Localization formulas about two Killing vector fields

Xu Chen *

Abstract

In this article, we will discuss the smooth $\left(X_{M}+\sqrt{-1} Y_{M}\right)$-invariant forms on M and to establish a localization formulas. As an application, we get a localization formulas for characteristic numbers.

The localization theorem for equivariant differential forms was obtained by Berline and Vergne(see [2]). They discuss on the zero points of a Killing vector field. Now, We will discuss on the points about two Killing vector fields and to establish a localization formulas.

Let M be a smooth closed oriented manifold. Let G be a compact Lie group acting smoothly on M, and let \mathfrak{g} be its Lie algebra. Let $g^{T M}$ be a G-invariant metric on $T M$. If $X, Y \in \mathfrak{g}$, let X_{M}, Y_{M} be the corresponding smooth vector field on M. If $X, Y \in \mathfrak{g}$, then X_{M}, Y_{M} are Killing vector field. Here we will introduce the equlvariant cohomology by two Killing vector fields.

1 Equivariant cohomology by two Killing vector fields

First, let us review the definition of equivariant cohomology by a Killing vector field. Let $\Omega^{*}(M)$ be the space of smooth differetial forms on M, the de Rham complex is $\left(\Omega^{*}(M), d\right)$. Let $L_{X_{M}}$ be the Lie derivative of X_{M} on $\Omega^{*}(M), i_{X_{M}}$ be the interior multiplication induced by the contraction of X_{M}.

Set

$$
d_{X}=d+i_{X_{M}},
$$

then $d_{X}^{2}=L_{X_{M}}$ by the following Cartan formula

$$
L_{X_{M}}=\left[d, i_{X_{M}}\right] .
$$

Let

$$
\Omega_{X}^{*}(M)=\left\{\omega \in \Omega^{*}(M): L_{X_{M}} \omega=0\right\}
$$

be the space of smooth X_{M}-invariant forms on M. Then $d_{X}^{2} \omega=0$, when $\omega \in \Omega_{X}^{*}(M)$. It is a complex $\left(\Omega_{X}^{*}(M), d_{X}\right)$. The corresponding cohomology group

$$
H_{X}^{*}(M)=\frac{\left.\operatorname{Kerd}_{\mathrm{X}}\right|_{\Omega_{\mathrm{X}}^{*}(\mathrm{M})}}{\left.\operatorname{Imd}_{\mathrm{X}}\right|_{\Omega_{\mathrm{X}}^{*}(\mathrm{M})}}
$$

is called the equivariant cohomology associated with X. If a form ω has $d_{X} \omega=0$, then ω called d_{X}-closed form.

[^0]Then we will to definite a new complex by two Killing vector field. If $X, Y \in \mathfrak{a}$, let X_{M}, Y_{M} be the corresponding smooth vector field on M.

We know

$$
L_{X_{M}}+\sqrt{-1} L_{Y_{M}}
$$

be the operator on $\Omega^{*}(M) \otimes_{\mathbb{R}} \mathbb{C}$.
Set

$$
i_{X_{M}+\sqrt{-1} Y_{M}} \doteq i_{X_{M}}+\sqrt{-1} i_{Y_{M}}
$$

be the interior multiplication induced by the contraction of $X_{M}+\sqrt{-1} Y_{M}$. It is also a operator on $\Omega^{*}(M) \otimes_{\mathbb{R}} \mathbb{C}$.

Set

$$
d_{X+\sqrt{-1} Y}=d+i_{X_{M}+\sqrt{-1} Y_{M}} .
$$

Lemma 1. If $X, Y \in \mathfrak{g}$, let X_{M}, Y_{M} be the corresponding smooth vector field on M; then

$$
d_{X+\sqrt{-1} Y}^{2}=L_{X_{M}}+\sqrt{-1} L_{Y_{M}}
$$

Proof.

$$
\begin{aligned}
\left(d+i_{X_{M}+\sqrt{-1} Y_{M}}\right)^{2} & =\left(d+i_{X_{M}}+\sqrt{-1} i_{Y_{M}}\right)\left(d+i_{X_{M}}+\sqrt{-1} i_{Y_{M}}\right) \\
& =d^{2}+d i_{X_{M}}+i_{X_{M}} d+\sqrt{-1} d i_{Y_{M}}+\sqrt{-1} i_{Y_{M}} d+\left(i_{X_{M}}+\sqrt{-1} i_{Y_{M}}\right)^{2} \\
& =L_{X_{M}}+\sqrt{-1} L_{Y_{M}}
\end{aligned}
$$

Let

$$
\Omega_{X_{M}+\sqrt{-1} Y_{M}}^{*}(M)=\left\{\omega \in \Omega^{*}(M) \otimes_{\mathbb{R}} \mathbb{C}:\left(L_{X_{M}}+\sqrt{-1} L_{Y_{M}}\right) \omega=0\right\}
$$

be the space of smooth $\left(X_{M}+\sqrt{-1} Y_{M}\right)$-invariant forms on M. Then we get a complex $\left(\Omega_{X_{M}+\sqrt{-1} Y_{M}}^{*}(M), d_{X+\sqrt{-1} Y}\right)$. We call a form ω is $d_{X+\sqrt{-1} Y}$-closed if $d_{X+\sqrt{-1} Y} \omega=0$ (this is first discussed by Bimsut, see [3]). The corresponding cohomology group

$$
H_{X+\sqrt{-1} Y}^{*}(M)=\frac{\operatorname{Kerd}_{\mathrm{X}+\sqrt{-1 Y}} \mid \Omega_{X+\sqrt{-1 Y}}^{*}(\mathrm{M})}{\left.\operatorname{Imd}_{\mathrm{X}+\sqrt{-1} \mathrm{Y}}\right|_{\Omega_{X+\sqrt{-1}}^{*} \mathrm{M}}(\mathrm{M})}
$$

is called the equivariant cohomology associated with K.

2 The set of zero points

Lemma 2. If $X, Y \in \mathfrak{g}$, let X_{M}, Y_{M} be the corresponding smooth vector field on $M, X^{\prime}, Y^{\prime}$ be the 1-form on M which is dual to X_{M}, Y_{M} by the metric $g^{T M}$, then

$$
L_{X_{M}} Y^{\prime}+L_{Y_{M}} X^{\prime}=0
$$

Proof. Because

$$
\left(L_{X_{M}} \omega\right)(Z)=X_{M}(\omega(Z))-\omega\left(\left[X_{M}, Z\right]\right)
$$

here $Z \in \Gamma(T M)$, So we get

$$
\left(L_{X_{M}} Y^{\prime}\right)(Z)=X_{M}<Y_{M}, Z>-<\left[X_{M}, Z\right], Y_{M}>
$$

$$
\left(L_{Y_{M}} X^{\prime}\right)(Z)=Y_{M}<X_{M}, Z>-<\left[Y_{M}, Z\right], X_{M}>.
$$

Because X_{M}, Y_{M} are Killing vector fields, so (see [6])

$$
\begin{aligned}
X_{M}<Y_{M}, Z> & =<L_{X_{M}} Y_{M}, Z>+<Y_{M}, L_{X_{M}} Z> \\
& =<\left[X_{M}, Y_{M}\right], Z>+<Y_{M},\left[X_{M}, Z\right]> \\
Y_{M}<X_{M}, Z> & =<L_{Y_{M}} X_{M}, Z>+<X_{M}, L_{Y_{M}} Z> \\
& =<\left[Y_{M}, X_{M}\right], Z>+<X_{M},\left[Y_{M}, Z\right]>
\end{aligned}
$$

then we get

$$
\left(L_{X_{M}} Y^{\prime}+L_{Y_{M}} X^{\prime}\right)(Z)=<\left[X_{M}, Y_{M}\right], Z>+<\left[Y_{M}, X_{M}\right], Z>=0
$$

Lemma 3. If $X, Y \in \mathfrak{g}$, let X_{M}, Y_{M} be the corresponding smooth vector field on $M, X^{\prime}, Y^{\prime}$ be the 1-form on M which is dual to X_{M}, Y_{M} by the metric $g^{T M}$, then

$$
d_{X+\sqrt{-1} Y}\left(X^{\prime}+\sqrt{-1} Y^{\prime}\right)
$$

is the $d_{X+\sqrt{-1} Y}$-closed form.
Proof.

$$
\begin{aligned}
d_{X+\sqrt{-1} Y}^{2}\left(X^{\prime}+\sqrt{-1} Y^{\prime}\right) & =d_{X+\sqrt{-1} Y}\left(d\left(X^{\prime}+\sqrt{-1} Y^{\prime}\right)+i_{X_{M}+\sqrt{-1} Y_{M}}\left(X^{\prime}+\sqrt{-1} Y^{\prime}\right)\right) \\
& =d i_{X_{M}+\sqrt{-1} Y_{M}}\left(X^{\prime}+\sqrt{-1} Y^{\prime}\right)+i_{X_{M}+\sqrt{-1} Y_{M}} d\left(X^{\prime}+\sqrt{-1} Y^{\prime}\right) \\
& =L_{X_{M}} X^{\prime}-L_{Y_{M}} Y^{\prime}+\sqrt{-1}\left(L_{X_{M}} Y^{\prime}+L_{Y_{M}} X^{\prime}\right) \\
& =0
\end{aligned}
$$

So $d_{X+\sqrt{-1 Y}}\left(X^{\prime}+\sqrt{-1} Y^{\prime}\right)$ is the $d_{X+\sqrt{-1} Y}$-closed form.
Lemma 4. For any $\eta \in H_{X+\sqrt{-1} Y}^{*}(M)$ and $s \geq 0$, we have

$$
\int_{M} \eta=\int_{M} \exp \left\{-s\left(d_{X+\sqrt{-1} Y}\left(X^{\prime}+\sqrt{-1} Y^{\prime}\right)\right)\right\} \eta
$$

Proof. Because

$$
\begin{gathered}
\frac{\partial}{\partial s} \int_{M} \exp \left\{-s\left(d_{X+\sqrt{-1} Y}\left(X^{\prime}+\sqrt{-1} Y^{\prime}\right)\right)\right\} \eta \\
=-\int_{M}\left(d_{X+\sqrt{-1} Y}\left(X^{\prime}+\sqrt{-1} Y^{\prime}\right)\right) \exp \left\{-s\left(d_{X+\sqrt{-1} Y}\left(X^{\prime}+\sqrt{-1} Y^{\prime}\right)\right)\right\} \eta
\end{gathered}
$$

and by assumption we have

$$
\begin{gathered}
d_{X+\sqrt{-1} Y} \eta=0 \\
d_{X+\sqrt{ }-1 Y} \exp \left\{-s\left(d_{X+\sqrt{-1} Y}\left(X^{\prime}+\sqrt{-1} Y^{\prime}\right)\right)\right\}=0
\end{gathered}
$$

So we get

$$
\begin{aligned}
& \left(d_{X+\sqrt{-1} Y}\left(X^{\prime}+\sqrt{-1} Y^{\prime}\right)\right) \exp \left\{-s\left(d_{X+\sqrt{-1} Y}\left(X^{\prime}+\sqrt{-1} Y^{\prime}\right)\right)\right\} \eta \\
= & d_{X+\sqrt{-1} Y}\left[\left(X^{\prime}+\sqrt{-1} Y^{\prime}\right) \exp \left\{-s\left(d_{X+\sqrt{-1} Y}\left(X^{\prime}+\sqrt{-1} Y^{\prime}\right)\right)\right\} \eta\right]
\end{aligned}
$$

and by Stokes formula we have

$$
\frac{\partial}{\partial s} \int_{M} \exp \left\{-s\left(d_{X+\sqrt{-1} Y}\left(X^{\prime}+\sqrt{-1} Y^{\prime}\right)\right)\right\} \eta=0
$$

Then we get

$$
\int_{M} \eta=\int_{M} \exp \left\{-s\left(d_{X+\sqrt{-1} Y}\left(X^{\prime}+\sqrt{-1} Y^{\prime}\right)\right)\right\} \eta
$$

We have

$$
d_{X+\sqrt{-1} Y}\left(X^{\prime}+\sqrt{-1} Y^{\prime}\right)=d\left(X^{\prime}+\sqrt{-1} Y^{\prime}\right)+\left\langle X_{M}+\sqrt{-1} Y_{M}, X_{M}+\sqrt{-1} Y_{M}\right\rangle
$$

and

$$
\left\langle X_{M}+\sqrt{-1} Y_{M}, X_{M}+\sqrt{-1} Y_{M}\right\rangle=\left|X_{M}\right|^{2}-\left|Y_{M}\right|^{2}+2 \sqrt{-1}\left\langle X_{M}, Y_{M}\right\rangle
$$

Set

$$
M_{0}=\left\{x \in M \mid\left\langle X_{M}(x)+\sqrt{-1} Y_{M}(x), X_{M}(x)+\sqrt{-1} Y_{M}(x)\right\rangle=0\right\}
$$

For simplicity, we assume that M_{0} is the connected submanifold of M, and \mathcal{N} is the normal bundle of M_{0} about M. The set M_{0} is first discussed by H.Jacobowitz (see [4]).

3 Localization formula on $d_{X+\sqrt{-1} Y}$-closed form

Set E is a G-equivariant vector bundle, if ∇^{E} is a connection on E which commutes with the action of G on $\Omega(M, E)$, we see that

$$
\left[\nabla^{E}, L_{X}^{E}\right]=0
$$

for all $X \in \mathfrak{g}$. Then we can get a moment map by

$$
\mu^{E}(X)=L_{X}^{E}-\left[\nabla^{E}, i_{X}\right]=L_{X}^{E}-\nabla_{X}^{E}
$$

We known that if y be the tautological section of the bundle $\pi^{*} E$ over E , then the vertical component of X_{E} may be identified with $-\mu^{E}(X) y$ (see [1] proposition 7.6).

If E is the tangent bundle $T M$ and $\nabla^{T M}$ is Levi-Civita connection, then we have

$$
\mu^{T M}(X) Y=L_{X} Y-\nabla_{X}^{T M} Y=-\nabla_{Y}^{T M} X
$$

We known that for any Killing vector field $X, \mu^{T M}(X)$ as linear endomorphisms of $T M$ is skew-symmetric, $-\mu^{T M}(X)$ annihilates the tangent bundle $T M_{0}$ and induces a skewsymmetric automorphism of the normal bundle \mathcal{N} (see [5] chapter II, proposition 2.2 and theorem 5.3). The restriction of $\mu^{T M}(X)$ to \mathcal{N} coincides with the moment endomorphism $\mu^{\mathcal{N}}(X)$.

Let G_{0} be the Lie subgroup of G which preserves the submanifold M_{0}, e.g. Let $p \in M_{0}$, $Z \in \mathfrak{g}_{0}$, we have $\exp (-t Z) p=q \in M_{0}$, here \mathfrak{g}_{0} is the Lie algebra of G_{0}. We assume that the local 1-parameter transformations $\exp (-t X), \exp (-t Y) \in G_{0}$. We have that G_{0} acts on the normal bundle \mathcal{N}. The vector field $X^{\mathcal{N}}$ and $Y^{\mathcal{N}}$ are vertical and are given at the point $(x, y) \in M_{0} \times \mathcal{N}_{x}$ by the vectors $-\mu^{\mathcal{N}}(X) y,-\mu^{\mathcal{N}}(Y) y \in \mathcal{N}_{x}$.

We construct a one-form α on \mathcal{N} :

$$
Z \in \Gamma(T \mathcal{N}) \rightarrow \alpha(Z)=<-\mu^{\mathcal{N}}(X) y, \nabla_{Z}^{\mathcal{N}} y>+\sqrt{-1}<-\mu^{\mathcal{N}}(Y) y, \nabla_{Z}^{\mathcal{N}} y>
$$

Let $Z_{1}, Z_{2} \in \Gamma(T \mathcal{N})$, we known $d \alpha\left(Z_{1}, Z_{2}\right)=Z_{1} \alpha\left(Z_{2}\right)-Z_{2} \alpha\left(Z_{1}\right)-\alpha\left(\left[Z_{1}, Z_{2}\right]\right)$, so:

$$
\begin{aligned}
d \alpha\left(Z_{1}, Z_{2}\right) & =<-\nabla_{Z_{1}}^{\mathcal{N}} \mu^{\mathcal{N}}(X) y, \nabla_{Z_{2}}^{\mathcal{N}} y>-<-\nabla_{Z_{2}}^{\mathcal{N}} \mu^{\mathcal{N}}(X) y, \nabla_{Z_{1}}^{\mathcal{N}} y> \\
& +\sqrt{-1}<-\nabla_{Z_{1}}^{\mathcal{N}} \mu^{\mathcal{N}}(Y) y, \nabla_{Z_{2}}^{\mathcal{N}} y>-\sqrt{-1}<-\nabla_{Z_{2}}^{\mathcal{N}} \mu^{\mathcal{N}}(Y) y, \nabla_{Z_{1}}^{\mathcal{N}} y> \\
& +<-\mu^{\mathcal{N}}(X) y, R^{\mathcal{N}}\left(Z_{1}, Z_{2}\right) y>+\sqrt{-1}<-\mu^{\mathcal{N}}(Y) y, R^{\mathcal{N}}\left(Z_{1}, Z_{2}\right) y>
\end{aligned}
$$

Recall that $\nabla^{\mathcal{N}}$ is invariant under L_{X} for all $X \in \mathfrak{g}$, so that $\left[\nabla^{\mathcal{N}}, \mu^{\mathcal{N}}(X)\right]=0,\left[\nabla^{\mathcal{N}}, \mu^{\mathcal{N}}(Y)\right]=$ 0 . And by X, Y are Killing vector field, we have $d \alpha$ equals

$$
2<-\left(\mu^{\mathcal{N}}(X)+\sqrt{-1} \mu^{\mathcal{N}}(Y)\right) \cdot, \cdot>+<-\mu^{\mathcal{N}}(X) y-\sqrt{-1} \mu^{\mathcal{N}}(Y) y, R^{\mathcal{N}} y>
$$

And by $\left|X_{\mathcal{N}}\right|^{2}=<\mu^{\mathcal{N}}(X) y, \mu^{\mathcal{N}}(X) y>,\left|Y_{\mathcal{N}}\right|^{2}=<\mu^{\mathcal{N}}(Y) y, \mu^{\mathcal{N}}(Y) y>$. So We can get

$$
\begin{aligned}
d_{X_{\mathcal{N}}+\sqrt{-1} Y_{\mathcal{N}}}\left(X_{\mathcal{N}}^{\prime}+\sqrt{-1} Y_{\mathcal{N}}^{\prime}\right) & =-2<\left(\mu^{\mathcal{N}}(X)+\sqrt{-1} \mu^{\mathcal{N}}(Y)\right) \cdot, \cdot> \\
& +<-\mu^{\mathcal{N}}(X) y-\sqrt{-1} \mu^{\mathcal{N}}(Y) y,-\mu^{\mathcal{N}}(X) y-\sqrt{-1} \mu^{\mathcal{N}}(Y) y+R^{\mathcal{N}} y>
\end{aligned}
$$

Theorem 1. Let M be a smooth closed oriented manifold, G be a compact Lie group acting smoothly on M. For any $\eta \in H_{X+\sqrt{-1} Y}^{*}(M),\left[X_{M}, Y_{M}\right]=0$, let G_{0} be the Lie subgroup of G which preserves the submanifold M_{0} and the local 1-parameter transformations $\exp (-t X), \exp (-t Y) \in G_{0}$, the following identity hold:

$$
\int_{M} \eta=\int_{M_{0}} \frac{\eta}{\operatorname{Pf}\left[\frac{-\mu^{\mathcal{N}}(\mathrm{X})-\sqrt{-1} \mu^{\mathcal{N}}(\mathrm{Y})+\mathrm{R}^{\mathcal{N}}}{2 \pi}\right]}
$$

Proof. Set $s=\frac{1}{2 t}$, so by Lemma 4. we get

$$
\int_{M} \eta=\int_{M} \exp \left\{-\frac{1}{2 t}\left(d_{X+\sqrt{-1} Y}\left(X^{\prime}+\sqrt{-1} Y^{\prime}\right)\right)\right\} \eta
$$

Let V is a neighborhood of M_{0} in \mathcal{N}. We identify a tubular neighborhood of M_{0} in M with V. Set $V^{\prime} \subset V$. When $t \rightarrow 0$, because $\left\langle X_{M}(x)+\sqrt{-1} Y_{M}(x), X_{M}(x)+\sqrt{-1} Y_{M}(x)\right\rangle \neq 0$ out of M_{0}, so we have

$$
\int_{M} \exp \left\{-\frac{1}{2 t}\left(d_{X+\sqrt{-1} Y}\left(X^{\prime}+\sqrt{-1} Y^{\prime}\right)\right)\right\} \eta \sim \int_{V^{\prime}} \exp \left\{-\frac{1}{2 t}\left(d_{X+\sqrt{-1} Y}\left(X^{\prime}+\sqrt{-1} Y^{\prime}\right)\right)\right\} \eta
$$

Because

$$
\int_{V^{\prime}} \exp \left\{-\frac{1}{2 t}\left(d_{X+\sqrt{-1} Y}\left(X^{\prime}+\sqrt{-1} Y^{\prime}\right)\right)\right\} \eta=\int_{V^{\prime}} \exp \left\{-\frac{1}{2 t}\left(d_{X_{\mathcal{N}}+\sqrt{-1} Y_{\mathcal{N}}}\left(X_{\mathcal{N}}^{\prime}+\sqrt{-1} Y_{\mathcal{N}}^{\prime}\right)\right)\right\} \eta
$$

then

$$
\begin{gathered}
\int_{V^{\prime}} \exp \left\{-\frac{1}{2 t}\left(d_{X+\sqrt{-1} Y}\left(X^{\prime}+\sqrt{-1} Y^{\prime}\right)\right)\right\} \eta= \\
\int_{V^{\prime}} \exp \left\{\frac{1}{t}<\left(\mu^{\mathcal{N}}(X)+\sqrt{-1} \mu^{\mathcal{N}}(Y)\right) \cdot, \cdot>+\frac{1}{2 t}<\mu^{\mathcal{N}}(X) y+\sqrt{-1} \mu^{\mathcal{N}}(Y) y, R^{\mathcal{N}} y>\right\} \eta \\
+\int_{V^{\prime}} \exp \left\{-\frac{1}{2 t}<-\mu^{\mathcal{N}}(X) y-\sqrt{-1} \mu^{\mathcal{N}}(Y) y,-\mu^{\mathcal{N}}(X) y-\sqrt{-1} \mu^{\mathcal{N}}(Y) y>\right\} \eta
\end{gathered}
$$

By making the change of variables $y=\sqrt{t} y$, we find that the above formula is equal to

$$
\begin{aligned}
& t^{n} \int_{V^{\prime}} \exp \left\{\frac{1}{t}<\left(\mu^{\mathcal{N}}(X)+\sqrt{-1} \mu^{\mathcal{N}}(Y)\right) \cdot, \cdot>+\frac{1}{2}<\mu^{\mathcal{N}}(X) y+\sqrt{-1} \mu^{\mathcal{N}}(Y) y, R^{\mathcal{N}} y>\right\} \eta \\
& \quad+\int_{V^{\prime}} \exp \left\{-\frac{1}{2}<-\mu^{\mathcal{N}}(X) y-\sqrt{-1} \mu^{\mathcal{N}}(Y) y,-\mu^{\mathcal{N}}(X) y-\sqrt{-1} \mu^{\mathcal{N}}(Y) y>\right\} \eta_{\sqrt{t} y}
\end{aligned}
$$

we known that

$$
\frac{\left(\frac{<\left(\mu^{\mathcal{N}}(X)+\sqrt{-1} \mu^{\mathcal{N}}(Y)\right) \cdot \cdot \cdot>}{t}\right)^{n}}{n!}=\left(\operatorname{Pf}\left(\mu^{\mathcal{N}}(\mathrm{X})+\sqrt{-1} \mu^{\mathcal{N}}(\mathrm{Y})\right)\right) \mathrm{dy}
$$

here dy is the volume form of the submanifold M_{0}, let 2 n be the dimension of M_{0}, then we get

$$
\begin{gathered}
=\int_{V^{\prime}} \exp \left\{\frac{1}{2}<\mu^{\mathcal{N}}(X) y+\sqrt{-1} \mu^{\mathcal{N}}(Y) y, R^{\mathcal{N}} y>\right\} \eta \operatorname{det}\left(\mu^{\mathcal{N}}(X)+\sqrt{-1} \mu^{\mathcal{N}}(Y)\right)^{\frac{1}{2}} d y_{1} \wedge \ldots \wedge d y_{n} \\
\quad+\int_{V^{\prime}} \exp \left\{-\frac{1}{2}<-\mu^{\mathcal{N}}(X) y-\sqrt{-1} \mu^{\mathcal{N}}(Y) y,-\mu^{\mathcal{N}}(X) y-\sqrt{-1} \mu^{\mathcal{N}}(Y) y>\right\} \eta
\end{gathered}
$$

Because by $\left[X_{M}, Y_{M}\right]=0$ we have $\left[\mu^{T M}(X), \mu^{T M}(Y)\right]=0$. And by $-\mu^{\mathcal{N}}(X)-\sqrt{-1} \mu^{\mathcal{N}}(Y)$, $R^{\mathcal{N}}$ are skew-symmetric, so we get

$$
\begin{gathered}
=\int_{V^{\prime}} \exp \left\{-\frac{1}{2}<-\mu^{\mathcal{N}}(X) y-\sqrt{-1} \mu^{\mathcal{N}}(Y) y,-\mu^{\mathcal{N}}(X) y-\sqrt{-1} \mu^{\mathcal{N}}(Y) y+R^{\mathcal{N}} y>\right\} d y_{1} \wedge \ldots \wedge d y_{n} \\
=\int_{M_{0}}(2 \pi)^{n} \operatorname{det}\left(\mu^{\mathcal{N}}(X)+\right. \\
\quad \operatorname{det}\left(\mu^{\mathcal{N}}(X)+\sqrt{-1} \mu^{\mathcal{N}}(Y) \mu^{\mathcal{N}}(Y)\right)^{\frac{1}{2}} \eta \\
\\
\cdot \operatorname{det}\left(-\mu^{\mathcal{N}}(X)+\sqrt{-1} \mu^{\mathcal{N}}(Y)\right)^{\frac{1}{2}} \eta \\
\left.=\int_{M_{0}}(2 \pi)^{n} \operatorname{det}\left(-\mu^{\mathcal{N}}(X)-\sqrt{-1} \mu^{\mathcal{N}}(Y)+R^{\mathcal{N}}\right)^{-\frac{1}{2}}(Y)+R^{\mathcal{N}}\right)^{-\frac{1}{2}} \eta \\
= \\
\int_{M_{0}} \frac{\eta}{\operatorname{Pf}\left[\frac{-\mu^{\mathcal{N}}(\mathrm{X})-\sqrt{-1} \mu^{\mathcal{N}}(\mathrm{Y})+\mathrm{R}^{\mathcal{N}}}{2 \pi}\right]}
\end{gathered}
$$

By theorem 1., we can get the localization formulas of Berline and Vergne(see [2] or [3]).
Corollery 1 (N.Berline and M.Vergne). Let M be a smooth closed oriented manifold, G be a compact Lie group acting smoothly on M. For any $\eta \in H_{X}^{*}(M)$, let G_{0} be the Lie subgroup of G which preserves the submanifold $M_{0}=\left\{x \in M \mid X_{M}(x)=0\right\}$, the following identity hold:

$$
\int_{M} \eta=\int_{M_{0}} \frac{\eta}{\operatorname{Pf}\left[\frac{-\mu^{N}(\mathrm{X})+\mathrm{R}^{N}}{2 \pi}\right]}
$$

Proof. Because $M_{0}=\left\{x \in M \mid X_{M}(x)=0\right\}$, we have $\exp (-t X) p=p$ for $p \in M_{0}$, so $\exp (-t X) \in G_{0}$. By theorem 1., we set $Y=0$, then we get the result.

4 Localization formulas for characteristic numbers

Let M be an even dimensional compact oriented manifold without boundary, G be a compact Lie group acting smoothly on M and \mathfrak{g} be its Lie algebra. Let $g^{T M}$ be a G-invariant Riemannian metric on $T M, \nabla^{T M}$ is the Levi-Civita connection associated to $g^{T M}$. Here $\nabla^{T M}$ is a G-invariant connection, we see that $\left[\nabla^{T M}, L_{X_{M}}\right]=0$ for all $X \in \mathfrak{g}$.

The equivariant connection $\widetilde{\nabla}^{T M}$ is the operator on $\Omega^{*}(M, T M)$ corresponding to a G invariant connection $\nabla^{T M}$ is defined by the formula

$$
\widetilde{\nabla}^{T M}=\nabla^{T M}+i_{X_{M}+\sqrt{-1} Y_{M}}
$$

here X_{M}, Y_{M} be the smooth vector field on M corresponded to $X, Y \in \mathfrak{g}$.
Lemma 5. The operator $\widetilde{\nabla}^{T M}$ preserves the space $\Omega_{X_{M}+\sqrt{-1} Y_{M}}^{*}(M, T M)$ which is the space of smooth $\left(X_{M}+\sqrt{-1} Y_{M}\right)$-invariant forms with values in $T M$.
Proof. Let $\omega \in \Omega_{X_{M}+\sqrt{-1} Y_{M}}^{*}(M)$, then we have

$$
\begin{aligned}
\left(L_{X_{M}}+\sqrt{-1} L_{Y_{M}}\right) \widetilde{\nabla}^{T M} \omega & =\left(L_{X_{M}}+\sqrt{-1} L_{Y_{M}}\right)\left(\nabla^{T M}+i_{X_{M}+\sqrt{-1} Y_{M}}\right) \omega \\
& =\left(\nabla^{T M}+i_{X_{M}+\sqrt{-1} Y_{M}}\right)\left(L_{X_{M}}+\sqrt{-1} L_{Y_{M}}\right) \omega \\
& =0
\end{aligned}
$$

So we get $\widetilde{\nabla}^{T M} \omega \in \Omega_{X_{M}+\sqrt{-1} Y_{M}}^{*}(M, T M)$.
We will also denote the restriction of $\widetilde{\nabla}^{T M}$ to $\Omega_{X_{M}+\sqrt{-1} Y_{M}}^{*}(M, T M)$ by $\widetilde{\nabla}^{T M}$.
The equivariant curvature $\widetilde{R}^{T M}$ of the equivariant connection $\widetilde{\nabla}^{T M}$ is defined by the formula(see [1])

$$
\widetilde{R}^{T M}=\left(\widetilde{\nabla}^{T M}\right)^{2}-L_{X_{M}}-\sqrt{-1} L_{Y_{M}}
$$

It is the element of $\Omega_{X_{M}+\sqrt{-1} Y_{M}}^{*}(M, \operatorname{End}(T M))$. We see that

$$
\begin{aligned}
\widetilde{R}^{T M} & =\left(\nabla^{T M}+i_{X_{M}+\sqrt{-1} Y_{M}}\right)^{2}-L_{X_{M}}-\sqrt{-1} L_{Y_{M}} \\
& =R^{T M}+\left[\nabla^{T M}, i_{X_{M}+\sqrt{-1} Y_{M}}\right]-L_{X_{M}}-\sqrt{-1} L_{Y_{M}} \\
& =R^{T M}-\mu^{T M}(X)-\sqrt{-1} \mu^{T M}(Y)
\end{aligned}
$$

Lemma 6. The equivariant curvature $\widetilde{R}^{T M}$ satisfies the equvariant Bianchi formula

$$
\widetilde{\nabla}^{T M} \widetilde{R}^{T M}=0
$$

Proof. Because

$$
\begin{aligned}
{\left[\widetilde{\nabla}^{T M}, \widetilde{R}^{T M}\right] } & =\left[\widetilde{\nabla}^{T M},\left(\widetilde{\nabla}^{T M}\right)^{2}-L_{X_{M}}-\sqrt{-1} L_{Y_{M}}\right] \\
& =\left[\widetilde{\nabla}^{T M},\left(\widetilde{\nabla}^{T M}\right)^{2}\right]+\left[\nabla^{T M}+i_{X_{M}+\sqrt{-1} Y_{M}},-L_{X_{M}}-\sqrt{-1} L_{Y_{M}}\right] \\
& =0
\end{aligned}
$$

Now we to construct the equivariant characteristic forms by $\widetilde{R}^{T M}$. If $f(x)$ is a polynomial in the indeterminate x, then $f\left(\widetilde{R}^{T M}\right)$ is an element of $\Omega_{X_{M}+\sqrt{-1} Y_{M}}^{*}(M, \operatorname{End}(T M))$. We use the trace map

$$
\operatorname{Tr}: \Omega_{X_{M}+\sqrt{-1} Y_{M}}^{*}(M, \operatorname{End}(T M)) \rightarrow \Omega_{X_{M}+\sqrt{-1} Y_{M}}^{*}(M)
$$

to obtain an element of $\Omega_{X_{M}+\sqrt{-1} Y_{M}}^{*}(M)$, which we call an equivariant characteristic form.

Lemma 7. The equivariant differential form $\operatorname{Tr}\left(f\left(\widetilde{R}^{T M}\right)\right)$ is $d_{X_{M}+\sqrt{-1} Y_{M}}$-closed, and its equivariant cohomology class is independent of the choice of the G-invariant connection $\nabla^{T M}$.

Proof. If $\alpha \in \Omega_{X_{M}+\sqrt{-1} Y_{M}}^{*}(M, \operatorname{End}(T M))$, because in local $\nabla^{T M}=d+\omega$, we have

$$
\begin{aligned}
d_{X_{M}+\sqrt{-1} Y_{M}} \operatorname{Tr}(\alpha) & =\operatorname{Tr}\left(d_{X_{M}+\sqrt{-1} Y_{M}} \alpha\right) \\
& =\operatorname{Tr}\left(\left[d_{X_{M}+\sqrt{-1} Y_{M}}, \alpha\right]\right)+\operatorname{Tr}([\omega, \alpha]) \\
& =\operatorname{Tr}\left(\left[\widetilde{\nabla}^{T M}, \alpha\right]\right)
\end{aligned}
$$

then by the equivariant Bianchi identity $\widetilde{\nabla}^{T M} \widetilde{R}^{T M}=0$, we get

$$
d_{X_{M}+\sqrt{-1} Y_{M}} \operatorname{Tr}\left(f\left(\widetilde{R}^{T M}\right)\right)=0
$$

Let $\nabla_{t}^{T M}$ is a one-parameter family of G-invariant connections with equivariant curvature $\widetilde{R}_{t}^{T M}$. We have

$$
\begin{aligned}
\frac{d}{d t} \operatorname{Tr}\left(f\left(\widetilde{R}_{t}^{T M}\right)\right) & =\operatorname{Tr}\left(\frac{d \widetilde{R}_{t}^{T M}}{d t} f^{\prime}\left(\widetilde{R}_{t}^{T M}\right)\right) \\
& =\operatorname{Tr}\left(\frac{d\left(\widetilde{\nabla}_{t}^{T M}\right)^{2}}{d t} f^{\prime}\left(\widetilde{R}_{t}^{T M}\right)\right) \\
& =\operatorname{Tr}\left(\left[\widetilde{\nabla}_{t}^{T M}, \frac{d \widetilde{\nabla}_{t}^{T M}}{d t}\right] f^{\prime}\left(\widetilde{R}_{t}^{T M}\right)\right) \\
& =\operatorname{Tr}\left(\left[\widetilde{\nabla}_{t}^{T M}, \frac{d \widetilde{\nabla}_{t}^{T M}}{d t} f^{\prime}\left(\widetilde{R}_{t}^{T M}\right)\right]\right) \\
& =d_{X_{M}+\sqrt{-1} Y_{M}} \operatorname{Tr}\left(\frac{d \widetilde{\nabla}_{t}^{T M}}{d t} f^{\prime}\left(\widetilde{R}_{t}^{T M}\right)\right)
\end{aligned}
$$

from which we get

$$
\operatorname{Tr}\left(f\left(\widetilde{R}_{1}^{T M}\right)\right)-\operatorname{Tr}\left(f\left(\widetilde{R}_{0}^{T M}\right)\right)=d_{X_{M}+\sqrt{-1} Y_{M}} \int_{0}^{1} \operatorname{Tr}\left(\frac{d \widetilde{\nabla}_{t}^{T M}}{d t} f^{\prime}\left(\widetilde{R}_{t}^{T M}\right)\right) d t
$$

so we get the result.
As an application of Theorem 1., we can get the following localization formulas for characteristic numbers

Theorem 2. Let M be an 2l-dim compact oriented manifold without boundary, G be a compact Lie group acting smoothly on M and \mathfrak{g} be its Lie algebra. Let $X, Y \in \mathfrak{g}$, and X_{M}, Y_{M} be the corresponding smooth vector field on $M . M_{0}$ is the submanifold descriped in section 2. If $f(x)$ is a polynomial, then we have

$$
\int_{M} \operatorname{Tr}\left(f\left(\widetilde{R}^{T M}\right)\right)=\int_{M_{0}} \frac{\operatorname{Tr}\left(f\left(\widetilde{R}^{T M}\right)\right)}{\operatorname{Pf}\left[\frac{-\mu^{\mathcal{N}}(\mathrm{X})-\sqrt{-1} \mu^{\mathcal{N}}(\mathrm{Y})+\mathrm{R}^{\mathcal{N}}}{2 \pi}\right]}
$$

Proof. By Lemma 7., we have $\operatorname{Tr}\left(f\left(\widetilde{R}^{T M}\right)\right)$ is $d_{X_{M}+\sqrt{-1} Y_{M}}$-closed. And by Theorem 1., we get the result.

We can use this formula to compute these characteristic numbers of M, especially we can use it to Euler characteristic of M. Here we didn't to give the details.

References

[1] N. Berline, E. Getzler and M. Vergne. Heat Kernels and Dirac Operators. Germany: Springer-Verlag, 1992.
[2] N. Berline and M. Vergne. Zéros d'un champ de vecteurs et classes caractéristiques équivariantes. Duke Math. J., 50(2):539-549, 1983.
[3] J.-M. Bismut. Localization formulas, superconnections, and the index theorem for families. Comm. Math. Phys., 103(1):127-166, 1986.
[4] H. Jacobowitz. Non-vanishing complex vector fields and the Euler characteristic. Proc. Amer. Math. Soc., 2009, 137: 3163-3165.
[5] S. Kobayashi. Transformation groups in differential geometry. Springer, New York(1972).
[6] S. Kobayashi and K. Nomizu. Foundations of differential geometry. Vol. I. John Wiley and Sons, New York(1963).

[^0]: *Email: xiaorenwu08@163.com

