Primality Criteria for Specific Classes of Proth Numbers

Predrag Terzic
Podgorica, Montenegro
pedja.terzic@yahoo.com

April 1, 2013

Abstract

Polynomial time prime testing algorithms for specific classes of Proth numbers are introduced.

Keywords : Primality test, Proth numbers
AMS Classification :11A51

1 Introduction

In 1960 Kusta Inkeri provided uncoditional, deterministic, lucasian type primality test for Fermat numbers [1]. In this note we present lucasian type primality tests for specific classes of Proth numbers .

2 Main result

Conjecture 1.

Let $N=k \cdot 2^{n}+1$, such that $n>2, k$ odd, $k<2^{n}$ and
$k \equiv 5,19 \quad(\bmod 42)$, with $n \equiv 0 \quad(\bmod 3)$, or
$k \equiv 13,41 \quad(\bmod 42)$, with $n \equiv 1 \quad(\bmod 3)$, or
$k \equiv 17,31 \quad(\bmod 42)$, with $n \equiv 2(\bmod 3)$, or
$k \equiv 23,37 \quad(\bmod 42)$, with $n \equiv 0,1 \quad(\bmod 3)$, or
$k \equiv 11,25 \quad(\bmod 42)$, with $n \equiv 0,2 \quad(\bmod 3)$, or
$k \equiv 1,29 \quad(\bmod 42)$, with $n \equiv 1,2 \quad(\bmod 3)$
Next, define sequence S_{i} :
$S_{i}=S_{i-1}^{2}-2$ with $S_{0}=P_{k}(5)$
where $P_{m}(x)=2^{-m} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{m}+\left(x+\sqrt{x^{2}-4}\right)^{m}\right)$
, then
N is a prime iff $S_{n-2} \equiv 0(\bmod N)$

Conjecture 2.

Let $N=k \cdot 2^{n}+1$, such that $n>2, k$ odd, $k<2^{n}$ and
$k \equiv 1 \quad(\bmod 6)$ and $k \equiv 1,7 \quad(\bmod 10)$, with $n \equiv 0(\bmod 4)$, or
$k \equiv 5 \quad(\bmod 6)$ and $k \equiv 1,3 \quad(\bmod 10)$, with $n \equiv 1 \quad(\bmod 4)$, or
$k \equiv 1 \quad(\bmod 6)$ and $k \equiv 3,9 \quad(\bmod 10)$, with $n \equiv 2(\bmod 4)$, or
$k \equiv 5 \quad(\bmod 6)$ and $k \equiv 7,9 \quad(\bmod 10)$, with $n \equiv 3 \quad(\bmod 4)$
Next, define sequence S_{i} :
$S_{i}=S_{i-1}^{2}-2$ with $S_{0}=P_{k}(8)$
where $P_{m}(x)=2^{-m} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{m}+\left(x+\sqrt{x^{2}-4}\right)^{m}\right)$
, then
N is a prime iff $S_{n-2} \equiv 0(\bmod N)$

References

[1] Inkeri, K., Tests for primality, Ann. Acad. Sci. Fenn. A I 279, 119 (1960).

