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Abstract 

 

 

A minimization of a free energy inspired in the Landauer’s erasure 

principle combined with alternatives treatments of the Brownian motion of 

the free electrons, is used as a means to derive the Fermi energy of metals. 

The obtained result differs from the usual one by a small discrepancy 

between the coefficients of the two versions of it, when expressed as a 

function of the density of free electrons, its mass and the Planck’s constant. 

 

 

 

 

 

1- Introduction 

 

   The Fermi energy of metals is usually determined by considering the 

conduction electrons as free particles living in a box, where the occupancy 

of the energy levels is done by taking in account the Pauli exclusion 

principle, reflecting the fermionic character of the charge carriers [1,2,3]. 

   As a result, it is obtained the next relation for the Femi energy, EF, in 

three dimensions 

 

                          EF = [ h 
2
 ∕ (8 m)] ( 3 ∕ π) 

2 ∕ 3
 n 

2 ∕ 3
,                                   (1) 

 

where h is the Planck’s constant, m the electron mass and n the density of 

conduction electrons. 

 

   2 – Landauer’s erasure principle applied to metals 

 

   As was pointed out by Jacobs [4], Landauer’s erasure principle [5] states 

that: whenever a single bit of information is erased, the entropy in the 

environment to which the information storing system is connected must 

increase at least kBln2, where kB is the Boltzmann’s constant. Meanwhile, a 

free electron in a metal travels in average a distance equal to its mean free 

path, with a constant velocity vF, until to collide with the ionic vibrations 

(phonons). In the collision process, the free electron loses its memory. 
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  To pursue further, we propose associate to the Fermi energy, EF, a string 

of length equal to its Fermi wavelength, composed of unit cells having a 

size equal to the Compton wavelength of the electron. Next we introduce a 

quasi-particle with a mass-energy defined as 

 

                                               μ c
2
 =  EF vF ∕ c.                                            (2) 

 

As can be seen from (2), this quasi-particle has a mass-energy given by its 

Fermi energy divided by the number of cells in the string. Defining 

 

                                ∆F = ∆U - T∆S = ½ μ c
2
 -  kBT ln2,                            (3) 

 

where F, U and S are respectively the free and internal energies and the 

entropy, and T the temperature. The quasi-particle self interaction, leads to 

a variation in the internal energy equal to that of a particle of reduced mass     

½ μ. Making the requirement that 

 

                                               ∆F|T=T* = 0,                                                   (4) 

 

yields to the relation  

 

                                    EF
3
 = (kB T*)

2
 2 (ln2)

2
 m c

2
.                                    (5) 

 

 

2- Quantum mechanics and diffusion of the particles 

 

    Transport properties by free electrons in metals, occurs due to motion of 

free particles which suffers eventual collisions with the lattice vibrations 

(phonons). The time-dependent Schrodinger equation for a free particle in 

one-dimension, where a differential operator is applied the wave function   

Ψ, reads 

 

                                     i ħ ∂Ψ ∕ ∂t = - ħ
2
 ∕ (2m)ΔΨ.                                     (6) 

 

In this work we propose that the same recipe can be used to describe the 

evolution of the probability density Ψ*Ψ, namely 

 

                       i ħ ∂(Ψ*Ψ) ∕ ∂t = - [ħ
2
 ∕ (2m)]∂

2
(Ψ*Ψ) ∕ ∂x

2
.                        (7) 

 

Performing averages on the two sides of (7), it is possible to write  

 

           │- [ħ
2
 ∕ (2m)]<∂

2
(Ψ*Ψ) ∕ ∂x

2
>│ =  [(2ħ

2
) ∕ m]<Ψ*Ψ>∕ ℓ

2
.            (8A) 
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and  

 

     

                      │ i ħ ∂<Ψ*Ψ> ∕ ∂t│ =  2 ħ <Ψ*Ψ> ∕ τ.                               (8B) 

 

In (8A) and (8B), ℓ and τ are respectively the characteristics length and 

time of the problem. Making the equality between the right hand sides of 

these relations leads to 

 

                                              τ = m ℓ
2
 ∕  ħ.                                                  (9) 

 

The above relation is the quantum analogous to the scaling relation of the 

Brownian motion. 

 

   4 – The density of charge carriers comes to the game 

 

   The density of charge carriers was estimated in a previous work 

[6].There, among other achievements, it was possible to deduce the Drude 

formula for the electrical conductivity, starting from the Landauer’s 

relation [7] for the quantum conductance, based in the modern paradigm: 

“conduction is transmission” (please see also [8]). By now it is convenient 

to establish a link of the density of charge carriers with some characteristics 

lengths of the problem. It is well known clue that the electrical conductivity 

always happens in a regime of charge neutrality. In this way the number of 

scatter centers per unit of volume n, will be equal to the number density of 

the electrons of conduction. 

   By considering a cylinder shaped tube with longitudinal size equal to the 

electron mean free path λ and radius equal to the geometric average of ℓ0 ( 

the size of a typical channel of conduction) and ℓF ( the reduced Fermi 

wavelength ), it is possible  to write 

 

                                           n π ℓ0 ℓF λ = 1.                                                (10) 

 

But 

 

                                        ℓF λ = ħ τ ∕ m = ℓ
2
,                                             (11) 

 

where in obtaining the second equality, equation (9) was took in account. 

The information of (110 into (100 leads to 

 

                                          τ = m ∕ (n π ħ ℓ0).                                             (12) 
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The maximum value of the characteristic time happens when ℓ0 is equal to 

the reduced Compton wavelength of the electron, namely ℓ0 = ħ ∕ (mc). 

Using this into (12) yields 

 

                                       τmax  = (m
2
 c) ∕ (n π ħ

2
).                                       (13) 

 

Therefore we obtained a mean time between collisions which goes with the 

inverse of the density of charge carriers. Besides this, as was found in 

reference [6], this maximum characteristic time leads to the maximum 

conductivity of a metal in the diffusive regime. 

 

   5 – Evaluating the Fermi energy  

 

   The amount of thermal energy kBT*, which appears in eq.(5) can be 

thought as the energy of a ground state (vacuum) of a one-dimensional 

harmonic oscillator. In the appendix, the reasoning to this choice will better 

elaborate. To pursue further on this subject it is worth to write 

 

                        kBT* = h ∕ (2 τmax) = ( n π ħ
2
 h) ∕ ( 2 m

2
 c).                        (14) 

 

Inserting (14) into (5) we get 

 

                              EFN = [(ln2)
2
 ∕ (32 π

2
)]

1∕ 3
 (h

2
 ∕ m ) n

2∕ 3
,                        (15) 

 

where EFN stands for the new Fermi energy deduced in this work, which 

must be compared with well known relation given by eq. (1). 

    In order to better compare the two relations for the three-dimensional 

Fermi energy of metals, it is convenient to write the approximated relations 

 

                                     EFN ≈ .1150 (h
2
 ∕ m ) n

2∕ 3
,                                  (15A) 

 

                                       EF ≈ .1212  (h
2
 ∕ m ) n

2∕ 3
 .                                 (1A) 

 

There is a five percent discrepancy between the numerical coefficients 

appearing in the above relations. 

 

APPENDIX 

 

   The free particle model used in this work in order to describe the motion 

of the charge carriers through the whole crystal can be modified, perhaps 

leading to a more realistic picture of the transport phenomena in metals. 

This can be accomplished by considering a one-dimensional harmonic 

oscillator with a time-dependent spring constant k(t). Here as was done in 
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section 3, the Hamiltonian operator will be applied to the probability 

density function, instead to the wave function Ψ. To do this it is convenient 

to write 

 

       - [ħ
2
 ∕ (2m)] ∂

2
(Ψ*Ψ) ∕ ∂x

2
 +  ½ k x

2
 (Ψ*Ψ) = i ħ ∂(Ψ*Ψ) ∕ ∂t.        (A.1) 

 

Proceeding as was done in section 3, performing averages and taking the 

absolute value of each term, we find 

 

           [ ħ
2
 ∕ (m ℓ

2
)] <Ψ*Ψ> +   ½ k ℓ

2
 <Ψ*Ψ> = ħ <Ψ*Ψ>∕ τ.               (A.2) 

 

Dividing (A.2) for <Ψ*Ψ> leads to the equation 

 

                                 ½ k ℓ
4
  - ( ħ ∕ τ) ℓ

2
 +  ħ

2
 ∕ m  = 0.                            (A.3) 

 

Solving (A.3) for ℓ
2
 yields 

 

                      k ℓ
2
 =   ħ ∕ τ ± [(( ħ ∕ τ)

2
 -  ħ

2
 2 k(t) ∕ m )

1∕ 2
.                       (A.4) 

 

   In the diffusion process undergone by the conduction electrons in metals, 

only in a very small fraction of the time of flight the electron interact with 

the lattice vibrations, which leads to the deviation of its original path. A 

way of representing this could be 

 

                                         ω(t) = ±(1 ∕ τ) cos(f t).                                    (A.5) 

 

In (A.5), the frequency f  >> 1 ∕ τ. Thus performing average over the high 

frequencies f, leads to 

 

                   < ω
2
 >f = <[±(1 ∕ τ) cos(f t)]

2
>f =  ½ (1 ∕ τ )

2
.                        (A.6) 

 

Performing time-average over (A.4), and using (A.6) to evaluate the second 

term inside the radical, we have a cancellation of the radical and we get 

 

                          2π ℓ
2
 < k >f  = A

2
 < k >f  = h ∕ τ.                                    (A.7) 
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In (A.7), 2π ℓ
2
 was identified with the amplitude squared of a classical 

harmonic oscillator. By considering a characteristic temperature T*, it is 

thus possible to write 

 

                                           KBT* = h ∕ (2 τ).                                           (A.8) 

 

The above result was used in section 5 of this work. 
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