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Abstract 

In this article, by using fundamental concepts in classical mechanics, we derive equations describing 

gravitational red shift and Doppler effect for light as well as equations describing the relations among 

mass, momentum, and energy including mass-energy equivalence. Although our equations are different 

than those in Newtonian mechanics or special relativity, they yield results that are approximate results 

calculated with Newton mechanics or special relativity for values of velocity, which are much less than 

speed of light. Since the concepts in classical mechanics are not separated from the perspective of 

absolute space and time, this theory is named the theory of invariance. 
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1. Introduction 

In 17th century, classical mechanics developed by Sir Isaac Newton and other natural philosophers 

became an accurate theory describing the motion of macroscopic objects under the action of forces. 

However, in 1905, the scientist Albert Einstein published a theory which later was called the theory of 

special relativity. A revolution in science started with the perspective of relative space and time. The 

equation E = mc2 derived from special relativity has become famous throughout the world [1, 2]. Is it 

important to investigate if the famous equation also holds in the perspective of absolute space and time? 

Can we derive the equation E = mc2 from concepts in classical mechanics? If yes, what does this equation 

tell us about the nature of absolute space and time? 

 

2. Light under the effect of gravity 

Let us consider the following conceptual experiment: 

 

A photon with energy Eo is emitted at a point A in a uniform gravitational field g. Points B and C are 

positioned below the point A such that AB = BC = h. The photon energy measured at point B is E. The 

energy E and the height h are variable amounts. Hence, the ratio E ⁄ Eo can be written as a function of the 

height, (h), as follows: 

 h
E

E

o

 , and )( h
E

Eo   . 

Hence,  

    1.  hh   

We also have  

     hhh  .2   

Therefore, (h) is an exponential function: 

    kheh  . 

Thus, 

kh

o

e
E

E
 ,                                                                        (1) 

and 

 1 kh
oo eEEEE .                                                          (2)                                                                                                    

 

Because the energy of a light ray is proportional to its frequency, Equation (1) can also be interpreted as a 

ratio of the frequencies of the photon: 

kh

o

e
f

f
 .

 
                                                    (3)                                                                                       

Figure 1: Light travel down from A 

to B and C in uniform gravitation g. 
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In real experiments, if gh << c, the ratio of the frequencies is measured as

2
1

c

gh

f

f

o

 .                                                                     (4)                                                                                                 

Comparing Equations (3) and (4), we obtain:  

2c

g
k  . 

Substituting k = g/c
2
 into Equations (1), (2), and (3), we obtain: 











2
exp

c

gh

E

E

o

,                    (5)                                                                                      


















 1exp

2c

gh
EE o ,                                                (6)                                                                                

and 











2
exp

c

gh

f

f

o

.                                           (7)                                                                                

 

This equation describes the effect of gravity on light. However, in the Universe, there is no uniform 

gravitational field, only gravitational fields around astronomical bodies. For a spherical body of rest mass 

Mo, the frequency of a light ray fo emitted at a distance Ro from the center of the body will be changed to f 

as the light ray comes to a distance R from the center of the body: 

 











 


2
exp

RcR

RRGM
ff

o

oo
o ,                                                       (8) 

where G the gravitational constant. 

 

Hence, if the light ray fo approaches infinity, then its frequency will be reduced to f∞: 














 2

exp
cR

GM
ff

o

o
o .                                                           (9) 

 

This equation implies that the frequency f∞ approaches zero as Ro approaches zero. This consequence 

indicates that if a black hole exists, then it has no dimensions, and no event horizon around it. 

 

3. Mass-energy equivalence 

Let us consider an object m that is dropped freely from a point A in a uniform gravitational field g. Points 

B and C are positioned below point A such that AB = BC = h. 

Figure 2: Object m fall freely from A to 

B and C in uniform gravitational field g. 
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Call mo the rest mass and mg the gravitational mass of the object m. The gravitational mass mg and the 

height h are variable amounts. Hence, we can write the ratio of the masses as a function of the height, 

(h), as follows: 

 h
m

m

o

g
 , and  h

m

m

g

o  . 

Hence,  

    1.  hh   

We also have  

     hhh  .2   

Therefore, (h) is an exponential function: 

  kheh  . 

Thus, 

  kh

oog emhmm   .                                                         (10)                                                                           

 

Call F the gravitational force that is exerting a pull on the object m in the gravitational field g:  

gmF g . 

From the definition of work, W, we obtain: 

 
h

g

h

dhgmFdhW

00

. 

Substituting Equation (10) into the equation above, we obtain: 


h

kh
o dhegmW

0

 

 11
 kh

o e
k

gmW .                                 (11) 

 

Now, let us consider the object m that “decays” into two “pieces” of light precisely when the object is 

dropped. One piece emits upwards, and the other piece emits downwards. The upwards-emitting piece 

immediately hits a mirror and reflects downward with the other piece. 

 

 

Comparing Equations (6) and (11), let us pay attention at the portions of [exp(gh/c
2
)-1] and (e

kh
-1) in the 

equations, respectively, we obtain:  

2c

g
k  . 

Figure 3: Object m “decay” into 

light precisely when dropped. 
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Comparing Equations (6) and (11), let us pay attention at the portions of (Eo) and (gmo/k) in the equations, 

respectively, we obtain: 

k
gmE oo

1
 . 

Substituting k = g/c
2
 into the equation above, we obtain: 

2cmE oo  .              (12) 

 

This equation describes the mass-energy equivalence for an object at rest. Interestingly, this equivalence 

is exactly the same as that in special relativity. 

 

Now, substituting k = g/c
2
 into Equation (10), we obtain:  











2
exp

c

gh
mm og .                                                             (13) 

Substituting Equation (12) into Equation (5), we obtain: 











2

2 exp
c

gh
cmE o .                                                      (14)                                                                                     

Substituting Equation (13) into Equation (14), we now obtain:  
2cmE g .                                                                    (15) 

 

Equations (13) and (14) describe the gravitational mass mg and the mass-energy equivalence for the object 

m when it is falling through point B, respectively (See figure 2). Mass-energy equivalence for an object 

and its gravitational mass can also be expressed in its velocity. These relations will be derived in the 

following sections. 

4.  Doppler effect 

Let us consider the following conceptual experiment: 

Imagine a light source S and an observer O. The light source emits a flash of light towards the observer O. 

Call fo the frequency of the flash received by the observer when he is at rest with respect to the light 

source. Call f the frequency of the flash received by the observer when he is moving at a velocity v 

towards the light source. The frequency f and the velocity v are variable amounts. Hence, we can write the 

ratio of the frequencies as a function of the velocity, (v), as follows: 

 v
f

f

o

  , and  v
f

fo  . 

Hence,  

    1.  vv  . 

We also have  

     vvv  .2   

Therefore, (v) is an exponential function: 

  kvev  . 

Thus, 

kv

o

e
f

f
 .                           (16)                                                                                

 

In real experiments, if v << c, then the ratio of the frequencies is measured as follows: 

c

v

f

f

o

1 .                                                       (17)                                                                                 
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Comparing Equations (16) and (17), we obtain:  

c
k

1
 . 

Substituting k = ±1/c into Equation (16), we obtain:  











c

v

f

f

o

exp .
  
                                        (18)                                                                                 

 

This equation describes the Doppler effect for light. And because the energy of a light ray is proportional 

to its frequency, Equation (18) can also be interpreted as  











c

v

E

E

o

exp .                                                      (19)                                                                                

 

5. Total energy, gravitational mass, kinetic energy, potential energy, and linear momentum 

5.1. Total energy 

Let us consider the following experiment: 

An object m is allowed to “decay” into two “pieces" of light when an observer is moving towards the 

object at a velocity v. Call mo and Eo the rest mass and the rest energy of the object m, respectively. 

Applying Equation (19) to the experiment, the observer receives a total quantity of energy E, 




























c

v

c

v
EE o expexp

2

1
. 

Using Equation (12), we then obtain: 




























c

v

c

v
cmE o expexp

2

1 2  

c

v
cmE o cosh2 .                                         (20)                                                                                             

 

This equation describes the total energy of an object m moving at a velocity v. 

 

5.2. Gravitational mass 

Comparing Equations (15) and (20), we obtain: 

c

v
mm og cosh .                                 (21)                                                                               

 

In invariance, the rest mass is different from the gravitational mass. The rest mass of an object is 

unchanged. The gravitational mass is dependent on velocity and is therefore an indicator of kinetic energy 

as described in the following section. 

 

5.3. Kinetic energy 

Kinetic energy is the difference between total energy and rest energy: 

oEEKE  . 

Substituting Equations (15) and (12) into the equation above, we obtain: 

  2cmmKE og  . 

Using Equation (21), we then obtain: 









 1cosh2

c

v
cmKE o .                      (22)  

 

This is the invariant kinetic energy equation. It can be expanded as 
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







































 ...

!6

1

!4

1

!2

1
642

2

c

v

c

v

c

v
cmKE o . 

Hence, for low values of velocity v, this equation approaches the Newtonian mechanics kinetic energy 

equation. 

2

2

1
vmKE o  for v << c. 

 

5.4. Potential energy 

Let us return to section 3. Substituting k = g/c
2
 into Equation (11), we obtain: 


















 1exp

2

2

c

gh
cmW o .                                      (23) 

 

By the law of conservation of energy, Equation (23) also describes the potential energy of an object m at 

rest at height h in a gravitational field g,  


















 1exp

2

2

c

gh
cmPE o .                                                      (24) 

 

This is the invariant potential energy equation. It can be expanded as 
































 ...

!3

1

!2

1
3

2

2

22

2

c

gh

c

gh

c

gh
cmPE o . 

Hence, for low values of gh, this equation approaches the Newtonian mechanics potential energy 

equation. 

ghmPE o  for gh << c
2
. 

 

In general, the potential energy of an object m at rest at a distance R1 with respect to a distance R2 from a 

spherical object M is 

   
















 
 1exp

2

212

c

RURU
cmPE o , 

where  
R

GM
RU o , where G the gravitational constant. 

 

 5.5. Linear momentum 

From the experiment described in subsection 5.1, we can also determine the total quantity of momentum p 

of the two pieces of light with respect to the observer: 




























c

v

c

v

c

E
p o expexp

2

1
 

c

v

c

E
p o sinh . 

Substituting Equation (12) into the equation above, we obtain: 

c

v
cmp o sinh .                                                   (25)                                                                              

In vector denotation, this equation is written as 

p = mov
 

 cv

cvsinh
.                                          (26)                                                                                                
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This is the invariant linear momentum equation. It can be expanded as 

p = mov































 ...

!5

1

!3

1
1

42

c

v

c

v
. 

Hence, for low values of velocity v, this equation approaches the Newtonian mechanics momentum 

equation. 

p ≈ mov for v << c. 

 

Now from Equations (20) and (25), we obtain: 




























c

v

c

v
cmcpE o

2242222 sinhcosh  

42222 cmcpE o .                                              (27)                                                                                

 

Even though the total energy and linear momentum described by Equations (20) and (25) are different 

from those values in special relativity, it is interesting that the total energy of a particle of rest mass mo 

described by Equation (27) is exactly the same as that in special relativity. 

 

From Equations (20), (21), and (25), we also recognize that the relations among the energy, linear 

momentum scalar, and gravitational mass of a moving object m can be described as follows: 

dv

dE
p   , and 

dv

dp
mg  . 

 

6. Free falls 

6.1. Velocity 

Applying the law of conservation of energy to the equations of potential energy (24) and kinetic energy 

(22), we obtain: 



























1cosh1exp 2

2

2

c

v
cm

c

gh
cm oo  











2
expcosh

c

gh

c

v
.                                                           (28)                                                                                    

 

This equation describes the velocity v of an object dropped falling freely from a height h in a gravitational 

field g. The equation can be expanded as 

...
!2

1
1...

!4

1

!2

1
1

2

22

42





























c

gh

c

gh

c

v

c

v
. 

Hence, for low values of gh, this equation approaches the Newtonian mechanics equation: 

ghv 22   for gh << c
2
. 

 

6.2. Acceleration 

Differentiating both sides of Equation (28) with respect to time, we obtain: 

dt

dh

c

gh

c

g

dt

dv

c

v

c










22
expsinh

1
 

v
c

gh

c

g

c

v
a 










2
expsinh . 

Substituting Equation (28) into the equation above, we obtain: 



 The Theory of Invariance  

9 

 

 
  c

v
g

cv

cv
a cosh

sinh
                              (29)                                                                             











c

v
g

c

v
a tanh .                                              (30)                                                                                   

 

This equation describes the acceleration of an object which is falling at a velocity v in a gravitation field 

g. The equation can be expanded as 

g
c

v

c

v
a 
































 ...

15

2

3

1
1

42

. 

Hence, for low values of velocity v, this equation approaches the Newtonian mechanics viewpoint about 

the relation between acceleration and gravitation. 

a ≈ g for v << c, and a = g for v = 0. 

 

7. Inertial mass 

Let us consider an object m falling freely downward in a gravitational field g. Call mi and mg the inertial 

mass and the gravitational mass of the object, respectively. From the definition of inertial mass, mi = F/a 

and from the definition of gravitational mass, mg = F/g, we obtain: 

a

g

m

m

g

i  .                                 (31)                                                                                    

Substituting Equations (21) and (30) into Equation (31), we obtain: 

 
 cv

cv
mm oi

sinh
 .                                                     (32)                                                                              

Hence, the equation of linear momentum (26) can also be written as 

p = im v.                                                     (33)                                                                                   

 

In invariance, the inertial mass is a function of velocity. In addition, linear momentum can be defined as 

the product of inertial mass and velocity. 

 

8. Barycenter and gravitational force 

Let us imagine two astronomical objects M1 and M2 orbiting around each other. Call R1 and R2 the 

distances from M1 and M2 to their barycenter, respectively. In Newtonian mechanics, the position of the 

barycenter and the gravitational force between M1 and M2 are as follows: 

2211 RMRM   , and 
2

21

R

MGM
F  , [3] 

where R = R1 + R2, and G the gravitational constant. 

 

Because the theory of invariance is based on classical concepts and perspective, invariant expressions of 

barycenter and gravitational force are very similar with those in Newtonian mechanics. However, 

gravitational masses are used in the expressions above instead of masses, because, by the definition of 

gravitational mass, gravitational mass is corresponding to gravitational force. Hence, the position of the 

barycenter and the gravitational force are described by the following expressions: 

2211 RMRM gg  ,                                                               (34) 

and  

2

21

R

MGM
F

gg
 ,                                                                (35) 
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where 

c

v
MM og

1
11 cosh , and 

c

v
MM og

2
22 cosh ,  

where v1 and v2 the velocities of M1 and M2 on their orbit, respectively. (See section 5.2, Equation (21)). 

 

9. Summary 

 The different masses of an object m are its 

Rest mass mo, which is unchanged, 

Inertial mass 
 

 cv

cv
mm oi

sinh
 , and 

Gravitational mass, which can be expressed as 

dv

dp
mg  , and 

c

v
mm og cosh . 

 

 The linear momentum of an object m can be expressed as 

 p = im v, 
dv

dE
p  , and 

 
 cv

cv
vmp o

sinh
 . 

                                                                                                                                                                                                 

 The mass-energy equivalence is  
2cmE g . 

 

 The potential energy of an object m at rest at height h in a gravitational field g is 


















 1exp

2

2

c

gh
cmPE o . 

In general, the potential energy of an object m at rest at a distance R1 with respect to a distance R2 

from a spherical object M is 

   
















 
 1exp

2

212

c

RURU
cmPE o , where  

R

GM
RU o . 

 

 The kinetic energy of an object m moving at a velocity v is 









 1cosh2

c

v
cmKE o .        

 

 The total energy of a particle m is 
42222 cmcpE o . 

 

 The Doppler effect for light is 











c

v
ff o exp .

 
     

    

 The gravitational red/blue shift effect for light is 











2
exp

c

gh
ff o .   

           

 A black hole, if it exists, is a point with no volume and no event horizon.  
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 The relation between inertial mass and gravitational mass is 

 
 cv

cv

m

m

g

i tanh
 . 

 

    The relation between acceleration and gravitation is 

 
 cv

cv

a

g tanh
 . 

 

 The position of the barycenter between two objects M1 and M2 is described as 

2211 RMRM gg  . 

 

 The gravitational force is 

2

21

R

MGM
F

gg
 . 

 

10. Conclusion 

We studied the theory of invariance, which is based on the perspective of absolute space and time. Our 

analysis produces invariant equations which yield results that are approximate results calculated with 

either Newtonian mechanics or special relativity. In addition, we reproduce two of Einstein’s equations of 

special relativity: Eo = moc
2 

and E
2
 = p

2
c

2
 + mo

2
c

4
. These outcomes indicate that the theory of invariance 

can provide a distinctive view of the natural world, and the perspective of absolute space and time is an 

appropriate perspective in progressions of understanding reality. 
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