
PRIMES IN THE INTERVALS [kn, (k + 1)n]

S. SAMBASIVARAO1

Abstract. In this paper, we prove: (a) for every integer n > 1 and a fixed

integer k ≤ n, there exists a prime number p such that kn ≤ p ≤ (k + 1)n,

and (b) conjectures of Legendre, Oppermann, Andrica, Brocard, and Improved
version of Legendre conjecture as a particular case of (a).

1. Introduction

In 1845, J. Bertrand conjectured that for every positive integer n, there is always
atleast one prime p such that n < p ≤ 2n. This was first proved by P. Chebyshev
in 1850, therefore it is also called the Bertrand-Chebyshev Theorem(B.C.T). S.
Ramanujan provided a very simple proof to B.C.T using elementary properties of
Gamma function(see [7]). In conformity with S. Ramanujan, J. Nagura established
the following:

Theorem 1.1 ([5]). There is atleast one prime number between n and 6n
5 for

n ≥ 25.

Recently an interesting generalization of B.C.T was proposed by M.El.Bachraoui
as an open problem: ”Is it true for all integer n > 1 and a fixed integer k ≤ n, there
exists a prime number p such that kn ≤ p ≤ (k+1)n?”, and proved that this is true
for k = 2, whereas B.C.T answers this question affirmatively for k = 1. Latter, he
concluded that a positive answer to this problem for every positive integer k with
k = n would prove Legendre conjecture( see [6]).
The purpose of this note is to provide a positive answer to the problem posed by
M.El.Bachraoui. Consequently, we show that the conjectures of Legendre, Opper-
mann, Andrica, Brocard and Improved Version of Legendre conjecture are true.

2. Main Results

In what follows Z+ denote the set of postive integers.
Let π(n) denote the number of prime numbers less than or equal to n, known as
prime-counting function. Then one can restate B.C.T in terms of π as ”For every
n ∈ Z+, π(2n)− π(n) ≥ 1”.

Lemma 2.1 ([3],pp.427). The function

f(z) =
e

2πiΓ(z)
z − 1

e−
2πi
z − 1

(2.1)

equals 0 or 1 according as z is composite or prime.

2000 Mathematics Subject Classification. 11N05.

Key words and phrases. Prime numbers.
1Address for correspondence: Plot No.118, Vaidehi Nagar, Vanasthalipuram, Hyderabad-

500070, Andhra Pradesh, India. Email Id. ssrao.siginam@gmail.com.

1



2 S. SAMBASIVARAO

Lemma 2.2 ([4]). For n ≥ 5 and n ∈ Z+, then

π(n) = 2 +

n∑
q=5

e
2πiΓ(q)

q − 1

e−
2πi
q − 1

. (2.2)

The following theorem proves the claim made in (a).

Theorem 2.3. For every integer n > 1 and a fixed integer k ≤ n, there exists a
prime number p such that kn ≤ p ≤ (k + 1)n.

Proof. We prove this theorem in two cases.
Case1: Let k ∈ Z+ and 1 ≤ k ≤ 5.
It is clear that for all integers n ≥ 25, (k+ 1)n− 6

5 (kn) ≥ 0. By Theorem1.1, there
exists atleast one prime in between kn and (k + 1)n for all n ≥ 25.
By actual verification, we find that it is true for smaller values of n with k ≤ n.
Case2: Let k ∈ Z+ and k > 5.

For each q ∈ Z+, we write uq = e
2πiΓ(q)

q −1

e
− 2πi

q −1
. By Lemma2.2, for all n ≥ k

π((k + 1)n) = 2 +

(k+1)n∑
q=5

uq

= 2 +

2k∑
q=5

uq +

(k+1)n∑
q=2k+1

uq

= π(2k) +

(k+1)n∑
q=2k+1

uq,

(2.3)

and

π(kn) = π(k) +

kn∑
q=k+1

uq. (2.4)

Therefore,

π((k + 1)n)− π(kn) = π(2k)− π(k) +

(k+1)n∑
q=kn+1

uq −
2k∑

q=k+1

uq. (2.5)

Now,

π(2k) − π(k) +
∑(k+1)n

q=kn+1 minq uq −
∑2k

q=k+1 minq uq ≤ π((k + 1)n) − π(kn) ≤
π(2k)− π(k) +

∑(k+1)n
q=kn+1 maxq uq −

∑2k
q=k+1 maxq uq for all n ≥ k.

In view of Lemma2.1, we have π(2k)− π(k) +
∑(k+1)n

q=kn+1 0−
∑2k

q=k+1 0 ≤ π((k +

1)n)− π(kn) ≤ π(2k)− π(k) +
∑(k+1)n

q=kn+1 1−
∑2k

q=k+1 1

⇒ π(2k)− π(k) ≤ π((k + 1)n)− π(kn) ≤ π(2k)− π(k) + (n− k).
Since n ≥ k and π(2k) − π(k) ≥ 1 for all k > 5, π((k + 1)n) − π(kn) ≥ 1. This
completes the proof. �

Corollary 2.4. For each n ∈ Z+ and n > 5, π(2n)− π(n) = π(n2 + n)− π(n2).

Proof. Follows from case 2. of Theorem2.3 by taking k = n. �
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Now we can prove a few well-known conjectures in number theory as a special
case of Theorem2.3. Most of them are still unsolved.

Corollary 2.5. (Oppermann’s Conjecture is true) For each n ∈ Z+ and n > 1,
π(n2)− π(n2 − n) ≥ 1 and π(n2 + n)− π(n2) ≥ 1.

Proof. Follows from Theorem2.3. �

Corollary 2.6. For each n ∈ Z+, π((n+ 1)2)− π(n2) ≥ 2
(This conjecture is due to Adway Mitra et.al [[1]], called the Improved version of
Legendre Conjecture).

Proof. Let n ∈ Z+. Then there exist primes p and q such that n2 ≤ p ≤ n(n + 1)
and n(n+ 1) ≤ q ≤ (n+ 1)2. (By Theorem2.3)
Hence π((n+ 1)2)− π(n2) ≥ 2. �

Corollary 2.7. (Legendre’s Conjecture is true) For each n ∈ Z+, π((n + 1)2) −
π(n2) ≥ 1.

Proof. Follows from Corollary2.6 �

Corollary 2.8. (Brocard’s Conjecture is true) For each integer n > 1, π((pn+1)2)−
π((pn)2) ≥ 4 where pn is the nth prime number.

Proof. Let pn, pn+1 be consecutive primes with n > 1.
Then (pn + 2)2 ≤ (pn+1)2 since the minimum gap between consecutive primes is 2.
By applying Theorem2.3 repeatedly, there exist primes p, q, r, s such that (pn)2 <
p < pn(pn + 1), pn(pn + 1) < q < (pn + 1)(pn + 1), (pn + 1)(pn + 1) < r <
(pn + 2)(pn + 1), (pn + 1)(pn + 2) < s < (pn + 2)2.
Hence π((pn+1)2)− π((pn)2) ≥ 4. �

Corollary 2.9. (Andrica’s Conjecture is true) The inequality
√
pn+1 −

√
pn < 1

holds for all n, where pn is the nth prime number.

Proof. Let pn, pn+1 be two consecutive prime numbers.
In view of Theorem 2.3 we can find a k ∈ Z+ such that pn is in any one of these
intervals I1 = [k(k − 1), k2], I2 = [k2, k(k + 1)], I3 = [k(k + 1), (k + 1)2].
Case 1: Suppose pn, pn+1 ∈ I2 ∪ I3 then k2 < pn < pn+1 < (k + 1)2

⇒ √pn+1 −
√
pn < 1.

Case 2: Suppose pn, pn+1 ∈ I1 ∪ I2 then k2 − k + 1
4 < pn < pn+1 < k2 + k + 1

4
⇒ √pn+1 −

√
pn < 1.

Case3: Suppose pn ∈ I3 and pn+1 /∈ I1 ∪ I2 ∪ I3
Since pn, pn+1 are consecutive primes,we have (k+ 1)2 < pn+1 < (k+ 1)(k+ 2) (in
view of Theorem2.3),
⇒ k2 + k + 1

4 < pn < pn+1 < k2 + 3k + 9
4

⇒ √pn+1 −
√
pn < 1. This completes the proof. �
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