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Abstract: The main purpose of the present paper is the heuristic study of the structure, properties and 

consequences of new class of potential functions results from the concept of pq-Radial functions which are 
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1. Introduction 

 

The potential (function) theory [1,2] has a long history and has a large domain of applications 

particularly in gravitational physics, electrostatics, hydrodynamics, engineering, probability theory [3], 

and many other branches of science. The term ‘potential theory’ arises from the fact that, in 19
th

 century 

physics the known fundamental forces of Nature were believed to be derived from potentials which 

satisfied Laplace equation. Therefore, potential theory was the study of functions that could serve as 

potentials. However, nowadays, we know that Nature is more complicated and in some very interesting 

cases, the equations that describe forces are systems of non linear PDEs, such as Einstein’s equations and 

Yang-Mills equations, and the Laplace equation is only valid as a limiting case. Nevertheless, the term 

‘potential theory’ has remained as a convenient expression for describing the study of functions 

satisfying the Laplace equation and its generalization.  For instance, the well-known classical potential 

function or harmonic function [4]  

                                                                         1)(  rV r ,                                                                         (1) 

 

where 0>)( 2/1222 zyxr   and Rzy,x, . (1) is a fundamental solution to the Laplace equation 
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because the Laplace equation (2) is in fact, rotation invariant, i.e., it is a radial symmetry that is why 

the function (1) is also called radial solution. In general, the radial solutions are natural to look for since 

they reduce a PDE to an ODE, which is generally easier to solve. In this sense, Eq.(2) reduces to ODE 

through VU  , and we find 
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2. Concept of pq-Radial Functions 

       

In spite of its abstraction, there is a strong link between mathematics and physics since the major 

mathematical discoveries are made in theoretical physics. Indeed, during our preliminary investigation 

on the ‘hypothetical’ dark matter [5,6] and its gravitodynamical effects on the baryon 

(luminous/ordinary) matter at large-scale structures and as a direct consequence, we arrived at the 

concept of pq-Radial functions (pq-RFs) as a new class of potential functions. Conceptually, the pq-RF is  

defined, for well-determined weight u and characteristic function v , and for any two real orders p and q , 

as follows: 

                                                          ,ρr,vsr,uρ,s,,rη qp

qp θ
,  ,                                                        (4)                                                       

                                        

where the weight function and the characteristic function are, respectively, defined by 
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                                                                   srrsr,uu  2 ,                                            (5) 

                                            

                                                        22 cos2 ρrρrρ,r,vv θ   ,                                                      (6) 

 

with Rsr, ; R,ρ  and r is the radial distance from the origin of the coordinates, ,ρ  and s  are 

variable parameters. Hence more explicitly, we have 
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which has the following domain of definition with respect to the main radial variable r  
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As it said, the pq-RF (4) or (7) is a fundamental family of solutions of the following second order pq-

PDE: 
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Like pq-RF, conceptually Eq.(9) is new and has not previously reported in literature since it is 

characterized by several important properties that will be treated later. The name of pq-Radial function or 

shortly pq-RF comes from the specific property of the couple )( ,qp , which plays the role of index in p,qη  

and power in qpvu  . Further, pq-RF for well-fixed value of p  and q  is sometimes called power 

potential function. Since in our preliminary study the pq-RF has graphically studied the evolution of the 

galactic rotation curves in terms of the general aspect and behavior of the curves themselves, it seems 

that the same function may be used, under some special conditions, in economic science to investigate 

the dynamicity or stagnation of markets and the evolution of the investments in the short/medium/long-

term, all that with the help of Bayes’ theorem and Markov’s chain, the economist/investor may be able to 

evaluate realistically the dynamicity/stagnation and the general evolution of the project. Also, in 

aerodynamics and fluid mechanics, we can use the pq-RF to investigate the evolution of certain dynamic 

systems that are highly sensitive to any small regular or irregular perturbations particularly when, in the 

characteristic function (6), the angular parameter   becomes function of the form 0)(    tt .  

 

3. Specific Properties of pq-RF 

 

In this section we will seek the basic properties of pq-RF according to the explicit expression (7). These 

specific properties may be split into three parts as follows: 

 

 I/ Properties of pq-RF with respect to  )( θρ,s,,r  

 

1) R ρs,q,p,  and 0ρ , we have for 0r : 0qp,η . 

2)  0\R qp, ; R ρ,  and  Rs , we have for sr  : 0qp,η . 
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3)  0\ Rr  and R θρ,s, , we have for )00()( ,,qp  : 100 ,η . 

4) R θq,p, , we have for 1r , 0ρ  and 0s : 1qp,η . 

5) Homogeneity of 
qp,η with respect to )( ρs,,r  

      R θρ,s,q,p, , we have for  0\ Rσr, :    θρ,s,r,ησθσρ,σs,σr,η qp,

qp

qp

)(2

,

 . 

6) Periodicity with respect to   

      R θρ,s,q,p,  and  0\ Rr , we have for Zk :    θθ ρ,s,r,ηkπρ,s,r,η qp,qp, 2 . 

 

-Remark: properties (I.1) and (I.2) are useful particularly for the orthogonality condition of pq-RFs as we 

will see. 

 

II/ Properties of pq-RF with respect to )( q,p : The following series of specific properties is very 

important because it shows us how some basic operations performed on pq-RFs should reduce to the 

operations performed on their orders. The demonstration of each property should be exclusively based 

on the compact expression (4). So we have the subsequent properties for R θρ,s,q,p, ; 

 0\ Rr ;   0 sr,uu  and   0 θρ,r,vv : 
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III/ Properties of pq-RF with respect to )( v,u : After we have investigated the properties of pq-RF with 

respect to )( θρ,s,,r and )( qp, , we now examine the third series of properties relative to the weight 

and characteristic function of qp,η  . We shall call such properties ‘structural properties’, which are in 

fact two transformations and one transposition. 

 

1) Transformation vu  may be performed through the substitution of  

 
12cos2
 rρρs   

 

in the weight function )( sr,uu  that reduces qp,η  to   qp

qp,qp, vρ,r,μμ θ
 . 

 

2) Transformation uv  may be performed through the substitution of  

 

srrrρ   22 coscos  with  0>cos22 srr  , 
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in the characteristic function  θρ,r,vv   that reduces 
qp,η  to   qp

qp,qp, ur,s ΛΛ . 

 

3) Transposition vu  may be performed through the simultaneous substitution of  
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in the weight and characteristic function which reduce 
qp,η  to the form qp

qp, uvη  . 

 

4. Classification of 
qp,η  when )00()( ,ρs,   

 

Here our aim is to illustrate the physical importance of pq-RFs through the classification of p,q  for the 

particular case when the two real parameters 0s  and 0ρ . Since  0\Rr , thus the classification 

should be split in two parts, that is, when 10  r  and when  r1 . It is clear from the explicit 

expression (7) that for the case when )00()( ,ρs,  , we get for R θρ,s,q,p, : 

 

                                                                   )(200 qp

qp, r,,r, θ
 .                                                           (10) 

 

This means R , qp,η  becomes independent of  when )00()( ,ρs,  . The specific importance of this 

property is well reflected by the fact that (10) is a fundamental family of solutions of the two following 

DEs: 
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Eq.(11) is in reality a special case of pq-PDE (9). And the other DE is of the form 
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Hence from (10), (11) and (12), we can classify  θ,,r,ηp,q 00  as follows: 

-First classification: for the case when ),1( r , that is when all the points are outside the sphere of 

unit radius. Therefore  θ,,r,ηp,q 00  is     – lower potential if pq > , 

                                                               – higher potential if pq  ,                     Rqp,  

                                                               – harmonic potential if 1/2 pq . 

 

-Second classification: for the case when )1,0(r , that is when all the points are inside the sphere of 

unit radius. Therefore  θ,,r,ηp,q 00  is     – higher potential if pq > , 

                                                               – lower potential if pq  ,                     Rqp,  

                                                               – harmonic potential if 1/2 pq . 

 

Remark: the two Eqs. (10) and (11) reduce to the same expression only if 1 pq , that is, for the case 

when  θ,,r,η qp 00, defines us a lower potential for )1(  ,r or a higher potential for  )10( ,r . 
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5. Orthogonality of pq-RFs  

 

The determination of orthogonality condition of pq-RFs on the interval ),0( s  with 1s , that is when all 

the points are inside the sphere of unit radius and when pq-RFs are independent of )( θρ,s, . To this end, 

we use exclusively the properties (I.1) and (I.2). Let 
111 q,pηw  and 

222 q,pηw  be two fundamental family 

of solutions of the following equations 
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With  )0( s,r ; R2211 ,qp,,qp ; )()( 2211 ,qp,qp  ; 0u  and 0v . 

 

Eqs. (13,14) are in fact particular case of pq-PDE (9) since, here, as aforementioned pq-RFs are 

independent of )( θρ,s, . So integrating Eqs. (13,14) and multiplying them, respectively, by 2uw  and  

1uw , we get 
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Subtracting (16) from (15) and integrating the two sides of the result on )0( s, , we obtain after omission 

of integration constants 
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By taking into account the properties (I.1) and (I.2), and the expression of the weight function (5), the 

left side in (17) should be equal to zero, consequently, we should have 
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Since )()( 2211 ,qp,qp  , thus 
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Furthermore, according to property (II.10), we have 
212121 qq,ppww  , therefore the relation (19) 

becomes after substitution 
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The relation (20) is exactly the expected orthogonality condition of pq-RFs. 
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6. Some physical interpretations of pq-RFs  

 

In this section we are interesting in the importance and central role that should be played by pq-RFs in 

physics through the study of the properties of  θr,s,ρ,ηp,q
 with respect to qp ,  and  . To this aim, it is 

useful to begin this study by a practical example that is when )( ,qp  and ρ  take, respectively, the 

following fixed values )0( 1/2, and 1. Hence, in such a case, we get after substitution in (7): 

 

                                                  1/22

1/20 1cos1 2
 rr,s,r,η θ,

.                                                        (21) 

 

As we can remark it, pq-RF (21) is explicitly independent of the real parameter s . Moreover, (21) has 

two very interesting interpretations, namely, mathematical and physical one. Mathematically (21) is 

identical to the well known Legendre generating function. Therefore, it follows from (21) that the 

Legendre generating function is itself a pq-RF since it is a particular case of (7). Further, (21) is a special 

fundamental solution of pq-PDE (9), which reduces to 
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Since the Legendre generating function is itself a pq-RF of the orders )0( 21,  and 1ρ , thus according 

to the classical theory of special functions, the pq-RF (21) may be expanded in the Legendre polynomials 

as follows 

                                 
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n, rPrr,s,r,η  ,  10  r ,                          (23) 

 

This expression may be used as a new definition for the Legendre polynomials and in this sense we can 

affirm that )(cosnP is the coefficient of 
nr  in the expansion of  ,s,r,η , 11/20

 through Newton’s general 

binomial theorem. Physically, pq-RF (21) may be interpreted as the Coulombian potential. Indeed, if for 

example we put at north pole N of the sphere of unit radius a positive charge, and let M be a variable 

point of spherical coordinates ,,θr . The Coulombian potential of the charge at the point M is 

 

   1/22 1cos
1

2
 rr

d
.                                                                 (24) 

 

Where d is the relative distance between the charge and the variable point M. 

Recall: the expansion (23) is, of course, valid only for the case when )10( ,r , that is when all the 

points are inside the sphere of unit radius. For the points outside this sphere, we would have another 

expansion. Indeed, when )1(  ,r ,  hence we can rewrite pq-RF (23) is as follows 
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Thus 11 r  such that we can apply the previous expansion, and we find 
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Remark: Each term of this sum has no any singularity outside the sphere and consequently vanishing at 

infinity. 

 

Until now, we have only focused our attention on the sphere of unit radius. However, for a sphere of any 

radius  0\Rρ , we are obliged to return to the explicit expression (7) and by applying the 

transformation vu , i.e.,  property (III.1), we get  

 

                                                  qp

qp, ρrrr,s,ρ,η θ


 22 cos2  .                                                        (27) 

 

From (27) we obtain, for the case when )0()( 1/2,,qp  , the following expressions   
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and  
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Pρ,s,r,η θ  ,  ρr > .                                                     (29) 

 

It is clear that since the beginning our main interest is essentially the investigation of structure, properties 

and consequences of pq-RFs as new class of potential functions that is why, here, we are not particularly 

concerned with the study of the Legendre polynomials because they are well-known since their 

introduction in 1784 by the French mathematician A.M. Legendre [7]. Nevertheless, later we will return 

to these polynomials when we derive the q-polynomials )(cos q,An  . So at present let us show that the 

Poisson’s kernel  

                                        
22

22

)(cos2 ρrρr

ρr
ρ,K







 ,  rρ  ,                                                   (30) 

 

is a special case of pq-RF. To this end, substituting 12  rρs  and    in the explicit expression 

(7), we get    ρ,Kr,s,ρ,η qp,qp, θ  : 

                                           
 

  q

p

qp,
ρrρr

ρr
ρ,K

22

22

)(cos2 





 ,                                                     (31) 

 

which is a generalization of (30), that is,  ρ,K qp,
 reduces to  ρ,K when )11()( ,,qp  . 

 

7. Consequences of pq-RFs  

 

7.1. q-Polynomials 

  

We have already seen that the Legendre generating function is in fact a special case of pq-RFs, now we 

will show that the Legendre polynomials are also a special case of another kind of polynomials called ‘q-

polynomials’ which are a direct consequence of pq-RFs. The main property that characterizes the q-

polynomials is that: all q-polynomials should reduce to the Legendre polynomials when 1/2q . But 

before, let us prove more conclusively that the expression (23) is an interesting particular case of another 

formula more general, namely 
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                                            





0

)2(2 cos
n

n

n

qnp

qp, rq,Aρsrrρ,s,r,η θ  ,                                        (32) 

with                             

                                     10  r ; Rq,p,θ ; Rρs,  and )00()( ,ρs,  . 

 

Returning to the explicit expression (7) and focusing our attention on the characteristic function (6) 

which may be written as follows 

 

                              cos21cos 2222
2 ξξρρrρrr,ρ,vv θ  ,  1/0  ρrξ .                   (33) 

 

We have according to the Newton’s generalized binomial (theorem) formula  

 

 

 

...
!

)1(...)1(
...

!5

)4)(3)(2)(1(

!4

)3)(2)(1(

!3

)2)(1(

!2

)1(

!1
11

5

432


















nε
n

n
ε

εεεε
α

ε





,                               (34) 

 

with 1ε  and R .  Putting  cos22 ξξε   and q , we get after substitution in (34): 

 

      

   

 

  ...cos2
!

)1(...)1(
)1(

...cos2
!5

)4)(3)(2)(1(

cos2
!4

)3)(2)(1(
cos2

!3

)2)(1(

cos2
!2

)1(
cos2

!1
1cos21

2

52

4232

2222

























nn

q

ξ
n

nqqq

ξ
qqqqq

ξξ
qqqq

ξξ
qqq

ξξ
qq

ξξ
q

ξξ













.                                           (35)       

 

Re-arranging and collecting terms in powers of  , we have  

 

  

...cos
!3

)2)(1(6
cos

!4

)3)(2)(1(32
cos

!5

)4)(3)(2)(1(32

!2

)1(
cos

!3

)2)(1(12
cos

!4

)3)(2)(1(16

cos
!2

)1(4
cos

!3

)2)(1(8

!1
cos

!2

)1(4
cos

!1

2
1cos21

535

424

33

222








 














 














 




























ξ
qqqqqqqqqqqq

ξ
qqqqqqqqq

ξ
qqqqq

ξ
qqq

ξ
q

ξξ
q









(36) 
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Therefore the coefficients of ξ  should take the explicit expressions 

 

  1cos0 q,A  ;  

   cos
!1

2
cos1

q
q,A  ;  

 
!1

cos
!2

)1(4
cos 2

2

qqq
q,A 


  ; 

   cos
!2

)1(4
cos

!3

)2)(1(8
cos 3

3







qqqqq
q,A ;                                                                           (37) 

 
!2

)1(
cos

!3

)2)(1(12
cos

!4

)3)(2)(1(16
cos 24

4










qqqqqqqqq
q,A   

   cos
!3

)2)(1(6
cos

!4

)3)(2)(1(32
cos

!5

)4)(3)(2)(1(32
cos 35

5










qqqqqqqqqqqq
q,A

 … 

 

The coefficients  q,An cos  are exactly the expected q-polynomials. Further, it is clear that 

when 1/2q , the q-polynomials (37) reduce to those of Legendre, that is 

 

                                                           coscos 1/2 nn P,A  .                                                                 (38) 

 

Thus, now (35) may be written as 

  

                                                  







0

2 coscos1 2
n

n

n

q
ξq,Aξξ  .                                               (39) 

Or equivalently 

                                            







0

)2(22 coscos2
n

n

n

qnq
rq,Aρρrρr  .                                      (40) 

 

In order to arrive at the expected general formula (32), it suffices to multiply the two sides in (40) by 

 p
srr 2 . We will return to (32) later on. 

 

7.2. Properties of q-Polynomials 

 

7.2.1. Expressions of q-Polynomials for 0  and π  

 

Many important properties of q-polynomials can be obtained from (39). Here, we derive immediately a 

few ones as follows. Let 0 in (39), then the left-hand side is 

 

  ...
!

)12(...)12(2
...

!3

)22)(12(2

!2

)12(2

!1

2
11 322











 nq

ξ
n

nqqq
ξ

qqq
ξ

qq
ξ

q
ξ  

 

The right-hand side is 

 

                                    ...1...1111 3

3

2

210  n

n ξq,Aξq,Aξq,Aξq,Aq,A   
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Comparing the coefficients of nξ on both sides we get 

                       

                                                      
!

)12(...)12(2
1

n

nqqq
q,An


 .                                                    (41) 

And when we substitute π  in (39), we can derive 

 

                                                 
!

)12(...)12(2
11

n

nqqq
q,A

n

n


 .                                               (42) 

 

7.2.2. q-Bonnet’s recursion formula 

 

To obtain the recurrence relation or more precisely q-Bonnet’s recursion formula, first we put θt cos  

in (39), we get 

                                                        







0

2
21

n

n

n

q
ξqt,Aξtξ .                                                       (43) 

 

Differentiating (43) with respect to ζ  on both sides and rearranged to obtain 

 

                                         
 

 
   










0

12

2
2

2
1

1

2

n

n

nq
ξqt,Anξtξ

ξtξ

ξtq
.                                        (44) 

 

Replacing the dominator with its definition (43), and equating the coefficients of powers of ζ in the 

resulting expansion gives the expected q-Bonnet’s recursion formula: 

 

                                    qt,Aqnqt,Atqnqt,An nnn 11 )12()(2)1(   ,                                    (45) 

with    

                                      10 qt,A   and    tqqt,A 21   

 

This relation, along with the first two polynomials  qt,A0  and  qt,A1 , allows the Legendre Polynomials 

to be generalized recursively. 

 

7.2.3. Associated q-functions 

 

Our purpose here is to show the existence of q-functions. As we will see, this kind of functions is a direct 

consequence of p-polynomials. Since we have previously found that the Legendre 

polynomials )(cosnP are special case of )(cos q,An  when 1/2q ; therefore, the q-polynomials should 

conserve all the principal properties of the Legendre polynomials that is why if for example )(cosnP  are 

a fundamental solution of the equation 

 

                                                    01sin
sin

1









L

L
nn

d

d

d

d





.                                                 (46) 

 

Or by substituting θt cos , we get 

 

                                              011 2 







 L

L
nn

dt

d
t

dt

d
,   tPnL .                                           (47) 
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Accordingly this implies the q-polynomials )()(cos qt,Aq,A nn θ  should be also a fundamental solution 

of equation 

                                         qt,fnn
dt

d
t

dt

d
n








 H

H
11 2 ,   qt,AnH                                     (48) 

 

It is worthwhile to note that according to the relation (38), Eq.(48) should reduce to the Legendre 

Eq.(47) when 1/2q , this implies 

                                                                01/2 t,fn , Nn ,                                                                (49) 

 

-Result: It follows from all that the q-functions  qt,fn are associated to q-polynomials  qt,An  through 

Eq.(48) that is why are called ‘associated q-functions’. To illustrate this association, the Table1 below 

gives us the first few q-polynomials and their associated q-functions  

 

 

    q-polynomial                associated q-function 

       
         qt,A1               01 qt,f                                                                

       

            qt,A2               )( 1222  qqqt,f  

       

         qt,A3                  tqqqqt,f ))(( 12143              

       

         qt,A4                 ))(())()(( 121212214
2

4  qqqtqqqqqt,f         

                      qt,A5                 tqqqqtqqqqqqt,f ))()(())()()(( 1221412321
3
8 3

5   

   

                                         Table 1: Expressions of the associated q-function  qt,fn , 5...21,n  

                        

7.2.4 Orthogonality of q-Polynomials  

 

We have already seen the orthogonality of the pq-RFs on the interval )0( s, , now we will show the 

orthogonality of q-polynomials on the interval )11( , . With this aim, let  qt,Ag m  and  qt,Ah n  

then by Eq.(48), we have 

                                                            mm fgkgt
dt

d
 21 ,                                                             (50) 

                                                      

                                                             nn fhkht
dt

d
 21 ,                                                              (51) 

with            

                    t,qff mm  ;  t,qff nn  ; )1(  mmkm ; )1(  nnkn and nm . 

 

Multiplying (50) by h  and integrating from 1t  to 1t  to obtain 

 

                                               




1

1

1

1

1

1

21 dtfhdthgkdthgt
dt

d
mm

. 
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Integrating the first integral by parts we get 

 

                                        





1

1

1

1

1

1

21

1

2 11 dtfhdthgkdthgthgt mm
. 

 

But since  21 t  is zero both at 1t  and 1t  this becomes 

 

                                          




1

1

1

1

1

1

21 dtfhdthgkdthgt mm
.                                                        (52) 

 

In exactly the same way we can multiply (51) by g  and integrating from 1t to 1t to obtain 

 

                                         




1

1

1

1

1

1

21 dtfgdthgkdthgt nn
.                                                         (53) 

 

Subtracting (53) from (52), we get  

 

                                            




1

1

1

1

1

1

dtfgdtfhdthgkk nmnm
. 

 

Or since  qt,Ag m ;  qt,Ah n ;  qt,ff mm   and  qt,ff nn  , hence we find after substitution 

 

                                   




1

1

1

1

dtqt,fqt,Aqt,fqt,Adtqt,Aqt,Akk nmmnnmnm
, 

 

this gives us the following expected orthogonality condition 

 

                          
 
 

 
 

nmdt
qt,A

qt,f

qt,A

qt,f

kk
qt,Aqt,A

n

n

m

m

nm

nm 

























,0
1

1

1

1

.                                 (54) 

 

According to (38) and (49), we should have     01/21/2  ,f,f tt nm , thus the relation (54) reduces to 

 

                                                     nmdt,A,A tt nm 


,0

1

1

1/21/2 .                                                          (55) 

 

This coincides with the well-known orthogonality condition for the Legendre polynomials. Besides the 

important property (54), there is another, namely  


1

1

2
dtqt,An , which may be determined as follows: first 

squaring and integrating (43) from 1t to 1t . Due to orthogonality only the integrals of terms 

having  qt,An

2  survive on the right-hand side. So we have 

 

                                                 


 




0

1

1

22

1

1

22
21

n

n

nq
dtqt,Adtt  .                                                (56) 
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For the special case when 2/1q , we have from (56) 

 

                                           


 





















0

1

1

22

0

2

1/2
12

2

1

1
ln

1

n

n

n

n

n

dtt,A
n









.                                               (57) 

 

Comparing coefficient of n2  we get the important relation 

 

                                                        
12

2
1

1

2
1/2





n

dt,A tn
.                                                                      (58) 

 

Relation (58) coincides with the well-known property of the Legendre polynomials. Hence, what we 

need for the general case is only to put 

 

                                                      




1

1

2 dtqt,AqB nn
, Rq .                                                                 (59) 

 

The formula (59) defines us the polynomials  qBn  that exclusively depend on the real parameter q . As 

we will see,  qBn  are characterized by the following properties: 

 

                                                               20 qB ,  Rq ,                                                                   (60) 

and  

                                                        00 nB ,  Nn , 0n ,                                                              (61) 

 

Expressions of  qBn  for 3,2,1,0n : 

 

   




1

1

2

00 2dtqt,AqB  

 

    2

1

1

2

11
3

8
qdtqt,AqB  



 

 

        2222

1

1

2

22 21
3

8
1

5

8
qqqqqdtqt,AqB  



 

 

             2222222

1

1

2

33 1
3

8
21

15

32
21

63

32
 



qqqqqqqqdtqt,AqB  

 

7.2.5. Series of q-Polynomials 

 

As a direct consequence of the existence of q-polynomials we can refer to the series of q-polynomials; 

that is to say any continuous function  tg  such that 11  t , may be expanded in series of q-

polynomials. More precisely, let us prove that if 
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                                           





0k

kk qt,Actg ,  11  t , Rq ,                                                       (62) 

this implies 

                                                         




1

1

1 dttgqt,AqBc kkk
.                                                                 (63) 

 

To this end, multiplying the series (62) by  qtAn ,  and integrating from 1t  to 1t , and taking 

into account the previous result, namely formula (59), we get 

 

                                                dttgqt,Aqt,Acdttgqt,A kn

k

kn 








1

10

1

1

, 

 

for the case when kn  , we have 

 

                                                qBcdtqt,Acdttgqt,A nnnnn  


1

1

2

1

1

, 

 

from where we obtain the very expected formula (63). Furthermore, if we consider the important special 

case that is when 1/2q , we get according to (58), (62) and (63): 

                                                   

                                                   





0

1/2
k

kk t,Actg ,  11  t ,                                                             (64) 

and 
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
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12
dttgt,A

k
c kk

.                                                                 (65) 

 

Again, the formulae (64) and (65) coincide with those of Legendre. 

 

8. pq-Series 

 

Now returning to the general formula (32), which allows us to establish the notion of pq-series that 

may be used to expand any pq-RF when )10( ,r ; Rθq,,p ; Rs,ρ  and )0,0()( ,ρs . With this 

aim, let us expand   p
srr 2 using the binomial formula (34) for the case when 1/ sr , and we find: 
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for 0n , the symbol  n
p is defined by 
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)1(...)1(

n

nppp
n
p 
 .                                                          (67) 

Finally, substituting (66) in (32), we obtain the desired pq-series 
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with                                   

                                           )10( ,r ; Rθq,,p ; Rs,ρ  and )00()( ,ρs,  . 
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9. Properties of pq-PDE  

  

In this section, we would examine the properties of pq-PDE or more shortly Eq.(9). As it said 

repetitively, the pq-RF (4) or (7) is a fundamental family of solutions of Eq.(9), which conceptually is 

new and has not previously reported in literature since it is characterized by several properties among 

them we have: 

 

-Decomposition: The structure and intern symmetry of Eq.(9) allows us to split it into a system of four 

PDEs without using the usual method of separation of variables, the system conserve the same 

fundamental family of solutions, namely  pq-RF (4). 

 

-Homogeneity: Eq.(9) is homogenous with respect to pq-RF. Let W  be a certain pq-RF whose domain of 

definition is comparable to that of (4), and let ζ  be any positive real number, such that  0\Rζ  we 

have Wζw  . Thus after substitution and simplification, we get  
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-Permutability: If we perform the permutation of the orders p and q in Eq.(9), we should have pq,ηw as 

a fundamental family of solutions, furthermore since the general form and structure of the resulting 

equation after permutation )()( pq,q,p  are not basically different from those of Eq.(9), except of 

course the permutation of the orders, hence in this sense the permutability may be defined as a sort of 

symmetry through permutation. 

 

10. Structure of pq-PDE  

 

Finally, we shall focus our attention exclusively on the structure of Eq.(9) by considering the very 

important case when pq-RF is independent of the real parameters ρs,  and  . Hence, for such an 

independence, Eq.(9) becomes 
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d
, q,pηw , 0u  and 0v .                                  (70) 

 

In the context of the present work, we call Eq.(70) ‘pq-Radial Differential Equation’ or shortly pq-RDE. 

We remark from Eq.(70) that the orders, the weight function, the characteristic function and their 

derivatives are essential elements that entering in the structure of this equation. This allows us to say that 

the investigation of Eq.(70) is completely depending on those mentioned elements as we shall see. 

 

10.1. Relationship between pq-RDE and Fuchs’ class  

  

Our aim here is to prove that under some conditions relative to very interesting particular cases, Eq.(70) 

belongs to Fuchs’ class. For this purpose considering the following cases:  

 

1) When 0p  and 0q , Eq.(70) takes the form 
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Or more explicitly 
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Anyone familiarized with the equations of Fuchs’ class can immediately affirm that Eq.(72) is really 

belonging to Fuchsian class since its variable coefficients satisfying Fuchs’ condition, and according to 

the explicit expression of the weight function (5), namely srrr,suu  2)( , Eq.(72) has three regular 

singular points:  rsrr and,0 . 

 

2) When 0p  and 0q , Eq.(70) takes the form 
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Also, the variable coefficients of Eq.(73) satisfying Fuchs’ condition, and according to the explicit 

expression of the characteristic function (6), namely 22 cos)( 2 ρrρrr,ρ,vv θθ  , Eq.(73) has three 

regular singular points: ρr   for 0 ,  0\Rρ ; r  for   ,  0\Rρ  and r . 

3) When )00()( ,p,q   and vu . To arrive at this important particular case, we must take into 

consideration the property (III.1) explicitly vu  qp

p,qqp, vμη  . Obviously, this means vu  . 

Now supposing qp,μ is independent of  and  , thus when p,qμw , Eq.(70) reduces to  
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As we can remark it easily, Eq.(74) has three regular singular points similar to those of Eq.(73). 

 

4) when )00()( ,p,q   and uv . To arrive at this important particular case, we must take into account 

the property (III.2) explicitly uv  qp

p,qqp, uη Λ . Clearly, this means uv  . Now supposing 

p,qΛ is independent of s  thus when p,qμw , Eq.(70) reduces to  
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which is manifestly comparable to Eq.(72), thus Eq.(75) has three regular singular points: 

 rsrr and,0 . 

 

10.2. Relationship between pq-RDE and DE of Sturm-Liouville form 

 

After we have proven that pq-RDE (70) belongs to Fuchsian class under some well-established 

conditions, at present we will show that the same equation may be written in classical form of Sturm-

Liouville DE, particularly, when its spectral (eigenvalue) 1λ , and when the orders )11()( ,qp,    for 

Eq.(70). First, let us write the classical form of Sturm-Liouville DE for the real radial variable )10( ,r  : 
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                                               0 RrγrβλRrα
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d
,   rRR  ,    0>rα .                                 (76) 

 

Considering the very important case when 1λ  and  rRR   is supposed a radial function in the 

classical sense. Hence, we have after substitution, differentiation and rearrangement: 
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Concerning Eq.(70), we have for the case )11()( ,qp,  : 

                            

                                           0
2

2

2

2

















 










 










 



 w
v

v

v

v

u

u

u

u
w

v

v

u

u
w .                                   (78) 

Or equivalently  
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 A simple comparison between (77) and (79) allows us to write the latter in the following form 
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which is exactly the expected classical form of Sturm-Liouville DE for the case when 1λ . Moreover, if 

we take into account the previous result we find that the variable coefficients of Eq.(80) do not justify 

Fuchs’ condition therefore Eq.(80) does not belong to Fuchsian class. In this sense, we call Eq.(80) ‘pq-

RDE in Sturm-Liouville form for the case 1λ  and )11()( ,qp,  ’. 

 

-Question: From all that we arrive at the central question that arises in the context of pq-RDEs is how we 

can prove if there is some relationship between the DEs of Fuchsian class and the DEs of Sturm-

Liouville form in spite of their quite distinct structures. From the previous result concerning the structure 

of pq-RDEs that belonging to Fuchsian class and Eq.(80), we begin to answer this question as follows: 

the above-mentioned relationship may be really exist through pq-RDEs only if )01()( ,p,q   or 

)10()( ,p,q   and 1λ . Indeed, for the case when )01()( ,p,q  , Eq.(70) reduces to 
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Or more explicitly  
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It is clear from the expression of Eq.(82), which is also an important special case of Eq.(72) when 

1p , therefore it follows that the variable coefficients of Eq.(82) satisfying Fuchs’ condition and the 

equation  has three regular singular points similar to those of Eq.(72). Furthermore, the structure of 

Eq.(82) allows us to write in Sturm-Liouville form for the case when 1λ : 
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Eq.(83) is precisely the first answer to our question relating to relationship between the DEs of Fuchsian 

class and the DEs of Sturm-Liouville form. The second answer comes from the case when )10()( ,p,q  , 

thus Eq.(70) reduces to 
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Or more explicitly 
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Eq.(85) is also an important special case of Eq.(73) when 1q . Hence, it follows that the variable 

coefficients of (85) satisfying Fuchs’ condition and consequently the equation has three regular singular 

points similar to those of Eq.(73). Moreover, the structure of (85) permits us to write in Sturm-Liouville 

form for the case when 1λ : 
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Eq.(86) is exactly the second answer to our question. So, after we have found the relationship between 

the DEs of Fuchsian class and the DEs of Sturm-Liouville form in spite of their quite distinct structures, 

we end this section with the investigation of the structural properties of pq-RDE. 

 

10.3. Structural properties of pq-RDE  

 

The main purpose behind the study of the structural properties of pq-RDE is to show the existence of 

some reciprocal properties that characterize, at the same time, the structure of pq-RF and its pq-RDE. 

Hence, we shall return to the Eq.(70), which has in reality three families of solutions, namely:  

 

                                   p,qηw 1 ,  drwww 
 1

112 , 22113 wcwcw  , R21,cc .                                 (87)   

 

In order to make the understanding of the study more easy let us, first, show that these solutions (87) and 

their Eq.(70) are themselves special case. With this aim, let  0\N , the specific property (II.2) allows 

us to write   

                                    
qp,ηw 
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,   drwww 

 1
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22113 wcwcw   .                                      (88) 

 

Since the families of solution (87) are special case of (88) when 1 , it follows from this that the 

solutions (88) themselves should be families of solutions of the following pq-RDE   
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The mutual presence of the parameter   in the solutions (88) and their Eq.(89) defines us, in this sense, 

the structural properties of pq-RDE. Indeed, like its solutions, Eq.(89) reduce to (70) when 1 .  

If presently we suppose that   is not fixed in such a case w  is not simply a fundamental family of 

solutions but it is more compactly a system of fundamental families of solutions defined by finite 

summation 
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therefore, Eq.(89) becomes, after substitution and rearrangement, a system of pq-RDEs 
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Recall that until now the orders )( q,p  are always considered as fixed real numbers, however, if 

hereafter are supposed to be non fixed positive integers that is Nqp, , in such a case we can 

distinguish two systems of fundamental families of solutions defined as a finite sum.  

 

Case 1:  0\N ; Nqp,  and qp > :  
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and its system of pq-RDEs takes the form  
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Case 2:  0\N ; Nqp,  and qp  :     

                                   

                                             )1()32(3)21(2)10(1

1

)( ... n,nn,,,

n n

qp

q,p ηηηηηw 

 




 ,                            (94) 

 

and its corresponding system of pq-RDEs takes the form 
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Finally, let us examine the following two structural properties, that is, when the orders p and q do not 

appear explicitly in the resulting system of pq-RDEs but instead we shall find 2/1)( nn  and 

2/1)( nn , respectively. This property should, of course, occur when w  is supposed to be a system of 

fundamental families of solutions defined as a finite product of the form  
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To this end, focusing our attention slightly on (96), and noting that with the help of specific property 

(II.10), we can prove that for the case when qp > , we get 
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this solves 
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and for the case when qp , we obtain 
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which solves  
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Hence, Eqs.(98) and (100) define us two systems of pq-RDEs when p and q are non fixed positive 

integers and w  is defined by (96). Furthermore, as it was already mentioned, the different structural 

properties of Eq.(70) as a system of pq-RDEs depend exclusively on the expressions of pq-RF and vice 

versa. Also, the specific properties (II.2) and (II.10) of pq-RF have played a central role.  

 

 

11. Conclusion: 

 

In this paper, we have heuristically developed a theory based exclusively on the concept of pq-RFs 

which is in fact a direct consequence of our preliminary investigation on the ‘hypothetical’ dark matter 

and its gravitodynamical effects on the ordinary matter. We have studied the specific properties of pq-

RFs and the structural properties of their pq-PDE, which, to our knowledge have not previously been 

reported in the literature.   
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