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Abstract

In this work, we forge a powerful, easy-to-visualize, flexible, consistent, and disci-
plined abstract vector framework for particle and astro physics that is compliant with
the holographic principle. We demonstrate that the structural properties of the com-
plex number and the sphere enable us to introduce and define the triplex number—an
influential information structure that is similar to the 3D hyper-complex number by
D. White and P. Nylander—which identifies a 3D analogue of (2D) complex space.
Consequently, we engage the complex and triplex numbers as abstract vectors to sys-
tematically encode the state space of the Riemannian dual 3D and 4D space-time
topologies, where space and time are dual and interconnected; we use the triplex num-
bers (with triplex multiplication) to extend 1D and 2D algebraic systems to 3D and 4D
configurations. In doing so, we equip space-time with order parameter fields for topo-
logical deformations. Finally, to exemplify our motivation, we provide three example
applications for this framework.
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1 Introduction
The term “information” is notorious for having many different forms and meanings [1].

So in the limited context of this paper, what definition of information are we interested in?
Here, we ascertain that information is defined as: a sequence of symbols that can encode
a message and any type of event that affects the state of a dynamical system. A complex
number can be used to encode information—it is a number that can be put in the form

x = xR + xI, (1)

where xR is the real component and xI is the imaginary component of the complex number
x [2, 3]. Eq. (1) is important because it stores abstract information by extending the 1D
number line to the 2D complex plane by using the horizontal axis for xR and the vertical axis
for xI. Hence, x can be identified with the point (xR, xI) in a 2D Cartesian coordinate system
called the complex plane X, such that x ∈ X [2, 3]. Thus, x is a scalar that simultaneously
encodes the magnitude and direction components of a vector [2, 3]. If xR = 0, then x is said
to be purely imaginary, whereas if xI = 0, then x is said to be purely real [2, 3]. In this way,
eq. (1) comprises the familiar real numbers and therefore equips us with the means to attack
problems, encode states in state space, and deal with patterns that cannot be realized by
real numbers alone.

Eq. (1) provides a wide variety of applications in science and engineering. For example,
in quantum physics the wavefunction—with values typically stored in the form of eq. (1)—
characterizes the quantum state of a particle and its behavior; the Schrödinger equation
designates how the wavefunction evolves in space over time [4]. In computer and electrical
engineering, eq. (1) can be applied to represent sinusoidal oscillating voltage and current
in circuit analysis and design [5]. In fractal geometry, the language of chaos theory [6],
information encoded using eq. (1) can represent input and output values of iterated functions
that generate fractals such as B. Mandelbrot’s set [7]—self-similar patterns that are abundant
in nature [8, 9]. Indeed, the concept put forth by eq. (1 ) is intrinsic to encoding the abstract
features of G. ’t Hooft’s and L. Susskind’s “holographic universe” [10, 11, 12] by applying
the state space X.

Another familiar mathematical construct that is fundamental to nature is the sphere. For
example, spherically-symmetric structures are often used as the mathematical underpinnings
for understanding gravity [13, 14, 15, 16], black holes and space-time [17, 18, 19], stars [20, 21,
22], nuclear mass [23, 24, 25], and more. Now in terms of spontaneous symmetry breaking,
imagine that the surface of a spherically-symmetric structure can be equipped with abstract
vectors or order parameters [26, 27] to encode topological deformations [28, 29, 30, 31] as in
the analytic color-anticolor confinement and baryon-antibaryon duality proof of [32]. In this
context, it is useful to imagine that the “base case”, a circle (1-sphere) T , can be isometrically
embedded in X, such that T ⊂ X, where T can be topologically deformed to represent any
conceivable elliptical case to encode, for example, an orbital system of massive bodies—
see Figure 1. Similarly, if we imagine the case of T being a 2-sphere that is isometrically
embedded in the 3D real manifold Y , such that X ⊂ Y and T ⊂ Y , then we see that T can
be topologically deformed to represent any conceivable spheroid case to encode, for example,
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Fig. 1: A circle can be transformed into a non-circular ellipse by equipping it with order parameters for

topological deformations.

a planet in our solar system. Furthermore, if the topological deformation order parameters
along the 1-sphere or 2-sphere are used to encode fractional statistics as in [32], then encoding
a fractal state space [7] becomes relatively straightforward. In this work, we will follow [32]
and demonstrate that a space-time topology equipped with an embedded 1-sphere or 2-sphere
and order parameters is an essential non-linear component of the “holographic principle”
that is axiomatic to quantum gravity and string theories [10, 11, 12].

In this paper, we combine eq. (1) with spherical concepts to establish a mathematical
definition of triplex numbers with triplex multiplication that simplifies the 3D hyper-complex
number and its operators by D. White and P. Nylander [33, 34, 35]. We engage the complex
and triplex numbers as abstract scalars and vectors to frame the position and order param-
eter states of a spherically-symmetric system that can be directly applied as information
structures to encode chaotic systems—dynamical systems that are highly sensitive to initial
conditions [6, 7, 36, 37]. In general, this new and developing framework focuses on improv-
ing the Riemannian dual (“fractional quantum Hall superfluidic”) space-time topology and
representational capability for the analytic confinement, duality, and antisymmetry proof of
[32] that is consistent with holographic models [10, 11, 12].

In Section 2, we fashion the Riemannian dual 3D space-time, where the time dimension
is a topological circle T that is isometrically embedded in a Riemann surface X, such that
T is simultaneously dual to two spatial sub-surfaces—an improvement to [32]. First, we
upgrade the dual 3D space-time topology of [32] by exercising the complex numbers as “2D
position vectors” to engineer X, namely the 2D position-point state space (2D-PPSS), with
complex locations in the form of eq. (1), namely 2D position-point states (2D-PPS), that
are identified by 2D generalized Riemannian-coordinates. Next, we refine the simultaneous
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superfluidic symmetry breaking representation of [32] by additionally using the complex
numbers as “2D order parameters” to install, at each 2D-PPS, a 2D order parameter state
space (2D-OPSS) with a spontaneous 2D order parameter state (2D-OPS).

In Section 3, we devise the Riemannian dual 4D space-time by embedding the 2D-PPSS
X in a 3D manifold Y , where the time dimension T becomes a topological Riemannian circle
(2-sphere) [38] that is isometrically embedded in Y , such that T is simultaneously dual to two
spatial 3-branes—an additional improvement to [32]. First, we upgrade the dual 4D space-
time topology of [32] by defining the triplex numbers and applying them as “3D position
vectors” to engineer Y , namely the 3D position-point state space (3D-PPSS), with triplex
locations, namely 3D position-point states (3D-PPS), that are identified by 3D generalized
Riemannian-coordinates ; this is paramount because it enables us to extend the lower dimen-
sional algebraic systems to 4D space-time. Next, we enhance the simultaneous superfluidic
symmetry breaking representation of [32] by additionally using the triplex numbers as “3D
order parameters” to install, at each 3D-PPS, a 3D order parameter state space (3D-OPSS)
with a spontaneous 3D order parameter state (3D-OPS).

In Section 4, we bestow three distinct and introductory examples that apply the triplex
framework of Section 3 to particle physics, astro physics, and fractal geometry. First, we
begin to merge our scenario with the “White-Nylander mythical beast” by identifying the
triplex multiplication for computer graphics and simulating 3D fractals [33, 34, 35]. Second,
we upgrade the fractional quantum number representations of the baryon wavefunction and
antisymmetric tensor in [32] from 2D-OPSs to 3D-OPSs. And third, we supply an encoding
methodology for the Schwarzschild black hole (SBH) quasi-normal modes of [39, 40, 41, 42,
43, 44].

Finally, in Section 5, we conclude with a brief recapitulation and discussion of the paper.
Here, we highlight the importance of this framework and suggest future modes of exploration.

2 The complex framework for Riemannian dual 3D space-time
Here, starting with eq. (1), we assemble the complex information structures and encoding

methodology for our 3D space-time, where the time dimension is the topological circle T that
delineates dual spatial sub-surfaces on X; T is simultaneously dual to two spatial distance
scales as in [32]. This topological foundation is equipped with a 2D-PPSS and 2D-OPSS—see
Table 1 for an introduction.

2.1 The 2D position-point state space
Here, we construct the 2D-PPSS and 2D generalized Riemannian-coordinates for the dual

3D space-time.
From [32], let the Riemann surface X be a 2D-PPSS. We define a 2D-PPS ~x ∈ X in

the 2D-PPSS X as a 2-number, complex number, complex scalar, and complex vector that
encodes a location on (or within) X, where we refine eq. (1) as

~x ≡ ~xR + ~xI, ∀~x ∈ X. (2)

Simply put, ~x is a state within the state space X. ~x is expressed in terms of 2D Riemannian-
coordinates, which are well-defined generalized coordinates that synchronize 1D Complex-
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Table 1: A summary of the complex framework with the 2D-PPSS (locations) and 2D-OPSS

(features) for dual 3D space-time.
Complex Location Name Complex Location Value

1D-PPS Complex-coordinate (~x)
2D-PPS Cartesian-coordinate (~xR, ~xI)

2D-PPS Polar-coordinate (|~x|, 〈~x〉)
2D-PPS Riemannian-coordinate (~x) = (~xR, ~xI) = (|~x|, 〈~x〉)

Complex Feature Name Complex Feature Value

1D-OPS Complex-vector (~ψ(~x))

2D-OPS Cartesian-vector (~ψ(~x)R, ~ψ(~x)I)

2D-OPS Polar-vector (|~ψ(~x)|, 〈~ψ(~x)〉)
2D-OPS Riemannian-vector (~ψ(~x)) = (~ψ(~x)R, ~ψ(~x)I) = (|~ψ(~x)|, 〈~ψ(~x)〉)

coordinates, 2D Polar-coordinates, and 2D Cartesian-coordinates in a single interconnected
“Complex-Polar-Cartesian-coordinate system”, namely the 2D Riemannian-coordinate sys-
tem: we augment eq. (2) with its corresponding 2D-PPS Riemannian-coordinate, which
identifies a

• 1D-PPS Complex-coordinate with component

1. complex-PPS, namely ~x ∈ X,

for
~x ≡ (~x) = (~xR + ~xI), ∀~x ∈ X; (3)

• 2D-PPS Polar-coordinate (or “2D-PPS Circular-coordinate”) with components

1. amplitude-PPS (“radius” or “modulus”, previously “magnitude”), namely |~x| ∈
[0,∞R], and

2. phase-PPS (“azimuth”, previously “direction”), namely 〈~x〉 ∈ [0, 2π],

for
~x ≡ (|~x|, 〈~x〉), ∀~x ∈ X; (4)

and

• 2D-PPS Cartesian-coordinate (or “2D-PPS Box-coordinate”) with components

1. real-PPS (“R” or “x”), namely ~xR ∈ [−∞R,∞R], and

2. imaginary-PPS (“I” or “y”), namely ~xI ∈ [−∞I,∞I],

for
~x ≡ (~xR, ~xI), ∀~x ∈ X, (5)

- 675 -



with the synchronizing Pythagorean and trigonometric interconnection constraints

|~x| ≡
√
~x2R + ~x2I

~xR ≡ |~x| cos〈~x〉

~xI ≡ |~x| sin〈~x〉

(6)

that generalize eqs. (7–9) in [32] to define the 2D-PPS Riemannian-coordinate

~x ≡ (~x) = (|~x|, 〈~x〉) = (~xR, ~xI), ∀~x ∈ X, (7)

that generalizes eq. (10) in [32] and can be arranged into the row-vectors

~x ≡ [|~x|, 〈~x〉] = [~xR, ~xI] (8)

and the column-vectors

~x ≡
[
|~x|
〈~x〉

]
=

[
~xR
~xI

]
(9)

for matrix notation. Subsequently, we use eq. (7) to define the reference frame O ∈ X as
the localized origin-point of X as

O ≡ (0) = (0, 0) = (0, 0). (10)

See Figure 2 for a straightforward depiction of this construction.
So what notation do we use to represent multiple 2D-PPSs in X? Well, for n 2D-PPSs

we can use numerical characters as additional subscripts to simply extend the notation of eq.
(7). Thus, using eq. (7) we may express the ordered set {~x1, ~x2, ..., ~xn} ⊂ X for n distinct
2D-PPSs with the corresponding 2D Riemannian-coordinates

1 : ~x1 = (~x1) = (|~x1|, 〈~x1〉) = (~x1R , ~x1I)
2 : ~x2 = (~x2) = (|~x2|, 〈~x2〉) = (~x2R , ~x2I)

...
n : ~xn = (~xn) = (|~xn|, 〈~xn〉) = (~xnR , ~xnI).

(11)

So we’ve defined X as the 2D-PPSS, but how do we incorporate the time dimension to
construct a 3D space-time, where space and time are dual and interconnected? To answer
this, we define the topological circle T ⊂ X as the time zone, temporal sub-surface, and
“Inopin Holographic Ring” of “amplitude-radius” or “amplitude-modulus” ε that is isomet-
rically embedded in X [32]; T is a closed time-like curve [45] and simple contour of topological
surface 2D-PPSs. Following [32], we use “2D zone trichotomy” to simultaneously define the
micro space zone X− and the macro space zone X+; T is dual to both X− and X+ spatial
sub-surfaces as in [32]. So from eqs. (12–14) in [32], we know that ∀~x ∈ X precisely one of
the following conditions must be satisfied

|~x| < ε ⇔ ~x ∈ X− ⊂ X
|~x| = ε ⇔ ~x ∈ T ⊂ X
|~x| > ε ⇔ ~x ∈ X+ ⊂ X,

(12)
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Fig. 2: The Riemann (space-time) surface and 2D-PPSS X contains a “real-axis” and an “imaginary-

axis” and is equipped with a generalized 2D Riemannian-coordinate system that synchronizes 1D Complex-

coordinates, 2D Polar-coordinates, and 2D Cartesian-coordinates. In this depiction, O ∈ X is X’s distinct

and localized origin-point and reference frame, while ~x ∈ X is a 2D-PPS, which are both states on (or within)

X. This simple and intuitive construction encodes locations on X.
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where clearly X− ∩ T = T ∩X+ = X− ∩X+ = ∅ and X− ∪ T ∪X+ = X. Hence, from eq.
(15) in [32] T is the multiplicative group of all non-zero 2D-PPSs, such that

T ≡ {~x ∈ X : |~x| = ε}, (13)

and from eqs. (16–17) in [32] the micro and macro spatial sub-surface zones are defined as

X− ≡ {~x ∈ X : |~x| < ε}
X+ ≡ {~x ∈ X : |~x| > ε}. (14)

So clearly

ε ≡ |~x| =
√
x2R + ~x2I , ∀~x ∈ T, (15)

|~x| =
√
~x2R + ~x2I , ∀~x ∈ X, (16)

which generalize eqs. (18–19) in [32]. So T is isometrically embedded in X with the one-
to-one holographic mappings g : T ↪→ X and g : T → X− ∪ X+ with dual simultaneous
bijections

2Dgtime : X− ←↩ T ↪→ X+
2Dgspace : X− ↪→ T ←↩ X+

(17)

for our dual 3D space-time that generalize eqs. (20–21) in [32]. Thus, the temporal sub-
surface T serves as a common 1D surface boundary between the dual interconnected X− and
X+ spatial sub-surfaces as in [32]; this is consistent with the holographic principle [10, 11, 12].

At this point, we’ve successfully defined the Riemannian dual 3D space-time topology;
this is a direct upgrade to the topological framework of [32]. In Section 3.1, we will explain
how to extend X from 3D to 4D space-time.

2.2 The 2D order parameter state space
∀~x ∈ X, we may assign one or more 2D-OPSS layers, where each layer corresponds to a

distinct 2D-OPSS with a spontaneously selected 2D-OPS. Following [32], these quantifiable
features may represent fractional statistics and are expressed using a notation that is virtually
identical to the 2D-PPS (and 2D-PPSS) eqs. (3–9) from the previous section. To illustrate
the base case, we opt to assign one generic 2D-OPS layer to X to encode one type of
feature. Hence, at the 2D-PPS ~x ∈ X, we have the single generic 2D-OPS ~ψ(~x) in the

2D-OPSS Φ(~x), where ~ψ(~x) ∈ Φ(~x), such that Φ(~x) is the continuous and infinite set of
2D-OPSs (with cardinality |Φ(~x)| =∞) that is localized at ~x ∈ X. Therefore, to generalize
eq. (24) in [32] we define

~ψ(~x) ≡ ~ψ(~x)R + ~ψ(~x)I, ∀~x ∈ X, ∀~ψ(~x) ∈ Φ(~x), (18)

which is expressed in the 2D-OPS Riemannian-vector notation that synchronizes and simul-
taneously references three vector systems. Simply put, ~ψ(~x) is a state in the state space
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Φ(~x). Thus, to augment eq. (18) we use the 1D-PPS Complex-coordinate notation of eq.
(3) to construct the 1D-OPS Complex-vector

~ψ(~x) ≡ (~ψ(~x)) = (~ψ(~x)R + ~ψ(~x)I), ∀~ψ(~x) ∈ Φ(~x). (19)

Similarly, we use the 2D-PPS Polar-coordinate notation of eq. (4) to construct the 2D-OPS
Polar-vector (or “2D-OPS Circular-vector”)

~ψ(~x) ≡ (|~ψ(~x)|, 〈~ψ(~x)〉), ∀~ψ(~x) ∈ Φ(~x), (20)

with components amplitude-OPS |~ψ(~x)| ∈ [0,∞R] and phase-OPS 〈~ψ(~x)〉 ∈ [0, 2π], re-
spectively. Subsequently, we use the 2D-PPS Cartesian-coordinate notation of eq. (5) to
construct the 2D-OPS Cartesian-vector (or “2D-OPS Box-vector”)

~ψ(~x) ≡ (~ψ(~x)R, ~ψ(~x)I), ∀~ψ(~x) ∈ Φ(~x), (21)

with components real-OPS ~ψ(~x)R ∈ [−∞R,∞R] and imaginary-OPS ~ψ(~x)I ∈ [−∞I,∞I],
respectively. Eqs. (19–21) satisfy the synchronizing Pythagorean and trigonometric inter-
connection constraints

|~ψ(~x)| ≡
√
~ψ2(~x)R + ~ψ2(~x)I

~ψ(~x)R ≡ |~ψ(~x)| cos〈~ψ(~x)〉

~ψ(~x)I ≡ |~ψ(~x)| sin〈~ψ(~x)〉

(22)

to define the 2D-OPS Riemannian-vector

~ψ(~x) ≡ (~ψ(~x)) = (|~ψ(~x)|, 〈~ψ(~x)〉) = (~ψ(~x)R, ~ψ(~x)I), ∀~ψ(~x) ∈ Φ(~x), (23)

which can be arranged into the row-vectors

~ψ(~x) ≡ [|~ψ(~x)|, 〈~ψ(~x)〉] = [~ψ(~x)R, ~ψ(~x)I] (24)

and the column-vectors

~ψ(~x) ≡

[
|~ψ(~x)|
〈~ψ(~x)〉

]
=

[
~ψ(~x)R
~ψ(~x)I

]
(25)

for matrix notation.
Next, we define the various types of 2D-OPSs that give us extreme flexibility for encoding

features such as topological deformations and wavefunction components of [32]. For this, we
can employ 2D-OPSs to represent the specific quantum number deformation states of [32] or
to represent more general deformation states that may be applied to other physics models.
To encode a dynamical system state with our complex framework, we are free to use both
categories separately or in conjunction with each other—our choice depends entirely on the
representational scope of the problem domain and its inherent complexity. For example,
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if we wish to specifically encode the quantum number states of magnetic charge, electric
charge, color charge, isospin, orbital angular momentum, spin angular momentum, and total
angular momentum for the baryon topological deformations, wavefunctions, and tensors in
[32], then we can apply eq. (23) ∀~x inX to define the respective specific 2D-OPSs (in short
form) as

~ψB(~x) ≡ (~ψB(~x)), ∀~ψB(~x) ∈ ΦB(~x)
~ψE(~x) ≡ (~ψE(~x)), ∀~ψE(~x) ∈ ΦE(~x)
~ψC(~x) ≡ (~ψC(~x)), ∀~ψC(~x) ∈ ΦC(~x)
~ψI(~x) ≡ (~ψI(~x)), ∀~ψI(~x) ∈ ΦI(~x)
~ψL(~x) ≡ (~ψL(~x)), ∀~ψL(~x) ∈ ΦL(~x)
~ψS(~x) ≡ (~ψS(~x)), ∀~ψS(~x) ∈ ΦS(~x)
~ψJ(~x) ≡ (~ψJ(~x)), ∀~ψJ(~x) ∈ ΦJ(~x)

. (26)

Moreover, if we wish to encode topological deformation states without a specific reference to
quantum numbers, then we can similarly apply eq. (23) to define the general and “generic”
2D-OPS as

~ψ→(~x1) ≡ (~ψ→(~x1)), ∀~ψ→(~x1) ∈ Φ→(~x1), ∀~x1 ∈ X, (27)

such that
~x2 ≡ ~x1 + ~ψ→(~x1) (28)

is the effective 2D-PPS ~x2 ∈ X that is identified by the deformation of ~ψ→(~x1) at ~x1. See
Table 2 for a list of possible 2D-OPS candidates that we may (or may not) opt to use in the
dual 3D space-time.

Table 2: A list of possible 2D-OPS candidates designed to encode topological deformation and

wavefunction states in the dual 3D space-time.
Name Symbol 2D Order Parameter State Application

Magnetic Charge B ~ψB(~x) ≡ ~ψB(~x)R + ~ψB(~x)I Specific

Electric Charge E ~ψE(~x) ≡ ~ψE(~x)R + ~ψE(~x)I Specific

Color Charge C ~ψC(~x) ≡ ~ψC(~x)R + ~ψC(~x)I Specific

Isospin I ~ψI(~x) ≡ ~ψI(~x)R + ~ψI(~x)I Specific

Orbital Angular Momentum L ~ψL(~x) ≡ ~ψL(~x)R + ~ψL(~x)I Specific

Spin Angular Momentum S ~ψS(~x) ≡ ~ψS(~x)R + ~ψS(~x)I Specific

Total Angular Momentum J ~ψJ(~x) ≡ ~ψJ(~x)R + ~ψJ(~x)I Specific

“Generic” Deformation → ~ψ→(~x) ≡ ~ψ→(~x)R + ~ψ→(~x)I General

At this point, we’ve assembled the complex information structures and encoding method-
ology for our dual 3D space-time, where each 2D-PPS in the 2D-PPSS is equipped with a
localized 2D-OPSS–recall Table 1. This is a direct refinement to the spontaneous symme-
try breaking framework of [32]. Now, we are ready to incorporate an additional degree of
freedom into our framework.
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3 The triplex framework for Riemannian dual 4D space-time
Here, starting with the complex framework definitions of Section 2, we assemble the

triplex information structures and encoding methodology for our 4D space-time, where the
time dimension is the topological Riemannian circle T that delineates dual spatial 3-branes
in Y ; T is simultaneously dual to two distance scales as in [32]. This topological foundation
is equipped with a 3D-PPSS and 3D-OPSS—see Table 3 for an introduction.

Table 3: A summary of the triplex framework with the 3D-PPSS (locations) and 3D-OPSS (fea-

tures) for dual 4D space-time.
Triplex Location Name Triplex Location Value

1D-PPS Triplex-coordinate (~y)
3D-PPS Cartesian-coordinate (~yR, ~yI, ~yZ)

3D-PPS Polar-coordinate (|~y|, 〈~y〉, [~y])
3D-PPS Riemannian-coordinate (~y) = (~yR, ~yI, ~yZ) = (|~y|, 〈~y〉, [~y])

Triplex Feature Name Triplex Feature Value

1D-OPS Triplex-vector (~ψ(~y))

3D-OPS Cartesian-vector (~ψ(~y)R, ~ψ(~y)I, ~ψ(~y)Z)

3D-OPS Polar-vector (|~ψ(~y)|, 〈~ψ(~y)〉, [~ψ(~y)])

3D-OPS Riemannian-vector (~ψ(~y)) = (~ψ(~y)R, ~ψ(~y)I, ~ψ(~y)Z) = (|~ψ(~y)|, 〈~ψ(~y)〉, [~ψ(~y)])

3.1 The 3D position-point state space
Here, we assemble the 3D-PPSS and 3D generalized Riemannian-coordinates for the dual

4D space-time.
So how can we extend X from 3D to 4D space-time? Well first, we know that X, a

Riemann surface and 2D-PPSS, can be thought of as a “deformed version” of the complex
plane as in [32], and furthermore, we know that a Riemann surface can be expressed in terms
of a function [46]. So for this topological application X must be deformed within, and be
contained within, a higher dimensional information structure equipped with an additional
degree of freedom. This is logical because Riemann surfaces are generally displayed 3D
depictions anyways—i.e. see [46]. So we are presented with a representation problem: how
do we encode X within a 3D-PPSS? Our selected solution is to employ the 2D-PPSs of X as
complex-valued arguments to some well-defined function that returns a real-valued output.
This output will correspond to an effective PPS and serve as a third coordinate component
to represent the topological deformations of X in a 3D- PPSS. Thus, with these tools we can
define 3D-PPSs for a 4D space-time, which are expressed in terms of well-defined generalized
coordinates that synchronize the 3D Gullstrand-Painlevé-coordinates for the Schwarzschild
metric, namely 3D GPS-coordinates, and 3D Cartesian-coordinates in a single interconnected
system of 3D Riemannian-coordinates. Again, recall that all of this is designed to enhance
and generalize the definitions of [32].

Therefore, we let X be deformed within a 3D-PPSS and 3D real manifold Y , where
X ⊂ Y . We define a 3D-PPS ~y ∈ Y in the 3D-PPSS Y as a triplex number, 3-number,
3-scalar, and 3-vector that simultaneously encodes a 2D location on X and a 3D location
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on Y , where
~y ≡ ~yR + ~yI + ~yZ = ~x+ f(~x), ∀~x ∈ X, ∀~y ∈ Y, (29)

with the effective 3D-PPS mapping constraints

~yR ≡ ~xR
~yI ≡ ~xI
~yZ ≡ f(~x) = f(~xR + ~xI)

(30)

for the generic effective 3D-PPS function f . Simply put, ~y is a state within the state space
Y . From there, f is extended to the effective 3D-PPS GPS-coordinate function fGPS : X →
[0, 2π] and the effective 3D-PPS Cartesian-coordinate function fCART : X → [−∞Z ,∞Z ].
Hence, we augment eq. (29) with its corresponding 3D-PPS Riemannian-coordinate, which
identifies a

• 1D-PPS Triplex-coordinate with component

1. triplex-PPS, namely ~y ∈ Y ,

for
~y ≡ (~y) = (~yR + ~yI + ~yZ), ∀~y ∈ Y ; (31)

• 3D-PPS GPS-coordinate (or “3D-PPS Spherical-coordinate”) with components

1. amplitude-PPS (“radius” or “modulus”), namely |~y| ∈ [0,∞R],

2. phase-PPS (“azimuth”), namely 〈~y〉, namely 〈~y〉 ∈ [0, 2π], and

3. inclination-PPS (“zenith”), namely [~y] ∈ [0, 2π], where fGPS(~x) = [~y],

for
~y ≡ (|~y|, 〈~y〉, [~y]), ∀~y ∈ Y ; (32)

and

• 3D-PPS Cartesian-coordinate (or “3D-PPS Box-coordinate”) with components

1. real-PPS (“R” or “x”), namely ~yR, such that ~yR ∈ [−∞R,∞R],

2. imaginary-PPS (“I” or “y”), namely ~yI, such that ~yI ∈ [−∞I,∞I], and

3. projected-PPS (“Z” or “z”), namely ~yZ , where fCART (~x) = [~y], such that ~yZ ∈
[−∞Z ,∞Z ],

for
~y ≡ (~yR, ~yI, ~yZ), ∀~y ∈ Y, (33)
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with the synchronizing Pythagorean and trigonometric interconnection constraints

|~y| ≡
√
~y2R + ~y2I + ~y2Z

〈~y〉 ≡ arctan
(
~yI
~yR

)
[~y] ≡ arccos

(
~yZ
|~y|

) (34)

to define the 3D-PPS Riemannian-coordinate

~y ≡ (~y) = (|~y|, 〈~y〉, [~y]) = (~yR, ~yI, ~yZ), ∀~y ∈ Y, (35)

which can be arranged into the row-vectors

~y ≡ [|~y|, 〈~y〉, [~y]] = [~yR, ~yI, ~yZ ] (36)

and the column-vectors

~y ≡

 |~y|〈~y〉
[~y]

 =

~yR~yI
~yZ

 (37)

for matrix notation.
So what notation do we use to represent multiple 3D-PPSs in Y ? Well, for n 3D-PPSs

we can use numerical characters as additional subscripts to simply extend the notation of
eq. (35) and generalize the 2D-PPSS formulation of eq. (11) to 3D-PPSS. Thus, using eq.
(35) we may express the ordered set {~y1, ~y2, ..., ~yn} ⊂ Y for n distinct 3D-PPSs with the
respective 3D Riemannian-coordinates

1 : ~y1 = (~y1) = (|~y1|, 〈~y1〉, [~y1]) = (~y1R , ~y1I , ~y1Z )
2 : ~y2 = (~y2) = (|~y2|, 〈~y2〉, [~y2]) = (~y2R , ~y2I , ~y2Z )

...
n : ~yn = (~yn) = (|~yn|, 〈~yn〉, [~yn]) = (~ynR , ~ynI , ~ynZ

).

(38)

To calculate the product of two triplex numbers, say ~y1 and ~y2, see the triple multiplication
definitions in the upcoming examples of Section 4.1.

So how can we adjust T so it is consistent with Y in a 4D space-time? Well, all we
need to do is extend the T in eq. (13) from a topological circle (that is simultaneously dual
to the interconnected X− and X+ sub-surfaces in eq. (14)) to a topological Riemannian
circle [38] (that is simultaneously dual to the interconnected Y− and Y+ 3-branes) with the
amplitude-radius and amplitude-modulus ε. To upgrade the topological definitions [32], we
generalize eq. (12) to Y and use “3D zone trichotomy” to simultaneously define the 3D
micro space zone Y− and the 3D macro space zone Y+; T is dual to both Y− and Y+ 3-branes
to establish a 4D space-time that generalizes [32]. Thus, ∀~y ∈ Y we know that precisely one
of the following conditions must be satisfied

|~y| < ε ⇔ ~y ∈ Y− ⊂ Y
|~y| = ε ⇔ ~y ∈ T ⊂ Y
|~y| > ε ⇔ ~y ∈ Y+ ⊂ Y,

(39)
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which generalizes eq. (12), where clearly Y−∩T = T∩Y+ = Y−∩Y+ = ∅ and Y−∪T∪Y+ = Y .
Hence, the T of eq. (13) is projected to the multiplicative group of all non-zero 3D-PPSs

T ≡ {~y ∈ Y : |~y| = ε}, (40)

while the X− and X+ of eq. (14) are respectively extended to the 3-branes

Y− ≡ {~y ∈ Y : |~y| < ε}
Y+ ≡ {~y ∈ Y : |~y| > ε}. (41)

So clearly eqs. (15–16) are generalized to

ε ≡ |~y| =
√
y2R + ~y2I + ~y2Z , ∀~y ∈ T, (42)

|~y| =
√
~y2R + ~y2I + ~y2Z , ∀~y ∈ Y. (43)

Therefore, T is isometrically embedded in Y with the one-to-one holographic mappings
g : T ↪→ Y and g : T → Y− ∪ Y+ with the dual simultaneous bijections

3Dgtime : Y− ←↩ T ↪→ Y+
3Dgspace : Y− ↪→ T ←↩ Y+

(44)

for our dual 4D space-time that generalize eq. (17). Hence, T is a common 2D surface
boundary [47] that interconnects the dual Y− and Y+ 3-branes of [32]. All the 3D properties
of Y−∪Y+ are inferred directly from the 2D properties of T as in [32]; this is consistent with
the holographic principle in [10, 11, 12].

At this point, we’ve successfully defined the Riemannian dual 4D space-time topology;
this is a direct upgrade to the topological framework of [32].

3.2 The 3D order parameter state space
∀~y ∈ Y , we may assign one or more 3D-OPSS layers, where each layer corresponds to a

distinct 3D-OPSS with a spontaneously selected 3D-OPS. Following [32], these quantifiable
features may represent fractional statistics and are expressed using a notation that is virtually
identical to the 3D-PPS (and 3D-PPSS) eqs. (31–37) from the previous section. To illustrate
the base case, we opt to assign one generic OPS layer to Y to encode one type of feature.
Hence, at the 3D-PPS ~y ∈ Y we have the single generic 3D-OPS ~ψ(~y) in the 3D-OPSS

Φ(~y), where ~ψ(~y) ∈ Φ(~y), such that Φ(~y) is the continuous and infinite set of 3D-OPSs (with
cardinality |Φ(~y)| =∞) that is localized at ~y ∈ Y . Therefore, we define

~ψ(~y) ≡ ~ψ(~y)R + ~ψ(~y)I + ~ψ(~y)Z , ∀~y ∈ Y, ∀~ψ(~y) ∈ Φ(~y), (45)

which is expressed in the 3D-OPS Riemannian-vector notation that synchronizes and simul-
taneously references three vector systems. Simply put, ~ψ(~y) is a state in the state space
Φ(~y). Thus, to augment eq. (45) we use the 1D-PPS Triplex-coordinate notation of eq. (31)
to construct the 1D-OPS Triplex-vector

~ψ(~y) ≡ (~ψ(~y)) = (~ψ(~y)R + ~ψ(~y)I + ~ψ(~y)Z), ∀~ψ(~y) ∈ Φ(~y). (46)
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Similarly, we use the 3D-PPS GPS-coordinate notation of eq. (32) to construct the 3D-OPS
GPS-vector (or “3D-OPS Spherical-vector”)

~ψ(~y) ≡ (|~ψ(~y)|, 〈~ψ(~y)〉, [~ψ(~y)]), ∀~ψ(~y) ∈ Φ(~y), (47)

with components amplitude-OPS |~ψ(~y)| ∈ [0,∞R], phase-OPS 〈~ψ(~y)〉 ∈ [0, 2π], and inclination-

OPS [~ψ(~y)] ∈ [0, 2π], respectively. Subsequently, we use the 3D-PPS Cartesian-coordinate
notation of eq. (33) to construct the 3D-OPS Cartesian-vector (or “3D-OPS Box-vector”)

~ψ(~y) ≡ (~ψ(~y)R, ~ψ(~y)I, ~ψ(~y)Z), ∀~ψ(~y) ∈ Φ(~y), (48)

with components real-OPS ~ψ(~y)R ∈ [−∞R,∞R], imaginary-OPS ~ψ(~y)I ∈ [−∞I,∞I], and

projected-OPS ~ψ(~y)Z ∈ [−∞Z ,∞Z ], respectively. Eqs. (46–48) satisfy the synchronizing
Pythagorean and trigonometric interconnection constraints

|~ψ(~y)| ≡
√
~ψ2(~y)R + ~ψ2(~y)I + ~ψ2(~y)Z

〈~ψ(~y)〉 ≡ arctan
(
~ψ(~y)I
~ψ(~y)R

)
[~ψ(~y)] ≡ arccos

(
~ψ(~y)Z
|~ψ(~y)|

)
(49)

to define the 3D-OPS Riemannian-vector

~ψ(~y) ≡ (~ψ(~y)) = (|~ψ(~y)|, 〈~ψ(~y)〉, [~ψ(~y)]) = (~ψ(~y)R, ~ψ(~y)I, ~ψ(~y)Z), ∀~ψ(~y) ∈ Φ(~y), (50)

which can be arranged into the row-vectors

~ψ(~y) ≡ [|~ψ(~y)|, 〈~ψ(~y)〉, [~ψ(~y)]] = [~ψ(~y)R, ~ψ(~y)I, ~ψ(~y)Z ] (51)

and the column-vectors

~ψ(~y) ≡

 |~ψ(~y)|
〈~ψ(~y)〉
[~ψ(~y)]

 =

~ψ(~y)R
~ψ(~y)I
~ψ(~y)Z

 (52)

for matrix notation.
Next, similarly to eq. (26), we define the various types of 3D-OPSs that give us extreme

flexibility for encoding the topological deformations and wavefunctions of [32] with an addi-
tional degree of freedom. For this, we can employ 3D-OPSs to represent the specific quantum
number deformation states as in [32] or to represent more general deformation state that
may be applied to other physics frameworks. For example, if we wish to specifically encode
the quantum number states of magnetic charge, electric charge, color charge, isospin, orbital
angular momentum, spin angular momentum, and total angular momentum for a 3D-OPS
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version of the baryon topological deformations, wavefunctions, and tensors in [32], then we
can apply eq. (50) ∀~y ∈ Y to define the respective specific 3D-OPSs (in short form) as

~ψB(~y) ≡ (~ψB(~y)), ∀~ψB(~y) ∈ ΦB(~y)
~ψE(~y) ≡ (~ψE(~y)), ∀~ψE(~y) ∈ ΦE(~y)
~ψC(~y) ≡ (~ψC(~y)), ∀~ψC(~y) ∈ ΦC(~y)
~ψI(~y) ≡ (~ψI(~y)), ∀~ψI(~y) ∈ ΦI(~y)
~ψL(~y) ≡ (~ψL(~y)), ∀~ψL(~y) ∈ ΦL(~y)
~ψS(~y) ≡ (~ψS(~y)), ∀~ψS(~y) ∈ ΦS(~y)
~ψJ(~y) ≡ (~ψJ(~y)), ∀~ψJ(~y) ∈ ΦJ(~y)

. (53)

Moreover, if we wish to encode topological deformation states without a specific reference to
quantum numbers, then we can similarly apply eq. (50) to define the general and “generic”
3D-OPS as

~ψ→(~y1) ≡ (~ψ→(~y1)), ∀~ψ→(~y1) ∈ Φ→(~y1), ∀~y1 ∈ Y, (54)

such that
~y2 ≡ ~y1 + ~ψ→(~y1) (55)

is the effective 3D-PPS ~y2 ∈ Y that is identified by the deformation ~ψ→(~y1). See Table 4 for
a list of possible 3D-OPS candidates that we may (or may not) opt to use in the dual 4D
space-time. The triplex multiplication definitions in the upcoming examples of Section 4.1
are pertinent to this 3D-OPS implementation. Consequently, this 3D-OPS multiplication is
applied to the multiple 3D-OPSs comprising the wavefunctions and tensors in the upcoming
examples of Section 4.2.

Table 4: A list of possible 3D-OPS candidates designed to encode topological deformation and

wavefunction states in the dual 4D space-time.
Name Symbol 3D Order Parameter State Application

Magnetic Charge B ~ψB(~y) ≡ ~ψB(~y)R + ~ψB(~y)I + ~ψB(~y)Z Specific

Electric Charge E ~ψE(~y) ≡ ~ψE(~y)R + ~ψE(~y)I + ~ψE(~y)Z Specific

Color Charge C ~ψC(~y) ≡ ~ψC(~y)R + ~ψC(~y)I + ~ψC(~y)Z Specific

Isospin I ~ψI(~y) ≡ ~ψI(~y)R + ~ψI(~y)I + ~ψI(~y)Z Specific

Orbital Angular Momentum L ~ψL(~y) ≡ ~ψL(~y)R + ~ψL(~y)I + ~ψL(~y)Z Specific

Spin Angular Momentum S ~ψS(~y) ≡ ~ψS(~y)R + ~ψS(~y)I + ~ψS(~y)Z Specific

Total Angular Momentum J ~ψJ(~y) ≡ ~ψJ(~y)R + ~ψJ(~y)I + ~ψJ(~y)Z Specific

“Generic” Deformation → ~ψ→(~y) ≡ ~ψ→(~y)R + ~ψ→(~y)I + ~ψ→(~y)Z General

At this point, we’ve assembled the triplex information structures and encoding methodol-
ogy for our 4D space-time, where each 3D-PPS in the 3D-PPSS is equipped with a localized
3D-OPSS—recall Table 3. This is a direct upgrade to the spontaneous symmetry breaking
framework of [32]. See Table 5 for a brief recapitulation of the generic complex and triplex
information structures.
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Table 5: A summary of the complex and triplex information structures for our dual 3D and 4D

space-time topologies, respectively.
Name Value Represents Type

2D-PPS ~x ∈ X ⊂ Y Location Coordinate
2D-PPSS X ⊂ Y Location Space Coordinate Space

2D-OPS ~ψ(~x) ∈ Φ(~x) Feature Vector
2D-OPSS Ψ(~x) Feature Space Vector Space
3D-PPS ~y ∈ Y Location Coordinate
3D-PPSS Y Location Space Coordinate Space

3D-OPS ~ψ(~y) ∈ Φ(~y) Feature Vector
3D-OPSS Ψ(~y) Feature Space Vector Space

4 Example applications
In this section, we provide three distinct and introductory examples that apply the en-

coding framework to fractal geometry, particle physics, and astro physics.

4.1 A brief correspondence to White and Nylander on triplex fractals and com-
puter graphics

Here, the objective is to apply the triplex framework of Section 3 to nullify the White-
Nylander mythical beast. This wild beast has been cornered by D. White and P. Nylander—
the pioneers that have developed a triplex algebra to encode triplex fractals for computer
graphics [33, 34, 35]. A triplex algebra is an arithmetic for 3D coordinates and is a pre-
requisite for calculating 3D fractals [33, 34, 35]. A prime expression of this chaotic beast is
the Mandelbulb [33, 34, 35]—a 3D equivalent of B. Mandelbrot’s set [7]. D. White and P.
Nylander extended complex multiplication to define triplex multiplication (and hence triplex
exponentiation) but the beast still exists because of two constrictions [33, 34, 35]:

1. the triplex polar form is not unique, and

2. the triplex algebra is not well-behaved.

Thus, in order to finish the beast and upgrade the existing triplex operators we must use
the triplex framework of Section 3 to identify:

1. a triplex polar form that is unique, and

2. a triplex algebra that is well-behaved.

So we use the triplex framework of Section 3 to approach the beast from distinct two per-
spectives. First, we consider the White-Nylander approach with the former conditions, and
second, we consider an alternative approach with the latter conditions.

4.1.1 The White-Nylander approach
This first approach contains no new ideas; it simply prepares for our second approach by

putting the captivating work of D. White and P. Nylander [33, 34, 35] in the context of our
encoding framework.
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Our departure begins by considering two complex numbers in conventional polar form of
[33, 34, 35], namely ~x1 and ~x2, where |~x1| and |~x2| are the amplitude-PPSs while 〈~x1〉 and
〈~x2〉 are the phase-PPSs in eq. (23). Using our 2D-PPS notation of Section 2, the product
of ~x1 and ~x2 is |~x1||~x2|ei(〈~x1〉+〈~x2〉) [33, 34, 35]—the complex multiplication comprises two
operations [33, 34, 35]:

1. stretching ~x1 by the amplitude-PPS (modulus) |~x2|, and

2. rotating ~x1 by the phase-PPS 〈~x2〉.

Now, using eq. (35) we let ~y be an arbitrary 3D-PPS in the 3D-PPSS Y . In this
initial example, the phase-PPS 〈~x1〉 will be supplied as the angle parameter to the rotational
matrices of [33, 34, 35] to swivel ~y around the three axes of Y . So in terms of [33, 34, 35]
and the supplied the angle parameter 〈~x1〉, there are three basic rotation matrices that
correspond to swivels about the R-axis, I-axis, and Z-axis of Y , which are

RR(〈~x1〉) =

1 0 0
0 cos〈~x1〉 − sin〈~x1〉
0 sin〈~x1〉 cos〈~x1〉

 , (56)

RI(〈~x1〉) =

 cos〈~x1〉 0 sin〈~x1〉
0 1 0

− sin〈~x1〉 0 cos〈~x1〉

 , (57)

and

RZ(〈~x1〉) =

cos〈~x1〉 − sin〈~x1〉 0
sin〈~x1〉 cos〈~x1〉 0

0 0 1

 , (58)

respectively. Here, eqs. (56–58) correspond to the rotations [33, 34, 35]

RR(〈~x1〉) : (~yR, ~yI, ~yZ) 7→ (~yR, ~yI cos〈~x1〉 − ~yZ sin〈~x1〉, ~yI sin〈~x1〉+ ~yZ cos〈~x1〉), (59)

RI(〈~x1〉) : (~yR, ~yI, ~yZ) 7→ (~yR cos〈~x1〉+ ~yZ sin〈~x1〉, ~yI, ~yZ cos〈~x1〉 − ~yR sin〈~x1〉), (60)

and

RZ(〈~x1〉) : (~yR, ~yI, ~yZ) 7→ (~yR cos〈~x1〉 − ~yI sin〈~x1〉, ~yR sin〈~x1〉+ ~yI cos〈~x1〉, ~yZ), (61)

respectively. The identified

(~yR, ~yI cos〈~x1〉 − ~yZ sin〈~x1〉, ~yI sin〈~x1〉+ ~yZ cos〈~x1〉)

(~yR cos〈~x1〉+ ~yZ sin〈~x1〉, ~yI, ~yZ cos〈~x1〉 − ~yR sin〈~x1〉)

(~yR cos〈~x1〉 − ~yI sin〈~x1〉, ~yR sin〈~x1〉+ ~yI cos〈~x1〉, ~yZ)

(62)
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results of eqs. (59–61) come from the corresponding matrix multiplication of RR(〈~x1〉),
RI(〈~x1〉), and RZ(〈~x1〉) by the vector (~yR, ~yI, ~yZ) interpreted as a matrix with one vertical
column [33, 34, 35].

Next, we consider the secondary rotation angle 〈~x2〉. Upon simultaneously considering
the two angle parameters 〈~x1〉 and 〈~x2〉 for rotation eqs. (59–61), we take into account all
pairwise products of the rotational matrices in eqs. (56–58) to obtain the six distinct matrix
terms

RR(〈~x1〉)RI(〈~x2〉)
RI(〈~x1〉)RR(〈~x2〉)
RZ(〈~x1〉)RI(〈~x2〉)
RI(〈~x1〉)RZ(〈~x2〉)
RZ(〈~x1〉)RR(〈~x2〉)
RR(〈~x1〉)RZ(〈~x2〉),

(63)

where each is interpreted as a rotation through the two angles [33, 34, 35] in Y . Applying
each of the six matrix results of eq. (63) is analogous to multiplying two triplex numbers
[33, 34, 35]. Thus, in order to acquire the actual formulas for triplex multiplication, we
multiply the matrix products of eq. (63) by the vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1) [33,
34, 35]—the three resulting triplex numbers are the three columns of the matrix [33, 34, 35].
Now in the context of generating graphics in Y , only two of these triplex values are of
interest in each matrix product because the ones that have zero terms are degenerate from
a graphical perspective [33, 34, 35]. So although these steps are relatively intuitive thus far,
this is where the beast’s expression begins to exhibit convolution because we’ve acquired 12
relevant triplex polar forms and now we must additionally attempt all combinations of minus
and plus for 〈~x1〉 and 〈~x2〉 to yield a total of 48 distinct formulas for the triplex polar form
[33, 34, 35]. Moreover, it is suggested in [35] that we interchange 〈~x1〉 and 〈~x2〉 to generate
a total of 96 possibilities. Here, each variation is an effective formula for the triplex polar
form, which is similar to P. Nylander’s [33, 34, 35]

(cos〈~x1〉 cos〈~x2〉, sin〈~x1〉 cos〈~x2〉, sin〈~x2〉). (64)

For instance, any complex number, such as ~x1, can be raised to a real power p by employing
(|~x1|ei〈~x1〉)p = |~x1|pepi〈~x1〉 [33, 34, 35]. By analogy, the triplex exponentiation formulation is
identified in [33, 34, 35] as

(~yR, ~yI, ~yZ)p = |~y|p(cos(p〈~x1〉) cos(p〈~x2〉), sin(p〈~x1〉) cos(p〈~x2〉), sin(p〈~x2〉)), (65)

with the constraints
|~y| =

√
~y2R + ~y2I + ~y2Z

〈~y〉 = 〈~x1〉 = atan2(~yI, ~yR)

[~y] = 〈~x1〉 = arcsin(~yZ|~y| ).

(66)

According to [33, 34, 35] p can be any real value, so in addition to employing the natural
numbers, one can also define negative and fractional powers.

- 689 -



Moreover, for a two arbitrary 3D-PPSs in the 3D-PPSS Y , namely ~y1 and ~y2, the selected
triplex polar form exhibits a multiplication formula similar to [33, 34, 35]

(~y1R , ~y1I , ~y1Z )× (~y2R , ~y2I , ~y2Z ) = |~y1||~y2|(
cos(〈~x1〉+ 〈~x3〉) cos(〈~x2〉+ 〈~x4〉),

sin(〈~x1〉+ 〈~x3〉) cos(〈~x2〉+ 〈~x4〉),

sin(〈~x2〉+ 〈~x4〉)
),

(67)

where

|~y1| =
√
~y21R + ~y21I + ~y21Z

〈~y1〉 = 〈~x1〉 = atan2(~y1I , ~y1R)

[~y1] = 〈~x2〉 = arcsin
(
~y1Z
|~y1|

) (68)

and

|~y2| =
√
~y22R + ~y22I + ~y22Z

〈~y2〉 = 〈~x3〉 = atan2(~y2I , ~y2R)

[~y2] = 〈~x4〉 = arcsin
(
~y2Z
|~y2|

)
,

(69)

such that ~x1, ~x2, ~x3, and ~x4 in the form eq. (7) correspond to the the relevant transformations.
So in terms of [33, 34, 35], the selected polar form of P. Nylander’s eq. (64) is utilized in
eqs. (65) and (67) for the sake of illustration simplicity—each polar form variant generates a
different pair of formulas [33, 34, 35]. Thus, for the 48 distinct exponential combinations of
these triplex numbers see the summarized results of T. Boniecki [35] and J. Rampe’s “Visions
of Chaos” software [48].

At this point, we’ve provided the first approach with an introductory example on how
the triplex framework of Section 3 can be applied to D. White and P. Nylander’s triplex
algebra for the triplex fractals [33, 34, 35] in 3D-PPSS.

4.1.2 An alternative approach
This second approach aims to finish the triplex multiplication aspect of the White-

Nylander mythical beast [33, 34, 35]. Here, we hypothesize that complex multiplication
can be extended to the triplex numbers with two conditions:

1. the triplex polar form is unique, and

2. the triplex numbers do form a well-behaved algebra.

- 690 -



For this, we propose that the triplex multiplication for ~y1 and ~y2 comprises three operations:

1. stretching ~y1 by the amplitude-PPS |~y2|,

2. rotating ~y1 by the phase-PPS 〈~y2〉, and

3. rotating ~y1 by the inclination-PPS [~y2].

Thus, if we define the triplex product as

~y3 ≡ ~y1~y2 (70)

for ~y1, ~y2, ~y3 ∈ Y , then eq. (70) implies

|~y3| ≡ |~y1||~y2|

〈~y3〉 ≡ 〈~y1〉+ 〈~y2〉

[~y3] ≡ [~y1] + [~y2].

(71)

From here, one can venture onward and employ eqs. (70–71) to further define the triplex
exponentiation for triplex fractals such as the Mandelbulb [33, 34, 35]. To define triplex
exponentiation, all we need to do is iterate the triplex multiplication of eqs. (70–71).

At this point, we’ve provided the second and alternative approach for an introductory
example on how the triplex framework of Section 3 can be applied to D. White and P.
Nylander’s triplex algebra and fractals [33, 34, 35] in 3D-PPSS.

4.2 Color-anticolor confinement and baryon-antibaryon duality
Here, the triplex framework of Section 3 is applied to upgrade the fractional quantum

number order parameters of the baryon wavefunction, antibaryon wavefunction, and anti-
symmetric tensor in the analytic confinement and duality proof of [32] from 2D-OPSs to
3D-OPSs. For this, the triplex multiplication of Section 4.1 is employed.

Thus, following [32], for the baryon-antibaryon pairs that are confined to T of eq. (40)
on the six-coloring kagome lattice of antiferromagnetic ordering, we define the baryon wave-
function for the three colored quark 3D-PPSs, namely {~r,~g,~b} ⊂ T ⊂ Y , and the corre-
sponding antibaryon wavefunction for the three anticolored antiquarks 3D-PPSs, namely

{~̄r, ~̄g,~̄b} ⊂ T ⊂ Y , in the upgraded Gribov QCD/QED vacuum, respectively. For this,

we “Cooper pair” the set of strongly conserved quantum numbers, namely {~ψC , ~ψI , ~ψJ}, to
construct a strong baryon wavefunction constraint for the baryon-antibaryon confinement,
duality, and antisymmetry of T [32], such that ~ψJ = ~ψL + ~ψS is the “BSO-vector” of [49].
The qq̄ pairs confined to T on the six-coloring kagome lattice manifold are located at the
3D-PPSs ~r,~g,~b, ~̄r, ~̄g, ~̄c ∈ T . First, the encoded qq̄ states adhere to the uniformly-arranged
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“phase-PPS and inclination-PPS constraints”

〈~r〉 ≡ 〈~̄r〉 ± π
〈~g〉 ≡ 〈~̄g〉 ± π

〈~b〉 ≡ 〈~̄b〉 ± π
[~r] ≡ [~̄r] ± π
[~g] ≡ [~̄g] ± π

[~b] ≡ [~̄b] ± π,

(72)

which update the 2D-PPS constraints of eq. (28) in [32] to the desired 3D-PPS configuration—
see the angle components of the parity-transformation in the upcoming eq. (85) and the
time-reversal in the upcoming eq. (86) for CPT-theorem compliance. Second, the encoded
qq̄ states adhere to the uniformly-arranged “amplitude-PPS constraints”

|~r| ≡ |~g| ≡ |~b| ≡ |~̄r| ≡ |~̄g| ≡ |~̄b| ≡ ε (73)

so they exist within the T defined in eq. (40)—see the amplitude components of the parity-
transformation in the upcoming eq. (85) and the time-reversal in the upcoming eq. (86) for
CPT-theorem compliance. Third, the encoded qq̄ states adhere to the uniformly-arranged
“phase-OPS and inclination-OPS antiferromagnetic ordering constraints”

〈~ψJ(~r)〉 ≡ 〈~ψJ(~̄r)〉 ± π

〈~ψJ(~g)〉 ≡ 〈~ψJ(~̄g)〉 ± π

〈~ψJ(~b)〉 ≡ 〈~ψJ(~̄b)〉 ± π

[~ψJ(~r)] ≡ [~ψJ(~̄r)] ± π

[~ψJ(~g)] ≡ [~ψJ(~̄g)] ± π

[~ψJ(~b)] ≡ [~ψJ(~̄b)] ± π,

(74)

which update the 2D-OPS constraints of eqs. (29–31) in [32] to the desired 3D-OPS config-
uration.

Next, by exercising eqs. (72–74) we update the full baryon and antibaryon states of eqs.
(32–33) in [32] to

~Ψtotal(~r,~g,~b) ≡ ~Ψ(~r)× ~Ψ(~g)× ~Ψ(~b) (75)

~Ψtotal(~̄r, ~̄g,
~̄b) ≡ ~Ψ(~̄r)× ~Ψ(~̄g)× ~Ψ(~̄b) (76)

for a 3D-OPS version of the baryon-antibaryon confinement and duality. In eq. (75), the red,

green, and blue colored wavefunctions of the baryon wavefunction ~Ψtotal(~r,~g,~b) that encode

the quark features at ~r,~g,~b ∈ T on the three-coloring triangular sub-lattice of eqs. (34–36)
in [32] become

~Ψ(~r) ≡ ~ψC(~r)× ~ψJ(~r)× ~ψI(~r)× ~r, ~Ψ(~r)
def
= 〈~r|~Ψ〉,

~Ψ(~g) ≡ ~ψC(~g)× ~ψJ(~g)× ~ψI(~g)× ~g, ~Ψ(~g)
def
= 〈~g|~Ψ〉,

~Ψ(~b) ≡ ~ψC(~b)× ~ψJ(~b)× ~ψI(~b)×~b, ~Ψ(~b)
def
= 〈~b|~Ψ〉,

(77)
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while in eq. (76) the antired, antigreen, and antiblue anticolored wavefunctions of the an-

tibaryon wavefunction ~Ψtotal(~̄r, ~̄g,
~̄b) that encode the antiquark features at ~̄r, ~̄g,~̄b ∈ T on the

three-anticoloring triangular sub-lattice of eqs. (37–39) in [32] become

~Ψ(~̄r) ≡ ~ψC(~̄r)× ~ψJ(~̄r)× ~ψI(~̄r)× ~̄r, ~Ψ(~̄r)
def
= 〈~̄r|~Ψ〉,

~Ψ(~̄g) ≡ ~ψC(~̄g)× ~ψJ(~̄g)× ~ψI(~̄g)× ~̄g, ~Ψ(~̄g)
def
= 〈~̄g|~Ψ〉,

~Ψ(~̄b) ≡ ~ψC(~̄b)× ~ψJ(~̄b)× ~ψI(
~̄b)× ~̄b, ~Ψ(~̄b)

def
= 〈~̄b|~Ψ〉;

(78)

for a depiction of the three distinct qq̄ pairs that are confined to T along the six-coloring
kagome lattice manifold (see Figure 3 in [32]). Therefore, the six-coloring antisymmetric
wavefunction components of eqs. (40–42) in [32] become

~Ψ(~r, ~̄r) = −~Ψ(~̄r, ~r) (79)

~Ψ(~g, ~̄g) = −~Ψ(~̄g, ~g) (80)

~Ψ(~b,~̄b) = −~Ψ(~̄b,~b) (81)

for the confined quark and antiquark (two-particle) cases in 3D-PPSS and 3D-OPSS.
Next, using eqs. (75–81), the antisymmetric matrix of eq. (43) in [32] is upgraded to(

0 ~Ψtotal(~r,~g,~b)
~Ψtotal(~̄r, ~̄g,

~̄b) 0

)
, (82)

where the expanded 3D antisymmetric wavefunction matrix of eq. (44) in [32] becomes 0 ~Ψ(~r) ~Ψ(~g)
~Ψ(~̄r) 0 ~Ψ(~b)
~Ψ(~̄g) ~Ψ(~̄b) 0

 (83)

for T in 3D-PPSS and 3D-OPSS.
Finally, the CPT-theorem implementation of [32] is revised, which is a fundamental

property of T in eq. (40). The 2D-OPS charge-conjugation of eq. (47) in [32] is upgraded
to the 3D-OPS version

δC :



~ψcharge(~t) 7→ −~ψcharge(~t)~ψcharge(~t)R
~ψcharge(~t)I
~ψcharge(~t)Z

 7→

−~ψcharge(~t)R−~ψcharge(~t)I
−~ψcharge(~t)Z


 |~ψcharge(~t)|〈~ψcharge(~t)〉

[~ψcharge(~t)]

 7→

 |~ψcharge(~t)|
〈~ψcharge(~t)〉 ± π
[~ψcharge(~t)]± π

 ,

(84)
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where in this case the 3D-OPS ~ψcharge encodes a generic charge state, the parity-transformation
of eq. (48) in [32] is upgraded to the 3D-PPS version

δP :



~yR~yI
~yZ

 7→

−~yR−~yI
−~yZ


 |~y|〈~y〉

[~y]

 7→

 |~y|
〈~y〉 ± π
[~y]± π


, (85)

where [~y] = M
|~y| , and the time-reversal of eq. (49) in [32] is upgraded to the 3D-PPS version

δT :



~t 7→ −~t~tR~tI
~tZ

 7→

−~tR−~tI
−~tZ


 |~t|〈~t〉

[~t]

 7→

 |~t|
〈~t〉 ± π
[~t]± π


, (86)

that together comprise a CPT-transformation.
Note that our triplex framework upgrades the “superfluid-Mott insulator transition” for

the spontaneous symmetry breaking of [32, 50] from 2D-OPS to 3D-OPS—this leads to the
emergence of three types of fundamental excitations in Y :

1. massless-phase Nambu-Goldstone modes,

2. massless-inclination Nambu-Goldstone modes, and

3. massive-amplitude “Higgs-like” modes.

At this point, we’ve provided an introductory example on how the triplex framework of
Section 3 can be applied to upgrade the fractional quantum number order parameters of the
baryon wavefunction and antisymmetric tensor in [32] from 2D-OPSs to 3D-OPSs.

4.3 Quasi-normal modes for Schwarzschild black holes
Here, the complex and triplex framework of Sections 2 and 3 is applied to the (thermal)

SBH quasi-normal modes in [39, 40, 41, 42, 43, 44].
Quasi-normal modes are typically labeled as ωnl, where l is the angular momentum

quantum number [39, 40, 41, 42, 43, 44]. For each l (l ≥ 2 for gravitational perturbations),
there exists a second quantum number, namely the “overtone” one n (n = 1, 2, ...), which
labels the countable sequence of quasi-normal modes [39, 40, 41, 42, 43, 44]. Thus, for
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large n the quasi-normal modes of the SBH become independent of l and have the following
structure [39, 40, 41, 42, 43, 44]

ωn = ln 3× TH + 2πi(n+ 1
2
)× TH +O(n−

1
2 )

= ln 3
8πM

+ 2πi
8πM

(n+ 1
2
) +O(n−

1
2 )

(87)

for a strictly thermal approximation, where TH = 1
8πM

is the Hawking temperature for a
SBH of mass M .

Immediately we see that eq. (87) contains a real term, namely ln 3 × TH = ln 3
8πM

, and
an imaginary term, namely 2πi(n + 1

2
) × TH = 2πi

8πM
(n + 1

2
). Therefore, we can start by

first applying the complex framework of Section 2 to encode the 2D feature states of eq.
(87). Thus, if the SBH is centered at the 2D-PPS ~x ∈ X in dual 3D space-time with the
amplitude-radius (or amplitude-modulus) Rhorizon = ε = 2M , then we use eq. (23) to define
the new quasi-normal mode 2D-OPS

~ψωn(~x) ≡ ~ψωn(~x)R + ~ψωn(~x)I

≡ (~ψωn(~x)) = (|~ψωn(~x)|, 〈~ψωn(~x)〉) = (~ψωn(~x)R + ~ψωn(~x)I),

(88)

that satisfies the synchronizing Pythagorean and trigonometric interconnection constraints
of eq. (22) to establish

|~ψωn(~x)| ≡
√
~ψ2
ωn

(~x)R + ~ψ2
ωn

(~x)I = (ω0)n

~ψωn(~x)R ≡ |~ψωn(~x)| cos〈~ψωn(~x)〉 = ln 3× TH = ln 3
8πM

~ψωn(~x)I ≡ |~ψωn(~x)| sin〈~ψωn(~x)〉 = 2πi(n+ 1
2
)× TH = 2πi

8πM
(n+ 1

2
),

(89)

where the (ω0)n term is applied in [42, 43, 44].

Moreover, we also recognize that eq. (87) comprises a tertiary term, namely O(n−
1
2 ).

Therefore, we can subsequently apply the triplex framework of Section 3 to encode the 3D
feature states of eq. (87). Thus, if the SBH is located at the 3D-PPS ~y ∈ Y in dual 4D
space-time, such that eq. (30) illustrates the interconnection of X ⊂ Y , then we use eq. (50)
to define the new quasi-normal mode 3D-OPS

~ψωn(~y) ≡ ~ψωn(~y)R + ~ψωn(~y)I + ~ψωn(~y)Z

≡ (~ψωn(~y)) = (|~ψωn(~y)|, 〈~ψωn(~y)〉, [~ψωn(~y)]) = (~ψωn(~y)R + ~ψωn(~y)I + ~ψωn(~y)Z),
(90)
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with the 3D-OPS Cartesian components

~ψωn(~y)R ≡ ln 3× TH = ln 3
8πM

~ψωn(~y)I ≡ 2πi(n+ 1
2
)× TH = 2πi

8πM
(n+ 1

2
)

~ψωn(~y)Z ≡ O(n−
1
2 )

(91)

from eq. (87), that satisfy the synchronizing Pythagorean and trigonometric interconnection
constraints of eq. (49) to establish

|~ψωn(~y)| ≡
√
~ψ2
ωn

(~y)R + ~ψ2
ωn

(~y)I + ~ψ2
ωn

(~y)Z

〈~ψωn(~y)〉 ≡ arctan

(
~ψωn(~y)I
~ψωn(~y)R

)

[~ψωn(~y)] ≡ arccos

(
~ψωn(~y)Z

|~ψωn(~y)|

)
.

(92)

At this point, we’ve provided an introductory example on how the triplex framework of
Section 3 can be applied to encode the SBH quasi-normal modes of [39, 40, 41, 42, 43, 44].

5 Conclusion and discussion
In this paper, we started by considering the importance of the complex numbers and

spherical structures. It is known that complex numbers are fundamental to science and
engineering because their representational capability supercedes that of real numbers [2, 3].
Additionally, spherical structures and spherically-symmetric frameworks (including circles
and circularly-symmetric frameworks) are also axiomatic in this context because physical
objects and patterns that are observed nature (i.e. baryons, stars, black holes, etc.) fre-
quently exhibit spherical-like properties in a 3D space that can be inferred from the Inopin
Holographic Ring of [32] due to the holographic principle [10, 11, 12]. These notions fueled
our motivation to explore such spherical relationships in chaotic systems and thereby extend
the complex numbers to introduce and define triplex numbers that are consistent with the
work of D. White and P. Nylander [33, 34, 35].

The fact that complex and triplex numbers can be simultaneously interpreted and im-
plemented as abstract scalars and vectors was a powerful realization in terms of general
applicability to particle and astro physics. From this, it became clear that these constructs
could be utilized to define state spaces for locations in space-time and features at such
locations. Thus, our next step was to employ the complex numbers to establish the well-
defined 2D-PPS, 2D-PPSS, 2D-OPS, and 2D-OPSS information structures to improve the
topology and simultaneous and spontaneous superfluidic symmetry breaking of [32]. Subse-
quently, we repeated a similar creative upgrade to [32] with the additional spatial dimension,
where we engaged the triplex numbers to assemble definitions for the 3D-PPS, 3D-PPSS,
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3D-OPS, and 3D-OPSS information structures. Afterwards, we provided three distinct and
preliminary examples on how these new information structures can be applied to encode
the White-Nylander mythical beast of [33, 34, 35], the baryon-antibaryon wavefunction of
[32], and the SBH quasi-normal modes of [39, 40, 41, 42, 43, 44]. Thus, the encoding for-
mulations of this complex and triplex framework are highly consistent and disciplined, and
thereby provide an easy-to-visualize, relatively simplistic, and flexible system of abstract
vectors—attributes that are, in our opinion, important from an engineering and applicabil-
ity standpoint. Moreover, we suggest that such an encoding methodology and framework
with built-in (spherically-symmetric) non-linearity that complies with three spatial dimen-
sions and a fourth temporal dimension, where space and time are dual and interconnected,
is crucial for attacking problems and representing chaotic system states in physics and com-
puter science.

For future work, we propose that the content of this paper should undergo additional
consideration, scrutiny, and clarification. In particular, it may be beneficial and enlightening
to apply the complex and triplex framework of this paper to further analyze the baryon
wavefunction and antisymmetric tensors of [32], along with the tensors of general relativity
[51] and the Brans-Dicke theory of gravitation [52]. Furthermore, computer simulations
should be conducted to generate 3D fractals and the Mandelbulb [33, 34, 35] in this latest
version of the Riemannian dual space-time topology.
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