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A Biased Classical Theory of Color – Hannay Angle and MacAdam Ellipse

Nicolae Mazilu

Abstract. There is still much unfinished work, and understanding, in order to 
set the classical theory of light and colors on a physically firm basis. The 
present work advances a point of view touching this issue. The main starting 
thesis is that the Planck’s physical theory of light carries a special meaning, 
which allows us to select the general algebra to be used in treating the 
classical geometry of colors. This algebra is the one related to the SL(2,R) 
Lie group. In this framework, the classical MacAdam ellipse representing the 
uncertainty in deciding a color within trichromatic theory of colors, is closely 
related to the classical Hannay angle. This relation is explained. Further on, a 
special representation of trichromacy can result in a special representation of 
QCD itself. According to this representation, the QCD can be considered as 
the quantum counterpart of the classical theory of colors, much in the same 
manner in which the quantum mechanics is considered the quantum 
counterpart of the classical mechanics.
Key Words: theory of colors, MacAdam ellipse, quantum chromodynamics, 
Yang-Mills fields, Hannay angle, Riemannian geometry, trichromacy, 
dichromacy, blackbody radiation

Introduction
From a purely statistical theoretical point of view, the Planck moment in the physics of light reveals

two distinct sides. The first one is the heuristic side, closely related to the Gaussian aspect of the statistics
of light fluctuations. According to Max Born, this was the source of inspiration in establishing the famous 
connection between the fluctuations of the spectral density and the equilibrium temperature of the 
blackbody radiation, leading to the idea of quantum. The second side of the Planck moment is the proper 
quantum side, whereby the distributions of probability characterizing the blackbody radiation are of the 
quadratic variance function type. The contemporary theory of light colors, and of colors in general, seems 
mainly related to the first side of this moment of physics.

Conceived this way, the physical theory of light is indeed the source of inspiration for the classical 
theory of colors, considered as qualities of light itself, or generated by light in the structured matter. Using 
the suggestion properly, it leads to a noncommutative dynamics related to – or rather generated by – the 
classical Hannay angle, connected this time to color. The color is thereby imagined rather as a flux, in an 
abstract three-dimensional space. The theory is thus legitimately noncommutative from an algebraic point 
of view, involving innate fields of Young-Mills type which represent the basic colors. These can be both 
innate to the light, or expression of its interaction with matter, but the present work does not go into such 
details, even though they are essential. They will be reported in the future.

Rather, the present work touches a few points from the classical theory of colors, following however a 
unique leading idea, namely that between the classical concept of color, involving even the known 
subjective characterization depending on the physiology of eye, and the quantum number representing the 
color in quantum chromodynamics, there should be no discontinuity. It seems indeed that, from theoretical 
point of view, if we can talk today of a dynamics of color, this can be done via a classical mechanistic 
theory obtained by analogy with QCD. There does not appear to be a point of continuity between the 
classical theory of colors per se and the QCD, so that this last one appears as only a conventional name for 
a dynamics of some internal degrees of freedom. However, it occured to us that the concept of asymptotic 
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freedom, which impacted so much the theory of strong interactions via QCD, has a deeper meaning for the 
positive knowledge. Namely the position of QCD with respect to the classical theory of colors, is exactly 
the same as the position quantum mechanics with respect to classical mechanics. This means, in particular,
that the missing link in the classical (or even quantum!) theory of light, in order to make it a genuine Yang-
Mills theory, is the color. Thus, for once, one might explain why the noncommutativity is the essential 
ingredient for the asymptotic freedom in the case of strong interactions.

Statistical Geometry of a Light Plane
The Planck’s original Gaussian is uncorrelated (Mazilu, 2010). When considered, however, in the 

general, correlated form, the probability density of this Gaussian would be:
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where X and Y are the two characteristic fluctuation processes, originally constituting the thermal light at 
low and high temperature respectively. The classical theory of color has an interesting twist on this 
statistics.

Indeed, in the classical theory of color, we don’t specify these two random processes by temperature 
regimes, because in general we cannot associate a physical temperature with the color. The problem of 
associating a temperature to the color was not solved yet (MacAdam, 1977), and we don’t think will be 
ever solved. For once, the thermodynamically defined absolute temperature is not physically supported for 
light as classically defined. This issue led to Planck theory in the first place. On the other hand, from a 
statistical point of view, the temperature goes into a parameter characterizing the distribution of colors in a 
more elaborate way than it does in the Planck statistics. Thus, let’s just say, for the sake of argument, that 
in the case of light measurements in general we have to do with two stochastic processes X and Y, 
participating in the composition of a color. If ever in need of a statistical evaluation of the parameters a, b, c 
of the density from equation (1) above, we have at our disposal the maximum information entropy 
principle, for instance, giving their values by
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Here ‘var’ and ‘cov’ denote the variance and the covariance of the experimental data on X and Y.
This characterization of the color measurements – the dichromatic characterization – is closely related 

to a plane centric affine geometry. That is to say that if one insists in characterizing the measurements of 
light in a plane, which is obviously the natural way to consider these measurements (Hoffman, 1966), the 
geometry of this plane is the centric affine geometry. The group of this plane geometry is given by the 
infinitesimal generators
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while the group of the space of values a, b, c is given by infinitesimal generators
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These are two realizations of the same sl(2,R) algebraical structure. The second one has intransitive action, 
which allows transitivity only along specific manifolds, given by constant discriminant of the quadratic 
form from the exponent of equation (1).
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The probability density (1) itself can be presented as a joint invariant of the two actions (3) and (4), 
with the help of Stoka theorem (Stoka, 1968). According to this, any joint invariant of the two actions is an 
arbitrary continuous function of the algebraic formations

222 bac,cybxy2ax  (5)

Obviously (1) is only a special case of this theorem. According to the same theorem, the straight lines 
through origin x = y = 0 can be presented as joint invariants of two actions (3), while the joint invariants of 
two actions (4), one in the variables a, b, c, the other in the variables α, β, γ, say, are arbitrary functions of 
the following three algebraic formations (Mazilu, 2004):

 b2ca,bac, 22 (6)

These facts can give good reasons for a few further observations related to the classical theory of colors.
The argument along these lines allows us to put forward the idea of representation of color in 

connection with MacAdam discovery of the meaning of quadratic forms for which the discriminant (5) is 
positive (MacAdam, 1942). First of all, we have to be a little more specific about the probability densities 
like that from (1). Thus, for instance, consider that the background color process on a plane of color 
measurements has the density
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in two variables X and Y, of which we don’t know too much for now, other than they are characterized by 
the statistics α, β and γ. All we know for sure is that X and Y are some kind of projections on unspecified 
planes, that happen to be experimentally realizable, and that they represent two colors (the so-called 
property of dichromacy). At this moment, the theory is therefore dichromatic. Now, let us say that the two 
processes participate somehow to give a third process, and all we know of this participation is that it is 
some kind of addition of them. More specifically, we will suppose that this third process is a kind of 
weighted sum of the two processes, having the general form

YXZ  (8)

This is, for instance, the case of initial conditions in the case of the harmonic oscillator. The participations 
μ and ν are, in this particular case, given by the two solutions of a second order differential equation. The 
problem now is to find the probability density of the stochastic process Z. This can be done by following a 
known statistical routine, and the final result is
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This is a Gaussian type probability density, having a zero mean and the variance
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Such a probability density is particularly attractive in constructing the one related to characterizing the 
differentials of the three statistics, given their values.

The equation (10) is indication of the nature of an ‘intensity variable’ so to speak. It satisfies the Stoka 
theorem, and indicates that the quadratics are fundamental in the statistics related to the trichromacy theory 
of colors. One can see directly that the trichromacy is due to the fact that there is a bichromatic moment in 
the theory of color space, related to the experimental procedures. Indeed, from algebraical point of view, 
the set of binary quadratics like those occuring in the exponent of a bivariate Gaussian, is a linear three-
dimensional space. Whence the basic theoretical support for the idea that the color space should be three-
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dimensional, even though not necessarily Euclidean. This, of course, gives even more reasons for 
considering the quadratic as fundamental in the theory of light colors.

There should be, therefore, a way to the color of light, giving consistency to the ideas regarding the 
trichromacy of light colors directly through the general quadratic statistical variable obtained, by 
dichromacy, in the measurement process:
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This one then characterizes a specific plane of illumination, no matter of the orientation of that plane, 
because the quadratic is form-invariant by any projection. We have thus to find the probability density of 
this variable, under condition that the plane of light is characterized by the a priori probability density as 
given, for instance, in equation (7). That probability density satisfies, of course, the Stoka theorem, and the 
probability density of Z should also satisfy that theorem, in the precise sense that it must be a function of 
the algebraical formations from equation (6). This leaves us with a functionally undetermined probability 
density, even if we impose some natural constraints in order to construct it. Proceeding nevertheless 
directly, in the usual statistical manner, we find first the characteristic function of the variable (11). As 
known, this is the expectation of the imaginary exponential of Z, using (7) as probability density:
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In view of (6), this characteristic function certainly satisfies the Stoka theorem, which thus reveals its right 
place in the physical theory. Like the Wien displacement law in the case of selection of the right spectrum 
for blackbody radiation, the Stoka theorem should also serve for the selection of the right probability 
density in the case of light colors in general. Anyway, the sought for probability density can then be found 
by a routine Fourier inversion based on tabulated formulas (Gradshteyn, Ryzhik, 1994; 2007, the 
examples 3.384(7); 6.611 (4); 9.215(2)&(3)):
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Here I0 is the modified Bessel function of order zero, and A, B are two constants to be calculated from the 
formulas
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Again, this probability density obviously satisfies the Stoka theorem, as it is a function of the joint 
invariants from equation (6). And so do the mean and the standard deviation of the variable Z, for they can 
be calculated as
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We thus have the interesting conclusion that the essential statistics related to variable Z do not depend but 
on the coefficients of the distribution, and the values of the parameters entering the expression of Z. On one 
hand, this means that the geometry of the color space is dictated by the statistical characteristics of the 
plane of projection and by the physics describing the color, naturally incorporated in the variable Z. For 
instance Z can represent the energy of a harmonic oscillator, or even the wavelength of light when 
described by the wave surface.
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Light as a Stochastic Process
One usually insists, and with good reasons at that, upon the fact that the geometry of the color space is 

not an Euclidean one, but a general Riemannian geometry (see Schrödinger, 1920; English translations of 
these works in MacAdam, 1970; see also Wyszecki, Stiles, 1982 for a pertinent comprehensive review of 
the theories of colors in all their aspects). In context, the Riemannian metric carries a special statistical 
significance whereby the components of the metric tensor are covariances of the three color coordinates 
(Silberstein, 1938, 1943). This meaning of the metric does not seem to be secured by anything in the 
framework of the theory. Yet one works this way, and the results confirm the manner of approach 
everywhere in the classical theory of color. There should be therefore some fundamental truth there, whose 
formal expression is not as yet obvious.

The previous statistical theory can help us secure, from a theoretical point of view, this purely statistical 
connotation in the color space. Assume indeed, that a, b and c are some variations of the parameters α, β 
and γ, respectively. It thus turns out that this is a variation, dZ say, of the color Z is dictated only by the 
variations of its coefficients, and it is a process having, according to equation (15), the following 
expectation and variance:
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Here a bar over the symbol means average using the probability density given by equation (13). From these 
formulas we get
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The right hand side of this formula carries a special meaning: it is the Riemannian metric which can be 
built by the methods of absolute geometry for the space of the 2×2 matrices having the singular matrices as 
points of the absolute quadric (Mazilu, Agop, 2012). In fact, one can prove, and we will show this 
immediately, that the quadratic form (17) is just the Cartan-Killing metric of the certain action of the 2×2 
real matrices. This is indeed of the quadratic form

)4(
4

1
31

2
2  (18)

where ω1,2,3 are three 1-forms representing three conservation laws of the SL(2,R), and has the exquisite 
interpretation already mentioned. Meanwhile, let’s notice that, from a stochastic point of view, the process 
of physical variation of the parameters of the quadratic form is ‘almost’ a Lévy-type process with three 
parameters (Lévy, 1965), in the sense that the elementary distance is decided by the variance function. This 
validates indeed the statistical interpretation of the metric of the space of colors, but raises instead another 
problem related to the coordinates representing the colors. This problem indicates, in turn, the feasibility of 
another, more special, approach of the geometry of colors.

Resnikoff’s Special Theory
Notice indeed that, as a matter of fact it is not the variable dZ we are after, but the parameters dα, dβ 

and dγ, and they can be assumed to have zero averages, without any problem. Equations (16) and (17) are 
then just control equations, related to a space coherence of light for instance. Indeed, we usually measure 
the wavelength in order to get the characteristics of light, and the wavelength is a quadratic form in the 
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parameters of the plane of dichromatic measurements. Howard Resnikoff introduced as representative for 
what he calls the ‘perceptual lights’ a set of 2×2 symmetric matrices (Resnikoff, 1972):
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The determinant of this symmetric matrix is taken as the brightness variable of the light, to be constructed 
from the three basic color perceptions. Resnikoff suggests that the entries of the matrix (19) are to be taken 
as color coordinates. In that case the coordinate β can be chosen to be the regular ‘B’ – the quantifier for 
the ‘blue’ color in an RGB color scheme – of course, in the cases where the brightness of light thus 
calculated is positive. For a certain situation β has therefore to play the part of a correlation when 
statistically considered in the case of dichromatic basic variables. The choice is not unique, for there are 
three manners of calculating this brightness on a certain range of the color parameters RGB, in order to 
satisfy the positivity requirement, but let us go with it just for the sake of illustration. Thus, if we take, in 
the manner of Resnikoff:
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and the Resnikoff metric is just the Cartan-Killing metric of this group of matrices, given by:
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Now, the matrix (22) has the general form:
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and carries a special meaning in the geometrical theory of color. In order to reveal this meaning let’s 
consider the quadratic forms in their most generality, from the general standpoint that their coefficients do 
represent lights or color coordinates, as suggested by Resnikoff.

Differential Dichromacy: the MacAdam Ellipses
The general equation of a conic section is a quadratic equation of the form

0cby2ax2yxy2x)y,x(f 22  (25)

This time in the quadratic form we have included the possibility of an arbitrary center – not just the origin –
whose coordinates are related to the coefficients a, b through a linear homogeneous relation determined by 
α, β and γ. There is a merit, given by handling simplicity among others, in using the ‘notation of Dirac’. 
This also allows for a suggestive interpretation of the final geometrical results. In broad lines this notation 
amounts to representing the position vector either by a “ket” or by a “bra” vector, according to its position 
in the matrix multiplication product. These are given by the matrices
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In common calculations, the difference between these two last equations is simply a transposition of the 
matrices.

In these notations the equation (25) can be written as
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This vector represents the relative position of the center of the conic in the known geometrical sense:
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If we refer the conic to this center, by means of the translation
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the equation (26) becomes purely quadratic in coordinates, although otherwise inhomogeneous:
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This algebra is now used in constructing an argument for matrix representation of colors.
Within the framework of Resnikoff representation as above, the problem of identification of a center of 

color in a plane of measurement – what we would like to call the MacAdam’s problem (MacAdam, 1942)
– has an explicit algebraical expression. Indeed, we can simply represent targeting “the same geometrical 
color center” by the differential equations dxc = dyc = 0. Then the condition (27) comes formally down to 
the following matrix differential equation:
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Obviously this equation limits the set of possible conics having the same geometric center. Using the 

definition of the inverse of a matrix, to the effect that α–1α is the identity matrix, one can easily prove by 



8

direct differentiation the matrix differential relation dα–1 = –α–1dαα–1, so that from equation (27) we must 
have

a)d(da 1 αα (30)

Thus the condition of fixed center comes actually down to a certain evolution of the vector |a, dictated by 
the matrix of the quadratic form from the equation of the conic section and its variation. In detail, the
equation (30) can be written as
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The matrix governing the evolution in the right hand side of this equation can be further adjusted to a 
special form:

2

23

12 ;
2

2

10

01
)(lnd 



















Ω (32)

 is therefore the determinant of α, i.e. Resnikoff’s brightness squared, and we denoted














dd

;
dd

;
dd

321 (33)

three differential forms generated by the elements of the matrix of quadratic form representing the family 
of local colors, and their differentials. When calculated in the coordinates from equation (20) these 
differential forms are

2

22

32221 v

uvdv2du)vu(
;

v

vdvudu
2;

v

du 



 (34)

showing explicitly that the matrix from equation (32) is the transposed of that from equation (24)
Thus, the proposed representation of Resnikoff’s has actually a firm physical basis, in relation to 

MacAdam’s ellipses. Indeed, assume that we are to identify a certain center, as in MacAdam experiments. 
The center is the one position satisfying equation (27), and therefore asking for the differential correlation 

(30), which turns out to be an equation of motion for the vector |a. When the Resnikoff’s matrix is taken as 

described, i.e. representing an ellipse, then the motion of the center |a itself is along an ellipse, which is the 
real case with MacAdam results. Therefore, the MacAdam’s ellipse gives a statistical interpretation to 
differentials of the elements of color in Resnikoff’s representation.

Now, a few algebraical relations among the differential forms (34) are in order. They form a basis of a

sl(2,R) algebra. The following differential relations can be directly calculated:













 321 d;
2

d;d (35)

where Θ is the differential 2-form

23

dddddd




 (36)

The 2-form Θ is closed because it is the exterior differential of a 1-form:















  2
tand;d 1 (37)

representing the Hannay angle of this problem. In our context it gives a way to ‘objectify’, so to speak, the 
subjective experimental evaluations of colors, and has certainly everything in common with the original 
angle (Hannay, 1985; Berry, 1985). 

On the other hand, we can verify the following relations:
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











 133221 ;; (38)

Thus, from (35) and (38) we have the characteristic equations of a sl(2,R) structure:

0)(2d;0d;0d 132323211  (39)

Using these relations we can draw an important conclusion: the quadratic forms associated with the matrix 
in Resnikoff representation of light perceptuals are actually fluxes of color in the color space, induced by 
the ‘subjective’ uncertainty in determining a color. Indeed, the quadratic form conserved along MacAdam’s 

evolution can be written as a|ω|a, where ω is a symmetric matrix of 1-form in Resnikoff’s perceptuals. 
One can construct the 2-form

















32

21

2

2
;aaada ωαω (40)

where we have used the equations (35). As the 2-form Θ, is a flux, the analogous of the solid angle in the 

usual Euclidean space, the quadratic form a|α|a is indeed the intensity of a flux of colors in the color space
thus defined. One might say that the human eye is driven, in evaluating the light, by a flux of color as 
represented by Hannay’s angle.

Conclusions and Outlook
The fact that, as far as the color is involved, the physical theory of light should be a statistical theory 

seems today beyond any reasonable doubt. So is the fact that the color space should be a general 
Riemannian space. The usual tenet is that the Riemann metric of the color space reflects the statistics 
related to color. In our opinion, the theoretical effort should then concentrate in finding representations of 
color that naturally satisfy these requirements.

The measurements of light are usually performed in cross sections of beams of light, in general 
positions with respect to the beams. This fact allows some geometrical considerations amounting to special 
choice of color variables, which entitle quite naturally both the dichromacy and trichromacy considerations 
for the theory of light colors. Along this line of thought, the Riemannian structure arises naturally in 
connection with the very statistical theory of measurement. The supporting manifold of colors is a 
Riemannian one having constant negative curvature. The ‘subjective’ uncertainty in color decision can then 
be described by a geometry whose basis is the usual Hannay angle. This time however, the Hannay angle is 
connected to a flux in the space of colors, representing the adaptability of the human eye to the color of 
light. The classical subjectivity of establishing a color has this way an ‘objective’ mathematical 
counterpart, confirmed by experimental practice.

But the implications of a theory that uses a Resnikoff’s representation of colors, whereby they are 
quantitatively given by the entries of a 2×2 symmetric real matrix, are far more intricate from physical 
theoretical point of view. Indeed, such a representation has an outstanding theoretical meaning. A matrix is 
obviously an element of a noncommutative algebra, which can be simply a Yang-Mills field. It turns out 
that this theory of colors is plainly a Yang-Mills theory. It completes the classical theory of light in a 
natural way, by including the color in it. The classical electromagnetic theory, even though undoubtedly a 
gauge theory, is not a Yang-Mills theory yet. The present work shows that it takes considerations of color 
of light in order to render to the theory of light a plain Yang-Mills character. From this point of view, the 
light itself actually enters the realm of quantum chromodynamics, as it should naturally do, for the 
everyday color is related to light. But there is more to it: if the mechanism of color is the one explaining the 
strong interactions, then this color should be classical too. Thus one might figure out why the 
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noncommutativity is the essential ingredient allowing asymptotic freedom in the case of strong interactions: 
after all, the light is a model of interaction everywhere in the universe, at any level!

These conclusions may seem momentarily only conjectures, but we think that even by now they can be 
securely promoted to “educated guesses” at least. For the purpose of a more thorough validation, one may 
need to correlate them with an electromagnetic theory of light. This will be the object of a future work. 
Specifically, we intend to report how the Resnikoff-type theory of color relates to the classical ideas of 
light ray and wave surface, and therefore to the classical electromagnetic theory of light. This, in our 
opinion, will give more credibility to the theory of colors as a legitimate classical counterpart of the QCD, 
much in the same manner in which the classical mechanics offers a limit to quantum mechanics.
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