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In this paper we shall define and study an important class of dynamic systems which allow to 
effectively determine their mathematical model exclusively on experimental basis. The usefulness of 
these results of mathematical nature, obtained by extending the Whittaker-Shannon sampling theory, 
will be highlighted through an applied example from the field of optoelectronics.  

                 Keywords:  Reconstructible dynamical systems, Whittaker-Shannon sampling theory. 

1. INTRODUCTION 

The concept of dynamic system allows the mathematical modelling of a very large range of phenomena 
occurring in nature, from which those considered as belonging to natural sciences  are studied within 
physics, biology and chemistry, where as those belonging to humanities, are studied within social sciences or 
economics, etc. Thus, it is no need in insisting upon the importance of this concept. However, for those who 
wish to initiate themselves or who want to bolster knowledge in this direction we recommend the monograph 
[2] as an initial study. Those who want to enlighten themselves on the potential  the notion of dynamic 
system offers when mathematically modeling phenomena from nature, we recommend, for example, the 
papers [4, 5, 6, 8, 9], where they can find some interesting applications of the concept of dynamic system, 
others than the now classical ones. Also, for those interested in news of theoretical nature from the field of 
dynamic systems we recommend paper [3, 7].  

In this paper we shall study the general case of the finite dimensional dynamical systems of input-output 
type, intuitively defined by the diagram represented in fig.1.  
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Figure 1. Conceptual model of an abstract input-output dynamical system. 
 

If  by 1,.., nx x  we denote the inputs, and by  the outputs, then such a system can be 
mathematically abstracted through a set of  equations 
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where the set of parameters { }1,.., ms s  expresses the possible states of the system or the operating mode  in 

which it finds itself  when receiving the impulses 1,.., nx x . Each parameter , 1,2,..,ks k m= , can be in part a 
scalar, a vector or a function, depending on the nature of the system that characterizes it.  
 
Remarks :1) It is very important to keep in mind that the problem we would like to approach in this paper 
has in view the general and very abstract case of dynamical systems used for modeling processes and 
phenomena occurring in nature, that is especially, those cases in which the functions ( )1 1 1 1,.., ,nf f x x s= , 

…, ( 1,.., ,m m n m )f f x x s=  are not explicitly known. For example, the monetary policies redound upon the 
economical systems through the effects they produce, but this fact does not allow us to know the exact 
internal mechanisms they trigger (formally expressed by an array of functions 1,.., mf f ), although the 
existence of these mechanisms is assumed. 

2. THE COMPATIBILITY CONDITIONS OF THE PROBLEM 

If the functions ( )1 1 1 1,.., ,nf f x x s= ,.., ( )1,.., ,m m n mf f x x s= , have a certain form, for instance they are 
polynomials, or bandlimited, that is, functions that admit the Fourier transform and whose transforms have a 
compact support, then the problem of their determination by virtue of samples resulted from practical 
experiments is possible. Indeed, when we know a priori that the unknown functions ( )1 1 1 1,.., ,nf f x x s= ,.., 

( 1,.., ,m m )n mf f x x= s  are polynomials, their determination from the corresponding sample representations 
can be easily done with the help of the interpolating polynomials. Hereinafter, we shall focus on solving this 
problem for the case of bandlimited functions because the systems belonging to this class have numerous 
applications in optoelectronics.  

3. THE RESOLUTION OF THE PROBLEM FOR THE CASE OF BANDLIMITED FUNCTIONS 

Although the functions ( )1 1 1 1,.., ,nf f x x s= ,.., ( )1,.., ,m m n mf f x x s= , are not known a priori, we can still 
determine in an experimental way the next n-rectangular lattice of samples 
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where ( ) ( )comb
k
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= −∑ , δ  being the so-called Dirac function. Indeed, let us notice first that the 

relations (2) can be brought to the equivalent form  
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and then, by choosing on the 10x axis the step , on the 1h 20x  axis the step , …, and on the 02h nx  axis the 

step , the values of the functionsnh ( ),n1 1 1 1,..,f f x x s=  ,.., ( )1,.., ,n mm mf f x x s=  in the points 

, ,…, 1 1 ,j1 1x h j= ∈Z 2 2 ,x h j Z2 2j= ∈ ,n nj jn nx h= ∈Z  can be experimentally determined even if the 
analytical expressions of these functions are not known. One amendment must be made on this occasion, that 
of considering all the functions ( )1,n1 1 1,..,f f x x s=  ,.., ( )1,.. n m, ,m mf f x sx=  defined on . This 
requisite is however easy to fulfill under the hypothesis we work, because we can consider that any of these 
functions is equal to zero in the points in which these functions are not defined.  

nR

 
By carrying out the notations 
 

( ) ( ){ }1 1,.., , ,.., ,k n k k nF s f x xω ω =F ks , 
 

( ) ( ){ }sample sample
1 1,.., , ,.., , , 1,2,..,k n k k n kF s f x x s kω ω = =F m , 

 
where F represents the Fourier transform, and by allowing for the relations 
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we get 
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Since the function kf  is bandlimited by hypothesis, its spectrum  is non-zero only on a certain finite 

region  (  has the support  bounded) of the space of frequencies 
kF
0kR kF kR 1,.., nω ω .  

From (4) we deduce that the support of the sampled function  is sample
kF
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the parameters  (the steps of the divisions) will be (that is when the samples are sufficiently close 1,.., nh h
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together)  the larger the distance between the different spectral sub-regions ( )
1 2
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, ,.., n

n

kjj j
h h h
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will be disjoint two by two. Due to this, the exact recovery of the original spectrum  from  can be 
accomplished by passing this sampled function through a linear filter that transmits the term corresponding 
to  from (4) without distortion, while perfectly excluding all other terms. Thus, at the output 

of this filter we find an exact replica of the original spectrum data  and consequently of the original 

data

kF sample
kF

1 0nj j= ⋅⋅⋅ = =

k
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f .  

In order to determine the necessary spacing between the samples, let  be the dimensions, in 
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10 ,.., 0 nω ω , of the smallest n-parallelepiped, which includes the region . As the 
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the separation between these spectral regions is ensured if  
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At this point the only thing left is to indicate the transfer function (the filter) through which the data of the 

sample used  ( )  must pass through. The filter searched has the expression samp
kF le
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Consequently, in order to rebuild  from  we only have to apply the filter  to , that is, 

we have the relation 
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By applying to this relation the inverse Fourier transform 

1−F we find that 
 
 

( ) ( ) ( )1
1 1 1 2,..,

1

comb comb ,.., , ,.., 1,n
k k n k n

n

x x,.., ,k n ,kf x x s f x x s x k
h h

φ
⎛ ⎞⎛ ⎞

= ⋅⋅⋅ =⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

x m
⎡ ⎤

∗⎢ ⎥
⎣ ⎦

,        (5) 

where  
 

( ) (1, 1 sinc ),n k n( ) ( ){ }1
1 1 1, ,,.., ,.., 2 sinc 2n

k n n k n k k2x x b b b xφ ω ω−= Φ = ⋅⋅⋅ ⋅ ⋅ ⋅F b x  

 



Dynamic systems determinable by discrete samples 377 

As 
 

( )1
1

1

comb comb ,.., ,n
k n k

n

x x f x x s
h h

⎛ ⎞⎛ ⎞
⋅⋅⋅ =⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 

( ) (
1

1 1 1 1 1 1,.., , ,..,
n

n k n n k n
j j

h h f j h j h s x j h x j hδ
∞ ∞

=−∞ =−∞

= ⋅⋅⋅ ⋅ ⋅⋅ − −∑ ∑ )n n , 

 
the relation (5) becomes 
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4. AN IMPORTANT SUBCLASS OF BANDLIMITED FUNCTIONS 

Let and  be two absolutely integrable functions on , from which at 
least one of them is bandlimited. Then the function 

( )1,.., ns s x x= ( 1,.., nt t x x= nR
f s t= ∗ , where 

 
( )( ) ( ) ( )1 1 1 1 1,.., ,.., ,..,

n
n n n ns t x x s t x x d d nξ ξ ξ ξ ξ ξ∗ = − −∫

R
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represents the convolution product of functions  s and t, is also a bandlimited function because 
 

( ) ( ) ( )f s t=F F F , 
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where, just as earlier, F symbolizes the n-dimensional Fourier transform, and from the transforms ( )sF , or 

( )tF  at least one has a compact support. This property allows us to put forward the subclass of dynamical 

systems of the form (1) for which the functions 1,.., mf f  have the particular form 
 

( ) ( )( )1 1,.., , ,.., , 1,..,k n k k k nf x x s s t x x k m= ∗ = , 
 

where each pair of functions  and , , verify properties  similar to the functions s and t whereof 
we have discussed earlier.  

ks kt 1,..,k = m

 
Remark: The dynamical systems of this subclass are important due to their applications in different 
scientific areas.  
 

The proof of this statement will be discussed hereinafter.  

5.ONE ELOQUENT EXAMPLE OF THE USE OF THE MATHEMATICAL APPARATUS 
DEVELOPPED IN THIS PAPER 

In order to illustrate the usefulness of the mathematical apparatus developed in this paper we shall 
study hereinafter a problem from the field of optoelectronics, underlining the inherent fact that the area of 
applicability of the presented theorem does not limit itself only to the field mentioned in the chosen example.  

In [1] the mathematical modeling of the diffraction phenomenon at boundaries is done by relating a 
physical system composed of a monochromatic light source S, an opaque screen (OpS) endued with an 
aperture (A) through which the light can pass and an observation screen (ObS) on which the light signal 
emitted by the source S will be analyzed to a three orthogonal axes frame. If  0xyz  is the frame chosen for 
the representation of this system, then in order to make a choice, we shall place the screen OpS in the plane 

 so that the center of the aperture A coincides with the center of the axes of coordinates. The light 
source is considered to be placed behind this screen (somewhere on the negative semi-axis of the 0z axis) 
and the observation screen ObS is placed in the plane

0z =

0z z= , . See Figure 2. 0 0z >

 
Figure 2. The coordinate system used for modeling the diffraction at boundaries. 
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Knowing that the complex field across the aperture A is represented by ( ), ,0x yU , we want to determine 

the value of this field in any point ( )0, ,x y z  of the observation screen OpS.  

In the theory of diffraction at boundaries developed in [1], the value of the field U in one point ( )0, ,x y z  

of the plane  is described as the response of a spatial dynamical system of the form 0z z=
 

( ) ( ) ( )
2

0, , , ,0 , , 0x y z h x y z d dξ η ξ η= − −∫∫
R

U U ξ η

)

.                                        (6) 

 
Within this expression the function describes the state of the system subjected to the experiment 

(the boundary conditions imposed to the system), the coordinates 

( , ,0⋅ ⋅U

0, ,x y z , , of the point in which we 

want to evaluate the value of the field U , represent the inputs of the system, 
0 0z >

( ), ,h ⋅ ⋅ ⋅  represents the transfer 

function of the system, and the value ( , , )0x y zU  represents the response (the output) of the system to the 
imposed boundary conditions (i.e. the inputs). 
 
Remark: In order to facilitate the connection between the notions presented in this paragraph and the theory 
enunciated in [1], that we now refer to, in this paragraph we have changed the notation adopted earlier in 
favor of the one from [1]. 
 

By taking the results obtained in [1], under the hypothesis that the distance between the planes having 

the equations  and 
0z

0z = 0z z=  is at least several wavelengths longer (than the wavelength of signal emitted 
by the source S), so that the evanescent waves, which occur in the immediate neighborhood of the slit A, may 
be neglected, the determination of the transfer function h is done by the relation below 
 

( )
2

2

0 0, , , ,
i x y

h x y z H z e d d
α βπ
λ λα β α β

λ λ λ

⎛ ⎞+⎜ ⎟
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where the function H is described by the relation 
 

2 22 1 2 2
2

1,, ,
0, otherwise

zi
eH z

π α β
λα β α β

λλ λ

− −⎧
+ <⎪⎛ ⎞ = ⎨⎜ ⎟

⎝ ⎠ ⎪⎩

,                                             (7) 

 

from which the parameters 2 2 2 2, , 1 , 1α β γ α β α β= − − + ≤ , symbolize the directions cosines of an 
hypothetical direction of propagation of the light signal, and λ  is the wavelength of this signal. 

Due to the relation (7) the transfer function h is bandlimited. Hence, the optical system (6) integrates itself 
in the class of systems defined in the previous paragraph. From this remark, we conclude that phenomena of 
diffraction can be entirely reconstructed by virtue of some discrete samples which can be determined 
experimentally. This result has a tremendous importance in practice, because it also allows modeling the 
diffraction phenomena in the case of diffraction gratings, for which the theoretical apparatus is unknown or 
whose determination is very laborious, provided that the grating are bounded (i.e. there exists a strictly 
positive number R so that the entire network can be included in the disc of radius R). This latter condition is 
imposed by the requirement that the transfer functions of the corresponding dynamic systems to be 
bandlimited.  
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