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1 Introduction

In 1960 Kusta Inkeri provided uncoditional , deterministic , lucasian type primality test
for Fermat numbers [1] . In this note we present lucasian type primality tests for specific
classes of Proth numbers .

2 Main result

Conjecture 1.
Let N = k · 2n + 1 , such that n > 2 , k odd , k < 2n and
k ≡ 5, 19 (mod 42), with n ≡ 0 (mod 3) , or
k ≡ 13, 41 (mod 42), with n ≡ 1 (mod 3) , or
k ≡ 17, 31 (mod 42), with n ≡ 2 (mod 3) , or
k ≡ 23, 37 (mod 42), with n ≡ 0, 1 (mod 3) , or
k ≡ 11, 25 (mod 42), with n ≡ 0, 2 (mod 3) , or
k ≡ 1, 29 (mod 42), with n ≡ 1, 2 (mod 3)
Next , define sequence Si :
Si = S2

i−1 − 2 with S0 = Pk(5)
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where Pm(x) = 2−m ·
((
x−
√
x2 − 4

)m
+

(
x +
√
x2 − 4

)m)
, then
N is a prime iff Sn−2 ≡ 0 (mod N)

Conjecture 2.
Let N = k · 2n + 1 , such that n > 2 , k odd , k < 2n and
k ≡ 1 (mod 6) and k ≡ 1, 7 (mod 10), with n ≡ 0 (mod 4) , or
k ≡ 5 (mod 6) and k ≡ 1, 3 (mod 10), with n ≡ 1 (mod 4) , or
k ≡ 1 (mod 6) and k ≡ 3, 9 (mod 10), with n ≡ 2 (mod 4) , or
k ≡ 5 (mod 6) and k ≡ 7, 9 (mod 10), with n ≡ 3 (mod 4)
Next , define sequence Si :
Si = S2

i−1 − 2 with S0 = Pk(8)

where Pm(x) = 2−m ·
((
x−
√
x2 − 4

)m
+

(
x +
√
x2 − 4

)m)
, then
N is a prime iff Sn−2 ≡ 0 (mod N)
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