
On the Representation of Integer Numbers by the sum 

of Cube roots 

Edigles Guedes 

e-mail:edigles.guedes@gmail.com 

July 12, 2011 

 

ABSTRACT. We developed some formulas to represent integer numbers as 

the sum of cube roots.  
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Proof. We substitute     in Lemma1 and use a bit of algebraic manipulation.   



Lemma 2. If   
 

 
 and       then 

                                                                                 

Proof. Suppose that 

         

then, we can do 

  
   

  
 

and 

     

Let   
 

 
 and        such that   

 

 
   Therefore, 

 

 
   

 
 
  

  
(
 

 
)
 

  

 

 
   

(   )  

    
  

 

 
 
     (   )  

    
  

  
     (   )  

    
  

                   

                     

Corollary 2. If   
 

 
 or    

 

 
 or     and       then   satisfies the equation 

                                                                              

Proof. Substitute     in Lemma 2 and use a bit of algebraic manipulation.    

Theorem 1. For        then any integer   has the following representation of the two cube 

roots 
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Proof. By Cardano’s formula, a root of           is given by 
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Solving the system of equations above, we get 
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Therefrom, we substitute (5) and (6) in (1) and let       so we complete the proof.    
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Corollary 3. For        then any rational number 
 

 
 and      has the following 

representation by a sum of the two cube roots 
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Proof. Let   
 

 
 in Theorem 1, this completes the proof.   
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Theorem 2. For        then any integer   has the following representation by the sum of the 

two cube roots 
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 The solutions (12) and (13) are equals to solutions (5) and (6); thereof, we replace (10) 

and (11) in (7), and let       this completes the proof.   
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Corollary 4. For        then any rational number 
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Proof. Let   
 

 
 in Theorem 2, this completes the proof.   
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Proof. Simplifying the right-hand side of Theorem 2 and dividing both members for      
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Proof. Simplifying the right-hand side of Theorem 1 and dividing both members for      

Theorem 4. For        then   has the following representation by the sum of cube roots 
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Proof. Using the Lemma 3 and finite induction, this completes the proof.    
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