because it can serve as a veritable celestial laboratory enabling us to 

understand physical processes that take place on the Moon as well as on other similar SS-bodies and also 

to test some new gravity theories because it is natural to think of utilizing planetary satellites moving at 

average radial distance quite small in comparison with the semi-major axes of the planets’ orbits; and 

indeed, De Sitter [6,7,8] chose our Moon as a test-object as long ago as 1916. Although he was initially 

concerned with determining the modification of the Moon’s orbit resulting from the combined attraction 
of the Earth and the Sun under Einstein’s GRT, it was found that the modification imposed by Einstein’s 
theory on the gravitational field of the Earth alone resulted in an advance of the secular lunar perigee of 

cy/arcsec 60.0 [9]; where ‘ cy /arcsec ’ is the abbreviation for arc second per century. Hence, the correct 

calculation of the secular lunar perigee precession represents for any alternative gravity theory a fact of an 

extreme significance. In what follows we perform this calculation with the help of the CGA-formula (47).  

Since in the system Earth-Moon, the Earth playing the role of principal gravitational source A and the 

Moon has the role of test- body B . In the case of the Moon, we have m10844.3 8a , 

s102.360580d32.27min43h7d27 6P , while for the values of the mass of the Earth and of the 

physical constants, we take kg109722.5 24 MM , 21311 skgm1067384.6 --
G

 , 

1

0 sm458792299 c .  After substituting all these quantities in (47), we find 

                arcsec/cy062.0
32.27

36525
3600

180
10552.2rad/rev10552.2Δ 1010 






 


 .          (53) 

 

This is in good agreement with the value found by De Sitter. 
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5.5. Calculation of the secular perihelion precession of the Planets 

 

After we have applied the CGA-formula (47) to calculate the secular perigee precession of the Moon 

and we have got the numerical value (53) which is in good accordance with that found by De Sitter, thus 

at present, we focus our attention on the secular perihelion precession of planets in ISS. Furthermore, 

among other things, our main interest is to show more conclusively the applicability and generality of  

the (47) in ISS. Since in the SS, the Sun playing the role of principal gravitational source of 

mass kg109891.1 30

sun  MM  and each planet has the role of celestial test-body, thus by inserting the 

subscript (i = 1,2,3 ... 9) and replacing M  with sunM in (47), we get 

                                                                                              

                                                                                             

2

2

0

sun 

2

1Δ 









i

i
i

ac

PMG .                                                         (54) 

 

So, based on (54), we can construct the following Table 2 of CGA-secular perihelion precession for each 

planet. Thus it what follows we perform these calculations exactly as we have previously done for the 

Moon.  

 

 

                                                                              

                                                                             CGA- Predicted values                  observed values 

                                                 

                          Planet                      ia                        iP                                iΔ                                                    
obsΔ i                                          

                                     m                      d                    arcsec/cy                                arcsec/cy                                               
  

                            Mercury         57.9210
9
               87.97                   43.1198     

         
                          43.1100    

                   
 

                            Venus            108.2510
9
            224.70  

               
          9.0270

          
                                8.4000

             
 

                            Earth             149.6010
9
            365.25    

  
                4.0227                                       5.0000

     
                 

                            Mars              227.9510
9
            686.97                     1.4035                                       1.3624     

                            Jupiter           778.3010
9
          4332.60                     0.0651 

 
                                     0.0637  

                            Saturn             1.42810
12 

       10759.20                     0.0142                                      0.0140     

                            Uranus            2.87010
12  

      30686.00                     0.0025                                       - - - (a)   

                            Neptune          4.49710
12

       60189.00   
                   

      0.0008                                       - - - (a)        

                            Pluto               5.90010
12

        90472.00                     0.0004                                       - - - (a)               

   
                            . 

   Table 2. Above, column 1 gives the planet’s name; column 2 gives the semi-major axis of each planet; 

   column 3 gives the average orbital period of each planet; column 4 gives the CGA-predicted values of 

  iΔ  for each planet and column 5 gives the observed values. 

 

  Notes: 
(a)

 Because their long orbital duration covering at least two human lifetimes, no data is currently 

  available covering one full orbital revolution for Neptune and Pluto hence there is not yet any 

  observational values for the precession of their perihelia.  
 

From the table 2, we can affirm that the CGA-predicted secular perihelion advance for each planet of the 

ISS is, generally, in good agreement with the observed value. 
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          6. CGA-Effects in the Outer Solar System 

  

Eclipsing binary star systems are a great stellar laboratory particularly for testing the gravity theories via 

the study of the apsidal motions. Before the advent of the CGA, the apsidal motion is generally explained 

as follows: when the gravitational field of a star differs from that of a Newtonian point, the orbit of its 

companion will deviate from a Keplerian orbit. To lowest order, a perturbation to the 1
r -gravitational 

potential causes the periastron to rotate. This is the origin of apsidal motion. Usually, there are primarily 

three effects that cause deviation from 1
r -gravitational potential: the general relativistic correction to 

Newtonian gravity theory, the quadrupole moment that arises due to the rotational distortion of a star, and 

the quadrupole moment due to tidal distortion. The first two effects are relatively easy to calculate and are 

well understood. The third effect, the modification of the gravitational potential due to tidal distortion 

displays more complex behavior. The derivation of the formula for apsidal motion due to classical 

(Newtonian) effects was first worked out by Cowling (1938) and Stern (1939). Also, before the 

establishment of the CGA, it has been argued for a long-time that in the vast majority of close binary 

systems, the apsidal motion is dominated by the classical and Relativistic effects. Hence, the observed 

rate of apsidal motion is due to the contribution of two terms: a classical term CLω  as well as the general 

relativistic term which, according to Levi-Cevita [10] and Kopal [11], is of the form  

 

                                               
)1(

)(2
102872.9)yr/deg(ω

2

3/2

21

3/5

3

GR
e

MM

P 








  

 ,                               (55) 

 

where 1M , 2M  are in solar mass and P  is in days. In this sense, the observed apsidal motion rate should 

be  

                                                                    GRCLGRCLOBS ωωωω   .                                               (56) 

 

However, it has been pointed out for a long-time the existence of a certain notable discrepancy between 

the expected theoretical value, GRCLω  , and  the observed value, OBSω , of the periastron advance of several 

eclipsing binary star systems likes, e.g., DI Herculis [12]; AS Camelopardalis [13];V1143 Cygni [14,15]; 

V459 Cassiopeia [16,17]. Guinan and Maloney [12] have argued that alternative theories of gravitation 

may be needed to explain the discrepancy. In the absence of a reasonable classical explanation for this 

discrepancy in the observed apsidal motions, there exists the possibility that the pointed out discrepancy 

is a sure signal of the limit of Einstein's GRT, that's why, e.g., Moffat [18,19,20] proposed a 

nonsymmetric gravity theory (NGT). 

 

                                                                   

                                                                           6.1. CGA-Apsidal Motion 

 

Let us consider a hypothetical eclipsing binary system  BA,  of masse AM  and  BM )( AB MM   

evolving in the mutual combined gravitational field, Λγg  . The system comprises two stars A  

and B closely moving in elliptical orbits around their common center of mass, as illustrated below in the 

Figure 1. Each star moves in its orbit according to Kepler’s laws, at all times the two stars are found on 
opposite sides of a line passing through their common center of mass.        

       How the CGA-apsidal motion occurs? Since the orbits of the two stars A  and B  are elliptical, the 

two are closer together at some times than at others, so that the DGF,Λ , or equivalently the dynamic 

gravitational force, DF , alternately strengthens at periastron and weaken at apastron. In view of the fact 

that DF  is physically an extra-gravitational force, therefore, its action as an additional force causes the 

orbit of the system to advance. The orbit of the system appears to rotate with time. 
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                                                                                A    MA     
                                                                      

   

                                                                      

 

  

                                               
                                   
                                                                                                                                                                                                                

                                                                            MB    B 
 

 

 

 

Figure 1: The orbit of the hypothetical binary star system BA, shown from above the orbital plane. The solid line represents 

the orbit of the primary (A) component and the dashed line the orbit of the secondary (B). The lines from the common center of 

mass towards the orbits indicate the relative positions of the periastron. The big dots indicate the relative positions of the stars 

at time of mid primary eclipse.             

 

The permanent action of DF  prevents the orbit to be closed ellipse, but a continuous elliptical arc whose 

point of closest approach (periastron) rotates with each orbits. In fact, the rotation of the system’s 
periastron is very analogous to the advance of the perihelion of the planets in their orbits.  

 
 

6.1.1. Equations of CGA-Apsidal motion for Binary Star Systems 
 

It is worthwhile to note that the expression of the formulae (42), (43), (47), (51) and (52) only hold for the 

motion of planets about the Sun. In this case, the mass ratio, AB MMq / , of system  BA,  is very 

comparable to zero ( 0q ), that's why we have supposed that the Sun is at rest and it is an inertial 

reference frame. Further, the orbital eccentricity, e , does not occur in the expression of these formulae 

because we have taken 02 e , such approximation is due to the great mean distance of the planets from 

the Sun. however, the above considerations are not always legitimate particularly for the eclipsing binary 

star system i.e., when A  and B  playing the role of two stars of masses AM  and BM , which are 

gravitationally linked. Contrary to the Sun-planet system, the study of eclipsing binary star systems is not 

easy task because the mass ratio, q , is not always less than unity but sometimes is (approximately) equal 

to unity and also the distance separating the two stars is more often ranged between the Sun's 

radius km)695508( sun R and AU , hence, that's why the orbital eccentricity of the system should be 

taken into consideration whatever its numerical value. Therefore, for the case when 1q , the star A of 

mass AM  is the main gravitational source and the second star B of mass BM  playing the role of test-

body, and when 1q , the two stars may be mutually played the role of the main gravitational source. 

Consequently, in the context of the CGA, the knowledge of q  with enough accuracy is a fundamental 

condition because this mass ratio is an essential element for the function )( qe,f called: orbital 

eccentricity-mass ratio function, and for the scalar parameter M  which having the physical dimensions of 

mass; therefore the two scalar quantities { )( qe,f ;M } should be taken into account when we would 

generalize the formulae (42), (43), (47), (51) and (52) to the eclipsing binary star systems. Hence, for the 

seek of simplicity, accuracy and generality, the cited formulae should very slightly modified after 

omitting the subscript‘i’ and when we take the usual notation for the apsidal motion rate, ω , the formulae 

(42), (43), (47), (51) and (52) become, respectively, as follows: 
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Where )( qe,f is the orbital eccentricity-mass ratio function andM is a scalar parameter having the 

dimensions of mass, and both are defined as follows: 
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Thus, the generalized expressions (57-61) are the CGA-formulae that permit us to investigate the CGA-

effects in eclipsing binary star systems and in binary pulsars as we will see soon. Also, the CGA-effects 

are in fact post-Keplerian effects since they concern at the same time the orbital parameters and the 

gravitational field-force. Before listing in the Table 4 the expected CGA-effects for some well-known 

eclipsing binary star systems, we prefer to beginning with the investigation of CGA-effects in AS 

Camelopardalis and DI Herculis in order to make easy the comprehension of the process of calculation 

via CGA-formulae. 
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6.1.2. AS Camelopardalis 

 

AS Cam is an eclipsing binary star system. Like DI Her and a few other systems, AS Cam is an important 

test case for gravity theories. Accurate determinations of the orbital and stellar parameters of AS Cam 

have been made by Hilditch [21,22] and Khalliulin & Kozyreva [23] that permit the expected classical 

and relativistic contributions to the apsidal motion to be determined reasonably well:  

 

                                                                  /cydeg80.35ωCL  ,                                                              (64) 

and   

                                                                   /cydeg50.8ωGR  .                                                               (65) 

 

Maloney et al., [13] have gathered all the published timings of primary and secondary minima, and have 

reinforced these with eclipse timings from 1899 to 1920 obtained from the Harvard plate collection. 

Least-square solutions of the eclipse timings extending over an 80 yr interval yield a smaller than 

expected apsidal motion rate of 

                                                                    /cydeg15ωOBS  ,                                                                (66) 

 

in agreement with that found by [23] from a short set of data. As we can remark it, the observed apsidal 

motion rate (66) for AS Cam is about one-third that theoretically expected from the combined classical 

and relativistic effects: 

                                                             /cydeg30.44ω GRCL  .                                                           (67) 

 

Thus, AS Cam joins DI Her in having an observed apsidal motion rate significantly less than that 

predicted from Newtonian and Einsteinian gravity theory. Here we shall see that there are two main 

causal sources of this profound disagreement which are, respectively, the high over estimation of classical 

contribution to the apsidal motion and the complete ignorance of the existence of the couple  D,FΛ . 

However, when we neglected or minimize the evoked classical contribution and applying the CGA-

formalism, we shall find a CGA-apsidal motion rate, CGAω , compared to GRω and their combination, 

GRCGAω  , yields a value in good agreement with the observed rate (66). To this end, we have according to 

[13] the following orbital and stellar parameters of AS Cam: 1695.0e  ; 430.3P  days; 

sun20.17 Ra   ; sun3.3 MM A   ; sun5.2 MMB   ; 7575.0q . Since 4/1e  and 1q , therefore the 

eccentricity-mass ratio function (62) and scalar parameter (63) take, respectively, the form:   

                     

                                                  24
2111

6
1 )()(),( eeeeef

q
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and the  formula (59) becomes,  
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-Numerical Application: We have 7279.2),( qef ; 1326 sm101.30 PGM A ; 13282

0 sm103.4 ac ;  

and by substituting in the above formula, we get  

                                                                    

                                                                         /cydeg60.7ωCGA  .                                                       (68) 

 

This result means that the CGA-effects contribute to the total observed apsidal motion rate at 50.66 % 

and consequently if we neglect or minimize the classical contribution, we find that the CGA-contribution 

completes the GR-effects and in this case, the theoretical expected apsidal motion rate should be of the 

form:                                 
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                                             deg/cy10.16deg/cy08.5deg/cy7.60ω GRCGA  .                              (69) 

 

This is in good agreement with the observed value (66). For the other CGA-effects, we apply the same 

formulae (58); (60) and (61), and after direct numerical application, we get: N101476.6 24

D F ; 

s101570.2 1P ;  11 sm106644.3 v .       

 

         

6.1.3. DI Herculis 

  

Again, we are returning to the famous eclipsing binary star system DI Her because of its historical and 

astrophysical importance. For the past three decades, and until recently, there has been a serious 

discrepancy between the observed and theoretical values of the apsidal motion rate of DI Her, which has 

even been interpreted occasionally as a possible failure of GRT since the GR-contribution 

( /cy)deg34.2ωGR  is dominant for DI Her. Now, accuracy measured apsidal motion rate of           

                                                          

                                                                       /cydeg04.1ωOBS  ,                                                          (70) 

 

determined from new analysis of numerous times of primary and secondary eclipse [24]. As it has been 

cited, the most remarkable feature of DI Her is that its observed apsidal motion rate (70) is significantly 

smaller than that theoretically predicted by classical and GR-contribution. The total predicted rate is  

 

                                                                     /cydeg27.4ω GRCL  .                                                       (71) 

 

However, recent observations of the Rossiter-McLaughlin effect [25,26], which was interpreted by 

Albrecht et al., [27] as the reason for the anomaly is that the rotational axes of the stars and the orbital 

axis are misaligned, which changes the predicted rate of precession. Thus, according to [27] the 

misalignment causes retrograde apsidal motion rate, RGω , of 

 

                                                                       /cydeg14.2ωRG  ,                                                       (72) 

 

and by taking into account the total predicted rate (71), we get the net theoretical precession rate of 

                                                       

                                                           /cydeg13.2ωωω RGGRCLNET    .                                         (73)            

                                               

However, it seems even with the introduction of the retrograde apsidal motion rate (72) the discrepancy 

persistes since the net rate of precession (73) amounts to 200 % or more. At present, we will see that the 

CGA, as an alternative gravity theory, should be able to handle this problem very well and without 

introducing the retrograde apsidal motion rate (72), that is only by applying the CGA-formalism, we will 

obtain a value of CGA-apsidal motion rate, CGAω , exactly comparable to the observed rate (70). So to this 

aim, we have according to [27] the following orbital and stellar parameters: 489.0e ; 55.10P   days;  

sun12.43 Ra  ; sun15.5 MM A  ; sun52.4 MMB  ; 8776.0q . Since 2/1e  and 1q , therefore, the 

eccentricity-mass ratio function (62), scalar parameter (63) and the formula (59) take, respectively, the 

form :  
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-Numerical Application: We have 963211.1),( qef ; 1326 sm106.23 PGM A ; 
13292

0 sm107.2 ac  ; and after substitution in the above formula, we obtain  

      

       /cydeg03720.1
55.10

36525
3600

180
1062022.5rad/rev1062022.5ω 66

CGA 





 


 .         (74) 

 

This is in excellent agreement with the observed value of /cydeg04.1ωOBS   at 99.73 % !. This result 

shows us that the CGA-contribution for DI Her is dominant. Now, let us determine the other CGA-

effects, viz., the average magnitude of the dynamic gravitational force; exerted by the main gravitational 

source A  of mass 
AM  on the orbiting test-body B of mass

BM ; the average change in orbital period and 

orbital velocity of system BA,  for DI Her.  Since 1q , thus the formulae (58), (60) and (61) become, 

respectively: 
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Direct numerical application gives us the following values of the expected CGA-effects: 

N10730.1 24

D F ; s108640.3 1P ; 
11 sm1075160.1 v . 

 

       Now, we conclude the investigation of CGA-effects in noncompact stellar objects by selecting four 

other well-known eclipsing binary star systems: V1143 Cygni, V541 Cygni, V526 Sagittarii and V459 

Cassiopeia. Their orbital, stellar parameters and CGA-effects are listed in Tables 3 and 4, respectively. 

 

                                                                              
                                                                          

                        System                    P                 e              sun/ Ra          sun/ MM A      sun/ MMB            Ref..                                                              

                                       d                                                                            
  

                            V 1143 Cyg           7.640             0.540            22.67     
               

1.355             1.327
   
                a

                    
 

                            V 541 Cyg           15.340             0.479  
              

 43.82
          

        2.240             2.240                  b    
             

 

                            V 526 Sgr              1.920             0.2194    
  
     10.27              2.270             1.680                  c 

    
                 

                            V459 Cas              8.460             0.0244           27.67              2.020             1.960                  d, e   

   

                                

        Table 3. Orbital and Stellar Parameters of 4 selected Eclipsing Systems 

                          
                          Ref.: a) Albrecht et al. [27]; b) Lacy [28] ; c) Lacy [29] ; d) Lacy et al., [16] ; e) Dariush [17] 
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                                                                                                   Predicted Values of the CGA- effects                   

                                                  

                        System                     OBSω                           CGAω                  DF                      P                       vΔ                                          

                                    deg/yr                    (deg/yr                N                     (s)                   (m/s)                                               

  

                            V 1143 Cyg        3.37010
-2

               3.20010
-2

        9.49710
23

         5.22510
-1

        2.37510
-1

               
 
              

            
 

                            V 541Cyg           0.60010
-2

               0.60010
-2

        6.19310
23             

8.45510
-1             

1.84210
-1

                                     
       

                            V 526 Sgr           2.454                       0.164                 9.26310
24

        1.41010
-1

         4.59810
-1

       

                            V459 Cas           6.04510
-2 

              1.50010
-2

         1.69810
24

        7.04010
-1              

3.18510
-1

  

   

    

                                              Table 4. Predicted values of the CGA-effects 

 

 

 7. Compact Stellar Objects as Test of CGA 

 

After we have investigated the CGA-effects in the noncompact stellar objects like the eclipsing binary 

star systems by showing that in addition to classical and relativistic effects, there are new other effects 

caused by the couple  D,FΛ . For example, the computed CGA-apsidal motion rate, CGAω , is in some 

cases in excellent agreement with the observed ones and sometimes it is comparable to the GR-rate, GRω . 

Also, CGA and GR-contribution may be together played the role of mutual complementarity like, e.g., 

the case of AS Cam when we have omitted the CL-contribution; consequently, the cited discrepancy was 

immediately concealed.  

       At present, we wish to push forward the frontiers of application of the CGA to investigate the same 

CGA-effects in the compact stellar objects like, e.g., the white dwarfs, neutron stars and pulsars. That is 

to say, we test the CGA in critical domain where the gravitational field is extremely strong. Here, we 

focus our main interest in some well-known binary pulsars (pulsars and their companions). But first 

what's a pulsar? 

        Pulsar (pulsating star) is a rapidly rotating neutron star that emits a radio beam that is probably 

powered by the pulsar’s rotational energy and that is centered on the magnetic axis of the neutron star. As 

the magnetic axis and the hence the beam are inclined to the rotation axis, the pulsar acts as a cosmic 

lighthouse, and a pulsar appears a pulsating radio source. The moment of inertia and the stored rotational 

energy of pulsars are large, so that in particular the fast rotating millisecond pulsars deliver a radio “tick” 
per rotation with an extraordinary precision that rivals even the best atomic clocks on Earth! As they 

concentrate an average of 1.4 solar mass on a diameter of only about 20 km, pulsars are exceedingly 

dense and compact, that’s why they representing the known densest matter in the observable universe. 
The resulting gravitational field near the pulsar’ surface is large, thus enabling strong-field tests of gravity 

theories. Furthermore, pulsars and their orbiting companions are generally compact enough that their 

motion can be treated as that of two point masses. Thus in the context of CGA, we can logically consider 

each pulsar as the main gravitational source A  of mass AM  and each orbiting companion as the test-

body B  of mass BM  . Consequently, the causal source of CGA-effects in the binary pulsar systems is 

exactly of the same nature as for ordinary (noncompact) eclipsing binary star systems. Therefore, the 

combined gravitational field, Λγg  , becomes more and more strong as the pulsar and its companion 

are so close together that an ordinary star like the Sun could not fit in their orbits. As result, the 

couple  D,FΛ should have its intensity amplified drastically. That’s why, e.g., the value of the CGA-

apsidal motion rate of binary pulsar systems should be more important than that of ordinary eclipsing 

binary star systems.  Like before, that is when we have studied the latter systems, the determination of the 

CGA-effects in binary pulsars should show us, among other things, that the usual relativistic 

interpretation of gravity as a deformation of space-time is not a physical reality but a pure topological 

property of Riemann geometry which is conceptually non-Euclidean. We have selected some well-known 

binary pulsars in order to show the importance of GCA as an alternative gravity theory capable of 
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studying the compact stellar objects via the investigation of the CGA-effects in such systems. We prefer 

to start with the study of the famous binary pulsars PRS B1913+16, binary pulsar PRS B1534+12 and the 

remarkable double binary pulsar PSR J0737-3039. 

 

 

7.1. Binary pulsar PSR B 1913+16 

 

The PRS 161913B   is the first binary pulsar discovered in 1974 by Russell Hulse and Joseph Taylor 

[30]. It is since then, considered as an ideal celestial laboratory providing decisive tests of a wide class of 

gravity theories because the extreme conditions are well available in such massive and compact 

astrophysical objects, specifically, their strong gravitational field and rapid motion. Thus the investigation 

of the CGA-effects in the binary pulsar systems using the same CGA-formalism as for the case of the 

eclipsing binary star systems, is all the more impressive considering that, in contrast to some alternative 

gravity theories, CGA has no ‘freedom’ to adjust its predictions. It is highly constrained by its 
inadjustable formalism, that is to say, the CGA-equations do not contain adjustable parameters. Let us 

now investigate the CGA-apsidal motion and other CGA-effects in PSR 161913B  . We have according 

to Weisberg and Taylor [31] the following orbital and stellar parameters of PSR 

161913B  : 6171.0e ; d322997.0P ; m10950100.1 9a ; deg/yr226595.4ωOBS  ; 

sun4414.1 MM A   ; sun3867.1 MMB   ; 9620.0q . Since 1/2>e  and 1q ; therefore the eccentricity-

mass ratio function (62), scalar parameter (63) and the formula (59) take, respectively, the form :  
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-Numerical Application: We have 539441.1),( qef ; 1325 sm101.047705)(  PMMG BA ;  
13272

0 sm10140077.1 ac .  By substituting in the above formula, we get  

 

                                                                     /yrdeg213832.4ωCGA  .                                                    (75) 

 

This is in excellent agreement with the observed value at 99.70 %. For the other CGA-effects, the 

formulae (58), (60) and (61) take for the case 1q  the following expressions, respectively:   
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Direct numerical application gives us the following values of the expected CGA-effects: 

N10831340.5 26

D F ; s10877100.1 1P ; 1sm902849.5 v . 
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7.2. Binary pulsar PSR B 1534+12 

 

PRS B1534+12 had been discovered in1990 by Wolszczan [32]. A discussion of the relativistic effects in 

this binary system, and the resulting updated tests of GRT have been presented by Stairs et al.,[33]. Let 

us now determine the CGA-apsidal motion rate and the other CGA-effects in PRS B1534+12. We have, 

according to Nice et al.,[34], the following orbital and stellar parameters of PRS B1534+12: 274.0e ; 

d420.0P ; m10281697.2 9a ; deg/yr756.1ωOBS  ; sun34.1 MMM BA  ; 1q . In view of the 

fact that 1/4>e  and 1q , therefore the eccentricity-mass ratio function (62), scalar parameter (63) and 

formula (59) take, respectively, the form:   
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Numerical application: we have 036846.1),( qef ; 1325 sm101.291011)(  PMMG BA ; 
13272

0 sm10560761.1 ac . By substituting all these values in the above formula, we obtain: 

 

                                                                        /yrdeg767398.1ωCGA  .                                                 (76) 

 

This is in good agreement with the observed value. For the other CGA-effect, since 1q  therefore we 

shall us the formulae (iv), (v) and (vi). Direct numerical application gives: N10159948.3 26

D F ; 

s10975787.1 1P ; 1sm302114.4 v . 

 

 

7.3. Double pulsar PSR J0737- 3039 

 

The PSR J0737-3039 is the first double pulsar discovered in 2003 at Australia's Parkes Observatory by 

an international team led by the radio astronomer Marta Burgay during a high-latitude pulsar survey [35] 

which consists of two pulsars orbiting the common center of mass in a slightly eccentric orbit  

(e = 0.0877) of only 2.4-hr orbital duration and pulse period of 22.7 ms. It was immediately found to be a 

member of the most extreme binary system ever discovered [36]: its short orbital period is combined with 

a remarkably high value of the observed periastron advance ( deg/yr9.16ωOBS  ), i.e., four times larger 

than for PRS B1913+16! Like before, we will show that this double pulsar represents a truly unique 

gravitational laboratory for CGA by investigating the CGA-effects. According to the CGA, this is mainly 

due to the fact that the magnitude of the mutual dynamic gravitational force for the double pulsar PSR 

J0737-3039 is eight times larger than for PRS B1913+16 as we will see. We have according to [37] the 

following orbital and stellar parameters: 0877.0e ; d102251.0P ; deg/yr9.16ωOBS  ; m108.8 8a ; 

sun338.1 MM A   ; sun249.1 MMB  ; 9334.0q . Since 1/4e  and 1q ; therefore the eccentricity-

mass ratio function (62), scalar parameter (63) and the formula (59) take, respectively,  

the form :  

                                                                   1),( qef ;   BA MM M  ;        

and 

http://en.wikipedia.org/wiki/Parkes_Observatory
http://en.wikipedia.org/wiki/Marta_Burgay
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-Numerical Application: 1),( qef ; 1324 sm103)(  PMMG BA  ; 13262

0 sm103116.2 ac  . 

After substitution in the above formula, we get 

  

                                                                        /yrdeg096440.17ωCGA  .                                               (77) 

 

This is in good agreement with the observed value of deg/yr9.16ωOBS  . For the other CGA-effects, we 

have from the formulae (iv), (v) and (vi), for the case 1q : N10677426.4 27

D F ;  

s10174517.1 1P ; 1sm632930.16 v . As it was already mentioned, the magnitude 

( N10677426.4 27 ) of the mutual dynamic gravitational force for PSR J0737-3039 is eight times larger 

than ( N10831340.5 26 ) for PRS B1913+16 that’s why the high value of the CGA-apsidal motion rate 

( /yrdeg096440.17 ) is four times larger than ( /yrdeg213832.4 ). Now, we can affirm from the study of 

the solar system, eclipsing binary star systems and binary pulsars that the CGA, as a gravity theory, is 

capable of predicting some old and new gravitational effects without evoking the curvature of space-time 

since the CGA is exclusively established in the framework of Euclidean geometry and Galilean relativity 

principle. 

 

 

8. Conclusion 
 

The CGA could be regarded as an alternative gravitational model to compare with the others that have 

already existed for a long time.  As we have seen, the CGA enabled us to study and solve some old and 

new problems related to gravitational phenomena through a novel comprehension and interpretation of 

the gravity itself; the famous Newton’s law of gravitation was corrected and reformulated in a new more 

general form. 
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