Some Identities Involving four Squares II

Edigles Guedes

April 15, 2013
(306 years of the birth of Leonhard Euler)

$$
\begin{aligned}
& \text { ABSTRACT. We continue to develop some algebraic identities related to the power three as: } \\
& \left(a^{2} c^{2}+a^{2} d^{2}+b^{2} c^{2}+b^{2} d^{2}\right)^{3}=\left[a c\left(a^{2}-3 b^{2}\right)\left(c^{2}-3 d^{2}\right)\right]^{2}+\left[a d (a ^ { 2 } - 3 b ^ { 2 }) \left(3 c^{2}-\right.\right. \\
& \left.\left.d^{2}\right)\right]^{2}+\left[b c\left(3 a^{2}-b^{2}\right)\left(c^{2}-3 d^{2}\right)\right]^{2}+\left[b d\left(3 a^{2}-b^{2}\right)\left(3 c^{2}-d^{2}\right)\right]^{2} .
\end{aligned}
$$

I. Identities

Lemma 1. For $a, b \in \mathbb{R}$, then

$$
\left(a^{2}+b^{2}\right)^{3}=\left[a\left(a^{2}-3 b^{2}\right)\right]^{2}+\left[b\left(3 a^{2}-b^{2}\right)\right]^{2}
$$

Proof. In previous paper [1, p. 3], we proof that
(1) $\quad\left[2\left(x^{2}+y^{2}\right)\right]^{3}=\left[2(x+y)\left(x^{2}-4 x y+y^{2}\right)\right]^{2}+\left[2(x-y)\left(x^{2}+4 x y+y^{2}\right)\right]^{2}$.

Expanding the left-hand side of (1), we have
(2) $\left[(x+y)^{2}+(x-y)^{2}\right]^{3}=\left[2(x+y)\left(x^{2}-4 x y+y^{2}\right)\right]^{2}+\left[2(x-y)\left(x^{2}+4 x y+y^{2}\right)\right]^{2}$.

If we set $x+y=a$ and $x-y=b$, then

$$
\begin{equation*}
x=\frac{a+b}{2}, \quad y=\frac{a-b}{2} \tag{3}
\end{equation*}
$$

Substituting (3) in (2), we obtain

$$
\begin{aligned}
\left(a^{2}+b^{2}\right)^{3} & =\left[a\left(3 b^{2}-a^{2}\right)\right]^{2}+\left[b\left(3 a^{2}-b^{2}\right)\right]^{2} \\
& =\left[a\left(a^{2}-3 b^{2}\right)\right]^{2}+\left[b\left(3 a^{2}-b^{2}\right)\right]^{2}
\end{aligned}
$$

Theorem 1. For $a, b, c, d \in \mathbb{R}$, then

$$
\begin{aligned}
\left(a^{2} c^{2}+a^{2} d^{2}+\right. & \left.b^{2} c^{2}+b^{2} d^{2}\right)^{3} \\
& =\left[\operatorname{ac}\left(a^{2}-3 b^{2}\right)\left(c^{2}-3 d^{2}\right)\right]^{2}+\left[a d\left(a^{2}-3 b^{2}\right)\left(3 c^{2}-d^{2}\right)\right]^{2} \\
& +\left[b c\left(3 a^{2}-b^{2}\right)\left(c^{2}-3 d^{2}\right)\right]^{2}+\left[b d\left(3 a^{2}-b^{2}\right)\left(3 c^{2}-d^{2}\right)\right]^{2}
\end{aligned}
$$

Proof. Using the Lemma 1, we put

$$
\begin{align*}
& \left(a^{2}+b^{2}\right)^{3}=\left[a\left(a^{2}-3 b^{2}\right)\right]^{2}+\left[b\left(3 a^{2}-b^{2}\right)\right]^{2} \tag{4}\\
& \left(c^{2}+d^{2}\right)^{3}=\left[c\left(c^{2}-3 d^{2}\right)\right]^{2}+\left[d\left(3 c^{2}-d^{2}\right)\right]^{2}
\end{align*}
$$

Multiplying (4) by (5), we complete the proof.

REFERENCES

[1] Guedes, Edigles, Some Algebraic Identities Involving four Square, available at http://viXra.org/abs/1304.0083.

