Four conjectures regarding Fermat pseudoprimes and few known types of pairs of primes

Marius Coman
Bucuresti, Romania
email: mariuscoman13@gmail.com

Abstract

There are already known some relations between Fermat pseudoprimes and the pairs of primes [p, 2p - 1]. We will here show few relations between Fermat pseudoprimes and the pairs of primes of the type [p, 2p - 1], [p, 2p + 1], [p, sqrt(2p - 1)], respectivelly [p, k*p - k + 1].

Introduction

Due to mathematician Farideh Firoozbakht, we have in OEIS few interesting observations about the relation between Fermat pseudoprimes and the pairs of primes [p, 2p - 1]. We will list only few of them (see the sequences A005935A005937) :
: if p and $2 \mathrm{p}-1$ are both primes, and $\mathrm{p}>3$, then $\mathrm{p}(2 \mathrm{p}-$ 1) is pseudoprime to base 3;
: if p and $2 \mathrm{p}-1$ are both primes, then $\mathrm{p}(2 \mathrm{p}-1)$ is pseudoprime to base 5 iff p is of the form $10 k+1$;
: if p and $2 p-1$ are both primes, then $p(2 p-1)$ is pseudoprime to base 6 iff p is of the form $12 k+1$.

Now that the relation between Fermat pseudoprimes and the pairs of primes [p, 2p - 1] appears to be clear, we will make four conjectures regarding the relation between Fermat pseudoprimes and the pairs of primes of the type [p, 2p + 1], [p, 2p - 1], [p, sqrt(2p - 1)], respectivelly [p, k*p $\mathrm{k}+1]$.

CONJECTURE 1: If p and $2 p+1$ are both primes, then the number $n=p(2 p+1)-2 * k * p$ is Fermat pseudoprime to base $p+1$ for at least one natural value of k.

Verifying the conjecture:

(for the first 8 such pairs of primes)

For $[\mathrm{p}, 2 \mathrm{p}+1]=[3,7]$ we have, for $\mathrm{k}=1$, $\mathrm{n}=15$, which is, indeed, pseudoprime to base $p+1=4$.
For $[p, 2 p+1]=[5,11]$ we have, for $k=2$, $n=35$, which is, indeed, pseudoprime to base $p+1=6$.
For $[p, 2 p+1]=[11,23]$ we have, for $k=5, n=143$, which is, indeed, pseudoprime to base p $+1=12$.
For $[p, 2 p+1]=[23,47]$ we have, for $k=6, n=805$, which is, indeed, pseudoprime to base p $+1=24$.

For $[\mathrm{p}, 2 \mathrm{p}+1]=[29,59]$ we have, for $\mathrm{k}=3, \mathrm{n}=1537$, which is, indeed, pseudoprime to base p $+1=30$.
For $[p, 2 p+1]=[41,83]$ we have, for $k=9, n=2665$, which is, indeed, pseudoprime to base p $+1=42$.
For $[p, 2 p+1]=[53,107]$ we have, for $k=4, n=5247$, which is, indeed, pseudoprime to base p $+1=54$.
For $[p, 2 p+1]=[83,167]$ we have, for $k=24, n=9877$, which is, indeed, pseudoprime to base p $+1=84$.

Note: For the list of Sophie Germain primes, see the sequence A005384 in OEIS.

CONJECTURE 2: If p and $2 p-1$ are both primes, $p>3$, then the number $n=p(2 p-1)-2 * k * p$ is Fermat pseudoprime to base p - 1 for at least one natural value of k.

Verifying the conjecture:

(for the first 6 such pairs of primes)
For $[p, 2 p-1]=[7,13]$ we have, for $k=4, n=21$, which is, indeed, pseudoprime to base $p-1=6$.
For $[p, 2 p-1]=[19,37]$ we have, for $k=10, n=323$, which is, indeed, pseudoprime to base p - $1=18$.
For $[\mathrm{p}, 2 \mathrm{p}-1]=[31,61]$ we have, for $k=5, \mathrm{n}=1581$, which is, indeed, pseudoprime to base p - $1=30$.
For $[p, 2 p-1]=[37,73]$ we have, for $k=2, n=2553$, which is, indeed, pseudoprime to base p - $1=36$.
For $[p, 2 p-1]=[79,157]$ we have, for $k=7, n=11297$, which is, indeed, pseudoprime to base p - $1=78$.
For $[p, 2 p-1]=[97,193]$ we have, for $k=8, n=17169$, which is, indeed, pseudoprime to base p - $1=96$.

Note: For the list of primes p for which 2p - 1 is also prime, see the sequence A005382 in OEIS.

CONJECTURE 3: If p and q are primes, where $q=\operatorname{sqrt}(2 * p-$ 1), then the number $p^{*} q$ is Fermat pseudoprime to base $p+$ 1.

Verifying the conjecture:

(for the first 8 such pairs of primes)

For $[p, q]=[13,5]$ we have $p^{*} q=65$ which is, indeed, pseudoprime to base 14.
For $[p, q]=[61,11]$ we have $p * q=671$ which is, indeed, pseudoprime to base 62.
For $[p, q]=[181,19]$ we have $p^{*} q=3439$ which is, indeed, pseudoprime to base 182.
$\operatorname{For}[p, q]=[421,29]$ we have $p * q=12209$ which is, indeed, pseudoprime to base 422.

For [p, q] $=$ [1741, 59] we have $p^{*} q=102719$ which is, indeed, pseudoprime to base 1742.
For $[p, q]=[1861,61]$ we have $p^{*} q=113521$ which is, indeed, pseudoprime to base 1862.
For $[p, q]=[2521,71]$ we have $p * q=178991$ which is, indeed, pseudoprime to base 2522.
For $[p, q]=[3121,79]$ we have $p * q=246559$ which is, indeed, pseudoprime to base 3122.

Note: For the list of primes p for wich sqrt(2p - 1) is also prime, see the sequence A067756 in OEIS.

CONJECTURE 4: If p is prime, $p>3$, and k integer, $k>1$, then the number $n=p^{*}\left(k^{*} p-k+1\right)$ is Fermat pseudoprime to base $k * p-k$ and to base $k * p-k+2$.

Verifying the conjecture:

For the first 4 such pairs of primes, when $p=5$:

For $[p, 2 p-1]=[5,9]$ we have $p(2 p-1)=45$ which is, indeed, pseudoprime to bases 8 and 10.
For $[p, 3 p-2]=[5,13]$ we have $p(3 p-2)=65$ which is, indeed, pseudoprime to bases 12 and 14.
For $[p, 4 p-3]=[5,17]$ we have $p(4 p-3)=85$ which is, indeed, pseudoprime to bases 16 and 18.
For $[p, 5 p-4]=[5,21]$ we have $p(5 p-4)=105$ which is, indeed, pseudoprime to bases 20 and 22.

For the first 4 such pairs of primes, when $p=7$:
For $[\mathrm{p}, 2 \mathrm{p}-1]=[7,13]$ we have $\mathrm{p}(2 \mathrm{p}-1)=91$ which is, indeed, pseudoprime to bases 12 and 14.
For $[p, 3 p-2]=[7,19]$ we have $p(3 p-2)=133$ which is, indeed, pseudoprime to bases 18 and 20.
For $[p, 4 p-3]=[7,25]$ we have $p(4 p-3)=175$ which is, indeed, pseudoprime to bases 26 and 28.
For $[p, 5 p-4]=[7,31]$ we have $p(5 p-4)=217$ which is, indeed, pseudoprime to bases 30 and 32.

For the next 4 such pairs of primes, when $k=3$:

For $[p, 3 p-2]=[11,31]$ we have $p(3 p-2)=341$ which is, indeed, pseudoprime to bases 30 and 32.
For $[p, 3 p-2]=[13,37]$ we have $p(3 p-2)=481$ which is, indeed, pseudoprime to bases 36 and 38.
For $[p, 3 p-2]=[23,67]$ we have $p(3 p-2)=1541$ which is, indeed, pseudoprime to bases 66 and 68.
For $[p, 3 p-2]=[37,109]$ we have $p(3 p-2)=4033$ which is, indeed, pseudoprime to bases 108 and 110.

Note: The formula $p^{*}\left(k^{*} p-k+1\right)$, where p is prime and k integer, seems to appear often related to Fermat pseudoprimes (see the sequence A217835 that I submitted to OEIS).

