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ABSTRACT 

 

Starting from a string with a length equal to the electron mean free path and 

having a unit cell equal to the Compton length of the electron, we construct 

a Schwarzschild-like metric. We found that this metric has a surface 

horizon equal to that of the electron mean free path and its Bekenstein-like 

entropy is proportional to the number of squared unit cells contained in this 

spherical surface. The Hawking temperature goes with the inverse of the 

perimeter of the maximum circle of this sphere. Besides this, interesting 

analogies are traced out with some features of the particle physics.  

 

 

   1 – Introduction 

 

   Drude model of the electrical conductivity of metals [1,2], considers that  

in this medium the free electrons (the electrons of conduction) undergo 

Brownian motion with an average  characteristic time τ between collisions. 

Due to the Pauli’s exclusion principle, only the electrons with energies 

which are close to the Fermi energy participate of the conduction 

phenomena. These electrons travel freely on average by a distance called 

electron mean free path equal to ℓ = vF τ, where vF is the Fermi velocity. 

   Meanwhile, let us pay attention to the following feature of the black hole 

physics [3]: an observer sited at a distance greater than RS ( the 

Schwarzschild or the surface horizon radius) of  the black hole, can not 

observe any process occurring inside the region delimited by this surface.  

   Going back to the phenomena of the electrical conductivity in metals let 

us as follow for instance in a copper crystal an electron of the conduction 

band which just suffered a collision. In the absence of an external electric 

field, al the directions in the space have equal probability to be chosen in a 

starting new free flight. Therefore if we take a sphere centered at the point 

where the electron have been scattered, with radius equal to the electron 

mean free path, the surface of this sphere may be considered as an event 

horizon for this process. Any electron starting from this center will be, on 

average, scattered when striking the event horizon, loosing the memory of 

its previous free flight. Besides this, all lattice sites of the metallic crystal 

are treated on equal footing, due to the translational symmetry of the 

system. 
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 This analogy between these two branches of the physics, namely, general 

relativity (GR) and the electrical conduction in metals (ECM), will be 

considered in the present work. As we will see, we are going to use the GR 

tools as a means to evaluate some basic quantities related to the ECM. But 

not only the GR tools will be here considered. We are also using some 

concepts related to the study of the particle lifetimes of the particle physics 

(PP). 

 

 

   2 – The electron mean free path as a Schwarzschild radius 

 

   Let us consider a string of length ℓ (coinciding with the electron mean 

free path), composed by N unit cells of size equal to the Compton 

wavelength of the electron ( λC ). Associating a relativistic energy pc to 

each of these cells, we have an overall kinetic energy K given by 

 

                       K = N p c = ( ℓ ∕ λC ) p c  = ( ℓ m c
2
 ∕ h ) p.                          (1) 

 

In a paper entitled: “Is the universe a vacuum fluctuation?”, E. P. Tryon 

[4], considers a universe created from nothing, where half of the mass-

energy of a created particle just cancels its gravitational interaction with the 

rest of  matter in the universe. Inspired in the Tryon proposal we can write 

 

                                              K + U = 0,                                                    (2) 

 

implying in  

 

                                U = - K  = - ( ℓ m c
2
 ∕ h ) p.                                        (3) 

 

However we seek for a potential energy which depends on the radial 

coordinate r, and by using the uncertainty relation p = h ∕ r, we get 

 

                                          U = - ( m c
2
 ℓ ) ∕ r.                                            (4) 

 

Next we deduce a metric, in the curved space, which is governed by the 

potential energy defined in (4). We follow the procedure established in 

reference [5]. A form of equivalence principle was propose by Derek Paul 

[6], and when it is applied to the potential energy (4) reads 

 

                                 ħ dω = dU = ( m c
2
 ℓ ) r 

– 2
 dr.                                    (5) 

 

Now we consider the de Broglie relation 
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                                            ħω = 2 m c
2
.                                                    (6) 

 

Dividing (5) by (6) yields 

 

                                      dω ∕ ω = ½ ℓ r 
– 2

 dr.                                              (7) 

 

Performing the integration of (7) between the limits ω0 and ω, and between 

R and r, we get 

 

                             ω = ω0 exp[ - ½ ℓ (1 ∕ r – 1 ∕ R)],                                    (8) 

 

and 

 

                              ω
2
 = ω0

2
 exp[ - ℓ (1 ∕ r – 1 ∕ R)].                                    (9) 

 

Making the choice R = ℓ, leads to 

 

                                      ω
2
 = ω0

2
 exp(1 – ℓ ∕ R).                                       (10) 

 

Then we construct the auxiliary metric 

 

                dσ
2
 = ω

2
 dt

2
 – k

2
 dr

2
 – r

2
( dθ

2
 + sin

2
θ dυ

2
 ).                         (11) 

 

In (11) we take k
2
, such that 

 

                                        k
2
 ∕ k0

2
 = ω0

2
∕ ω

2
.                                           (12) 

 

Relation (12) is a reminiscence of the time dilation and space contraction of 

the special relativity. 

Now we seek for a metric which becomes flat in the limit r → ∞. This can 

be accomplished by defining [7] 

 

                 w
2
 = ln( ω

2
 ∕ ω0

2
 ),       and     κ

2
 = 1 ∕ w

2
.                            (13) 

 

Making the above choices we can write 

 

       ds
2
 = ( 1 - ℓ ∕ r) dt

2
  –  ( 1 - ℓ ∕ r)

 – 1
 dr

2
  –  r

2
( dθ

2
 + sin

2
θ dυ

2
).          (14) 

 

We observe that (14) express just the Schwarzschild metric, where ℓ is just 

the Schwarzschild radius of the system.  
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   3 – A Schwarzschild-like metric 

 

   In the last section we deduced a metric where the Schwarzschild radius is 

just the conduction’s electron mean free path. But that construction seems 

not to be totally satisfactory, once the viscous character of the fluid 

embedding the charge carriers has not yet been considered. By taking 

separately in account the effect of the viscous force, we can write 

 

                                        m dv ∕ dt = - p ∕ τ*.                                             (15) 

 

In (15) τ* is a second characteristic time, which differs from the first one τ 

that was defined in the previous section. Pursuing further we write 

 

                             v dt = dr,             and           p = h ∕ r.                            (16) 

 

Upon inserting (16) into (15), and multiplying (15) by v and integrating, we 

get the decreasing in the kinetic energy of the conduction’s electron 

 

                                     ΔKqt = - ( h ∕ τ* ) ln( r ∕ R),                                   (17) 

 

where R is some radius of reference. 

Next, by defining ΔUqt = - ΔKqt , we have the total potential energy Ut, 

namely 

 

                Ut = U + ΔUqt = - ( m c
2
 ℓ ) ∕ r + ( h ∕ τ* ) ln( r ∕ R).                  (18) 

 

In the next step, we consider the equivalence principle [6] and the de 

Broglie frequency to a particle pair, writing 

              dU ∕ (2 m c
2
) = dω ∕ ω = ( ℓ ∕ 2)( dr ∕ r

 2
 ) + ½ (dr ∕ r).                  (19) 

Upon integrating we get      

 

                          ω  = ω0 exp[- ℓ ∕ (2 r) + ½ ln( e r ∕ ℓ)].                            (20) 

 

In obtaining (20), we have also made the choices 

 

                          m c
2
 τ* = h,          and      r ∕  R = e r ∕ ℓ.                          (21) 

 

Squaring (20), yields 

 

                            ω
2
  = ω0

2
 exp[- ℓ ∕ r  +  ln( e r ∕ ℓ)].                                (22) 

                                                                                                                                       

Defining 
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                          w
2
 = ln( ω

2
 ∕ ω0

2
 ),       and     κ

2
 = 1 ∕ w

2
,                        (23) 

 

we finally get 

 

       ds
2
  = [ ln(e r ∕ ℓ) - ℓ ∕ r] dt

2
 – [ ln(e r ∕ ℓ) - ℓ ∕ r]

 – 1
dr

2
 – r

2
 dΩ

2
.          (24) 

 

Relation (24) is just a Schwarzschild-like metric [8], which displays the 

same qualitative behavior than that describing the Schwarzschild geometry. 

We also have used in (24) a compact form of writing the solid angle 

differential, namely dΩ (please compare with the last term of eq. (11)). 

 

   4 – Average collision time as a particle lifetime 

 

   There are two characteristics linear momenta that we can associate to the 

free electrons responsible for the electrical conductivity of metals. They are 

the Fermi momentum mvF and the Compton momentum mc. By taking into 

account the fermionic character of the electron, we will write a non-linear 

Dirac-like equation describing the “motion” of this particle. We have [8] 

 

            ∂Ψ ∕ ∂x - (1∕c) ∂Ψ ∕ ∂t = [(m vF) ∕ ħ] Ψ – [(mc) ∕ ħ] | Ψ*Ψ|Ψ.         (25) 

 

We see that eq. (25) contains only first order derivatives of the field Ψ. 

Besides this, the field Ψ exhibits not a spinorial character. Taking the zero 

of (25) and solving for |Ψ*Ψ|, we get 

 

                                                |Ψ*Ψ| = vF ∕ c.                                            (26) 

 

   On the other hand in the collision process, the conduction’s electron loss 

its memory. We may think that this feature looks similar to the annihilation 

of a particle-anti particle pair, each of mass-energy equal to EF. Putting this 

in a form of the uncertainty principle yields 

 

                2 EF ∆t = h ∕ 2           or              h υ ∕ 2 = 2 EF.                      (27) 

 

Solving equation (27) for υ, we get 

 

                                      υ = 1 ∕ ∆t = 4 EF ∕ h.                                             (28) 

 

By combining the results of (28) and (26) we obtain the line width Г tied to 

the “particle” decay 

 

                              Г = υ | Ψ*Ψ| = 4 EF vF ∕ ( h c ).                                    (29) 
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The averaged time between collisions τ is then given by 

 

                              τ = 1 ∕ Г = ( h c ) ∕ ( 4 EF vF ).                                      (30) 

 

Now, let us compare the two characteristics times appearing in this work. 

By considering (21) and (30), we get 

 

                                       τ ∕ τ* = ½ ( c ∕ vF )
3
,                                            (31) 

 

and the electron mean free path 

 

                             ℓ = vF τ = ½ ( c ∕ vF )
2
 [h ∕ (mc)].                                  (32) 

 

It is also the place of evaluating the number of unit cells in the string of 

size ℓ. We have 

 

                                 N = ℓ ∕ λC = m c
2
 ∕ ( 4 EF ).                                       (33) 

 

It is also possible to define an effective gravitational constant GW as 

 

                         ℓ = 2 GW (Nm) ∕ c
2
 = GW m

2
 ∕ ( 2 EF ).                             (34) 

 

Taking M = Nm, we can write 

 

                                2 GW  M  ∕ c
2
  = ℓ = GW m

 
 ∕ vF

2
,                                (35) 

 

which leads to 

 

                                        M =  ½ ( c ∕ vF )
2
 m.                                           (36) 

 

In order to better numerically evaluate the quantities we described in this 

work, let us take 

 

                                             EF = ¼ α
2
 m c

2
.                                             (37) 

 

This value for EF [eq.(37)], is representative of the Fermi energy of metals, 

namely it is close to the Fermi energy of the copper crystal. Using (37) as a 

typical value of EF, we get 

 

                                            (c ∕ vF)
2
 = 2 ∕  α

2
.                                            (38) 

 

Inserting (38) into the respective quantities we want to evaluate, we have 
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         ℓ = h ∕ ( α
2
 m c );     τ = √2 h ∕ ( α

3
 m c

2
 );     M = m ∕ α

2
.                 (39) 

 

Putting numbers in (39) yields 

 

        ℓ = 453 Å;       τ = 2.93 x 10 
-14

 s;        M = 9590 MeV/ c
2
.              (40) 

 

It would be worth to evaluate the strength of GW. We have 

 

                                          GW M
2
  ~ 10 

– 8
 ħ c.                                         (41) 

 

We notice that M is approximately equal to ten times the proton mass. 

 

   5 – The event horizon temperature and entropy 

 

   To obtain the Hawking [9,11,12] temperature of this model, we proceed 

following the same steps outlined in reference [5]. First, by setting t → i τ, 

we perform Wick rotation on the metric given by (24).  We write 

 

                         ds
2
  = - ( y dτ

2
  +  y

 – 1
 dr

2
  +  r

2
 dΩ

2
 ),                             (42) 

 

where y is given by 

 

                                     y = ln( e r ∕ ℓ ) - ℓ ∕ r.                                            (43) 

 

Now, let us make the approximation 

 

                    y 
1∕ 2

 ≈ ℓ
 -1∕ 2

 [ r ln( e r ∕ ℓ ) - ℓ ]
 1∕ 2

  = ℓ
 -1∕ 2

 u
 1∕ 2

.                      (44) 

 

In the next step we make the change of coordinates 

 

           R dα = ℓ
 -1∕ 2

 u
 1∕ 2

 dτ,          and          dR = ℓ
 1∕ 2

 u
 - 1∕ 2

 dr.                (45) 

 

Upon integrating, taking the limits between 0 and 2π for α, from 0 to β for 

τ, and from ℓ to r for r, we get 

 

            R = ℓ
 1∕ 2

 u
  1∕ 2

,              and             R 2π = ℓ
 -1∕ 2

 u
 1∕ 2

 β.                 (46) 

 

Finally from (46), we find the temperature T of the horizon of events, 

namely 

 

                                      T ≡ 1∕ β = 1 ∕ ( 2π ℓ ).                                          (47) 
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   Once we are talking about event’s horizon, it would be worth to evaluate 

the Bekenstein [10,11,12] entropy of the model. Let us write 

 

                                        ∆F = ∆U – T ∆S.                                               (48) 

 

In (48), we have the variations of the free energy F, the internal energy U, 

and the entropy S. In a isothermal process, setting ∆F = 0, and taking ∆U = 

N m c
2
, and inserting T given by (47), we have 

 

                       ∆F = ( ℓ ∕ λC ) m c
2
 – h c ∕ ( 2π ℓ ) ∆S = 0,                         (49) 

 

which leads to 

 

                                        ∆S = 2π ( ℓ ∕ λC )
2
.                                             (50) 

 

The entropy of the event’s horizon is then ( putting S0 = 0 ) 

 

                                   S = S0 + ∆S = 2π ( ℓ ∕ λC )
2
.                                    (51) 

 

Therefore the analogy developed in this work between the black hole 

physics and the electrical conductivity of metals seems to make sense. 

This feature was discussed in a previous paper [8] where the connection 

with the cosmological constant problem [13] has also been considered. 
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