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Abstract: In previous papers [1,2,3] relating to the concept of Combined Gravitational Action (CGA) we have established the 

CGA-theoretical foundations as an alternative gravity theory that already allowed us to resolve -in its context- some unexpected 

and defiant problems occurred inside and outside the Solar System like, e.g., the anomalous Pioneer 10’s deceleration; the 

observed secular increase of the Astronomical Unit [4]; the apsidal motion anomaly of the eclipsing binary star systems and the 

study of CGA-effects in the non-compact and compact stellar objects. All that has been done without exploiting fully the CGA-

formalism, hence, the main purpose of the present paper is to exploit profoundly the CGA-equations in order to investigate, 

among other things, CGA-spin-orbit coupling precession and application of CGA to Large-Scale Structures with the aim of  

resolving the problem of galactic rotation curves. 
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1. Introduction 

 

Basing simply on the usual Euclidean geometry and the Galilean relativity principle, we were able to 

establish a coherent alternative gravity theory exclusively founded on the concept of Combined 

Gravitational Action. We have previously [1,2,3] shown that the theory (CGA) is very capable of predicting 

and explaining the anomalous Pioneer 10’s deceleration; the secular perihelion precession of the inner 

planets and the angular deflection of light passing near the massive object.    

      These two last phenomena are known as the decisive tests support the general relativity theory (GRT). 

Here, our main motivation is the following: since in the previous papers [1,2,3] we did not exploit fully the 

CGA-formalism, hence, now it is time to do this in order to investigate, among other things, CGA-spin-orbit 

coupling precession and application of CGA to Large-Scale Structures with the aim of resolving the 

problem of galactic rotation curves. 

      Before the advent of the CGA as an alternative gravity theory, it was always stressed that the study of the 

compact stellar objects is exclusively belonging to GR-domain because their strong compactness is enough 

to bend the local space-time in such a way that some observable GR-effects should occur. However, as we 

shall see, the CGA is also able to investigate, predict and explain the same type of the compact stellar 

objects and all that in the context of the usual Euclidean geometry and the Galilean relativity principle. This 

reflects a tangible fact that the propagation of gravitational field and the action of gravitational force both 

are independent of the topology of space-time. But why shall the CGA arrive at the same results as GRT or 

even better in some cases? Because if we take the concept of the curvature of space-time apart, we find that 

contrary to the Newton’s gravity theory, the CGA and GRT take in full consideration the relative motion of 

the test-body and the light speed in local vacuum which in CGA is playing the role of a specific kinematical 

parameter of normalization and in GRT it is considered as the speed of gravity propagation. The main 

consequence of the CGA-formalism [1,2,3] is the dynamic gravitational field (DGF),Λ , which is in reality 

an induced field, it is more precisely a sort of gravitational induction due to the relative motion of material 

body in the vicinity of the principal gravitational source. Furthermore, in the present work, we will show 

that the existence of the dynamic gravitational acceleration at galactic scale should be attributed to the 

gravitodynamical evidence of the dark matter (DM) itself and the characteristic acceleration introduced by 

Milgrom as a universal constant [14,15,16] in his theory of Modified Newtonian Dynamics (MOND) 

[17,18,19,20], is in fact a special case of Eq.(32) see [3]. Consequently, MOND as an alternative theory to 

the DM ‘hypothesis’ becomes by means of the CGA an additional support for DM! 

                                                 
1 This paper is dedicated to the memory of Prof. Thomas C.Van Flandern, 26 June 1940 – 9 January 2009 
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2.  Combgravactional Kepler's third law and its Consequences 

 

In this section, we will combgravactionalize the Kepler's third law, that is to say, we generalize it in the 

context of CGA for the binary system-system of two massive bodies linked gravitationally-. From this 

generalization, we will show the existence of an extra-term, ω , added to the usual orbital angular 

velocity, 12ω  p ,of the orbiting spherical massive bodies around their common center of mass. 

Consequently these considerations allowing us to formulate the following physical quantities:(i) the 

generalized Kepler's third law; (ii) the CGA-orbital angular velocity,Ω ; (iii) the CGA-orbital angular 

momentum, ; (iv) the CGA-angular rate, CGA , of the spin-orbit coupling precession. 

 

 

                           2.1. The generalized Kepler’s third law 

 

Let us consider two spherical massive bodies A and B with masses Am  and Bm  moving in orbits of radii  Aa  

and Ba  around a common center of mass C defined by: 

 

                                                                        BBAA amam   .                                                                   (1) 

Therefore, the ratio of the two masses is  
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                            Figure 1. Two spherical massive bodies  A and  B  moving in almost 

                                             circular orbits of radii Aa and Ba  about their common center of mass C. 

 

   

Further, according to Eq.(27), see [3], the combined gravitational attraction (resultant force) between the 

two orbiting spherical massive bodies A  and B  is, for the present case, of the form 

rF )/1( 2

0

3 rcGmrk  
, where here BAmmGk   and BA mmm  . We have also the well-known usual 

expression of the Kepler’s third law 
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Let us, for simplicity, consider temporary the massive body A  playing the role of the main gravitational 

source and B  as a test-body moving around A  at the orbital velocity v , under such a condition (Fig.1) and 

by taking into account the expression of the combined gravitational attraction , F , the two massive bodies as 

a binary system BA,  must have the same orbital angular velocity vector Ω  defined by 

                                                                 

                                                                             ωωΩ Δ ,                                                                  (5) 

 

Around their common center of mass C. Hence, using Eq.(27) that is the expression of F and the equating it 

to the centrifugal force, and after performing some algebraic calculations and neglecting the infinitesimal 

q u a n t i t y , λcosΔ2 ωω  ,  r e s u l t i n g  f r o m  t h e  s c a l a r  p r o d u c t  o f  ω  a n d  ωΔ ,  w e  g e t  
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Using the relation (2), we obtain  11  BAABA mmaaar , thus (6) becomes after substitution and 

simplifications  
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Eq.(7) is exactly the expected generalized Kepler's third law applied to any two –spherical- massive bodies 

in orbital motion. Also Eq.(7) is true for elliptical orbit in which case r  becomes the semi-major axis of the 

orbit of one massive body relative to the other, which is at the focus of the ellipse. Now, let us determine the 

expression of the extra-term, ωΔ , by substituting (4) in (7), and after performing some algebraic 

calculations, we obtain  
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Where AB mmq  is the mass ratio of the binary system BA, . 

 

                            2.2. CGA-orbital angular velocity 

 

It follows from all above results that, in the context of CGA, the existence of the extra-term (8) implies, 

among other things, that the expression of CGA-orbital angular velocity,Ω ,should be different from the 

usual expression defined in the framework of Newton's gravity theory, thus according to (7),  

we get 

                                                                                                            1/222Ω ωω  .                                                              (9) 

Or more explicitly  
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which may be reduced to (4) for the case   12

0 rcGm . As we can remark it, there is no any singularity in 

the expression (10), that is to say contrary to GRT in which the expression of orbital angular velocity 
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containing a singularity. Moreover, it follows from (10) that the CGA-orbital velocity, rrvv Ω)(  , takes 

the explicit form  
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Once again, when the term  rcGm 2

0  is very significantly less than unity, the CGA-orbital velocity (11) 

reduces to the usual one, that is why we have already used in [3] the usual expression   2/1
rGm when we 

have, e.g., derived Eq.(27) because in general such an approach does not affect the results that may be found 

from the use of the new expression (11) since, here, we are exclusively dealing with the massive bodies in 

o r b i t a l  m o t i o n .  F o r  i n s t a n c e ,  t h e  s y s t e m  E a r t h - M o o n  i s  c h a r a c t e r i z e d  b y  t h e  

value of    112

0 10168.1 rcGm . 

 

2.3. CGA-orbital angular momentum 

 

As in Newton's gravity theory, the CGA-orbital angular momentum,  , of the binary system BA,  and  

the CGA-orbital angular velocity,Ω , are connected by  

                               

                                                                   2Ωμ)( rr   ,                                                                    (12) 

 

where mmm BAμ  is the reduced mass of the binary system BA, . The expression (12) allows us to 

affirm in the context of CGA that the equality between the mutual combined gravitational attraction,F ,  

and the combined centrifugal force  
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together ensures the orbital gravitational stability of the binary system BA, . Hence, such stability  

occurs according to the equation  

                                                                       0CF F-F .                                                                          (14) 

 

Let us slightly focus our attention on the expression (13) which is called 'combined' centrifugal force 

because it is, in reality, a combination of two forces viz. the static centrifugal force SCFF and the dynamic 

centrifugal force DCFF . So to be really sure of this combination, it is best to rewrite (13) in the following  

explicit form: 
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Therefore, the two components of CFF are of the form 
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Thus that is why CFF  is called 'combined' centrifugal force. As we know it, the extra-component force 

DCFF is induced by the motion of the binary system BA,  relative to the center of mass. Hence the 
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existence of DCFF  itself as an extra-component force implies that the mentioned orbital gravitational 

stability should not consider as an absolute fact since DCFF  causes, among other effects, some very small 

secular gravitational perturbations which are, on the average, reflected in the precession of the elliptical  

orbit as we will see below.                                                 

2.4. CGA-spin-orbit coupling precession 

 

In this subsection, we will study another post-Keplerian parameter, namely, the Combgravactional (CGA) 

spin-orbit coupling precession rate,  rad/sΨCGA , under the effect of CGA-spin-orbit coupling, which is 

originally caused by the couple
D,FΛ  see [3], and generally occurs in one component of system BA,  

when the spin angular momentum vector S  of that component is misaligned with the orbital angular 

momentum vector J . The coupling of spin and orbital angular momenta causes the spin vector S  to precess 

around J  wi th  the  angula r  p recess ion  ra te , CGAΨ ,  p ropor t ional  to  Δω or  equival ent l y 

 

                                                                        ωKrad/sΨCGA  .                                                           (17) 

 

Where K is a coefficient of proportionality to be determined later. In the framework of GRT, the spin-orbit 

coupling precession is called 'geodetic precession' or 'De Sitter precession', and is physically attributed to 

the curvature of space-time. However, for the CGA, this phenomenon is a pure consequence of the action of 

the couple 
D,FΛ  and that is why is legitimately called ‘CGA-spin-orbit coupling precession’ or simply 

‘CGA-orbital precession’ as we will see because as Einstein himself argued in 1912, "The gravitation acts 

more strongly on a moving body than on the same body in case it is at rest." But Einstein's claim has been 

stated in 1912, that is to say, before the publication of the final version of GRT in 1915 in which, as we 

know, the very realistic concept of the gravitational force is abandoned and replaced by the concept of the 

curvature of space-time, and at the same time, Einstein claimed that GRT may be reduced to Newtonian 

gravity theory for low-velocities and weak-gravitational fields! We now return to the coefficient of 

proportionality, K , contained in the relation (17), so as we are exclusively dealing with an orbital motion 

and for the purpose of our investigation, it seems more natural and very convenient to define it as a function 

of the form: )()()(),(KK 1
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Pc

r

q

q

rc

Gm

Pc

r

q

q
qr

0

2/1

2

00

π

)(

)(π

)(

)(
),(KK

3

1

1
1

2

12

13
6

1

6

1


















 ,                                 (18)     

 

because, as we know, for the orbital motion the term  rcGm 2

0  is generally very significantly less than 

unity. Consequently, by substituting (8) and (18) in (17), we get: 
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For an exact elliptical orbit, we have )1( 2ear  , where a  is the semi-major axis and e is the orbital 

eccentricity, hence after substitution, we obtain, the expected expression: 
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Eq.(20) is exclusively concerning the massive body B of mass Bm  when playing the role of a test-body 

orbiting the main gravitational source A  of mass Am . However, when 1q , i.e., BA mm   in such a case 

the two massive bodies have the same CGA-orbital precession rate, because, as it was known [3], when 

1q  the two massive bodies should play mutually the role of the main gravitational source. For the case of 

the test-body B ; the causal origin of B’s orbital precession rate (20) is of course the couple of the dynamic 

gravitational field-force
D,FΛ induced by B during its motion in A’s gravitational field. Moreover, as it 

said repetitively in this paper, the dynamically induced Λ  and DF  have an appreciable gravitational 

influence on the evolution and behavior of the massive bodies. Curiously, Lorentz has already arrived at 

some conclusion very comparable to that of Einstein, but more than one decade before him. In his very 

influential work entitled ‘Considerations on Gravitation’ published in 1900, Lorentz wrote “Every theory of 

gravitation has to deal with the problem of the influence, exerted on this force by the motion of the heavenly 

bodies.” [5]. Again, Lorentz’ claim clearly reinforcing the fact that Λ  and DF are really induced by the 

motion of massive test-body B in the gravitational field of the central body A. In [2] we have already 

calculated the angular deflection of starlight, as a direct consequence of 
D,FΛ , hence it goes without 

saying that the gravitational redshift and the gravitational lensing should be also caused by the 

same
D,FΛ . All that constitutes a counterexample to the concept of the curvature of space-time as an 

interpretation to the gravitation. Let us return to Eq.(20) which is also applicable to the eclipsing binary star 

systems and binary pulsars as we will see later on. But we begin its application to the Earth-Moon system as 

a whole. First, we shall investigate the secular Moon's orbital precession under the effect of CGA- spin-orbit 

coupling caused by the couple of the dynamic gravitational field-force
D,FΛ induced by the Moon during 

its motion in the immediate local Earth's gravitational field, and secondly we investigate the same 

phenomenon for the Earth-Moon system in the Sun's gravitational field.  

 

2.4.1. Moon's secular CGA-orbital precession in the immediate local Earth's Gravitational Field 

 

We have the following orbital and physical parameters of the Moon. Orbital eccentricity: 0549.0e ; 

orbital period: days32.27P ; semi-major axis: m10844.3 8a ; Moon's mass: kg103477.7 22Bm ;  

Earth's mass: kg109722.5 24Am ; mass ratio: 
210230317.1/  AB mmq . After substituting all these 

p a r a m e t e r s  i n  ( 2 0 ) ,  w e  g e t  t h e  r a t e  o f  t h e  s e c u l a r  C G A - o r b i t a l  p r e c e s s i o n :  

 

                                             mas/cy30.444760rad/s10674804.4Ψ 17

CGA  
.                                   (21) 

 

Where 'mas/cy' is the abbreviation for 'milliarcsecond per century'. Kinematically, the value (21) means that 

the Moon's orbit itself rotates around the Earth at the velocity of m/cy71.56 and the CGA-orbital precession 

period, i.e., temporal interval for a complete rotation, π2 , is yr1026.4 9 which is very comparable to the 

age of our Solar System! Now, let us evaluate the magnitude of the couple D,FΛ  responsible for this 

secular orbital precession. First, we have according to Eqs.(42,43) in [3], the following expressions 
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Hence, after a direct substitution and calculation, we obtain 
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   2.4.2. Earth-Moon system secular CGA-orbital precession in the Sun's Gravitational Field 

 

Historically, De Sitter studied for the first time the so-called geodetic precession in 1916 as a consequence 

of GRT. He derived a formula similar to (20) and published it in his seminal article entitled "On Einstein's 

theory of gravitation and its astronomical consequences. Second paper."[6]. De Sitter applied his formula to 

the Earth-Moon system and found that the spin-orbit coupling contribution is reflected in the Earth-Moon 

orbital precession by sec/cyarc91941. . But in the most complete investigation on the subject by Brumberg 

et al. [7,8]. As a result, their corrected value of the geodetic precession is sec/cyarc91991. , which is quite 

comparable to our value as we will see below. De Sitter attributed the causal origin to the curvature of 

space-time.  

      However, the existence of the same phenomenon in the framework of CGA with the same amount found 

by [7,8] is considered as a counterexample to the concept of the curvature of space-time itself as an 

interpretation to the gravitation. Because of its distance from the Sun, the Earth-Moon system can be 

regarded as a single body which is rotating in the gravitational field of the Sun. further, since the Earth is 

physically dominated the system under consideration, thus on average, we take the orbital and physical 

parameters of the Earth for the all system and MoonMMmB    as a total mass for the system.  

Eccentricity: 0167.0e ; period: days25.365P ; semi-major axis: m10597870.149AU 9a ; 

Moon's mass: kg103477.7 22

Moon M ; Earth's mass: kg109722.5 24M ; Sun's mass: 

kg109891.1 30 MmA  ; mass ratio: 610039403.3/  AB mmq . By substituting all these 

parameters in (20), we get 

                                            sec/cy arc1.919917rad/s10948039.2Ψ 15

CGA  
.                                  (22) 

 

This is in excellent accord with the value found by Brumberg et al. [7,8]. Further, according to (22), an 

entire precession cycle would take yr1075030.6 7 , that is %50.1  of the total age of our Solar System.  

 

   2.4.3. CGA-spin-orbit coupling Effect in Eclipsing Binary Star Systems  

 

Finally, we now apply the formula (20) to investigate the CGA-orbital precession under the effect of CGA-

spin-orbit coupling caused by the couple 
D,FΛ  in the well-known eclipsing binary star systems: AS 

Camelopardalis and DI Herculis and also we study the same phenomenon in the binary pulsars PRS B 

1913+16 and PRS B1534+12, and the double pulsar PSR J0737-3039. Since we have already studied the 

CGA-apsidal motion in AS Camelopardalis and DI Herculis, respectively, thus we can use the same orbital 

and stellar parameters according to [3], we have AS Cam: 1695.0e ; days430.3P ;  Ra 20.17 ; 

 MmA 3.3 ;  MmB 5.2  and DI Her: 489.0e ; days55.10P ;  Ra 12.34 ;  MmA 3.3 ; 

 MmB 5.2 . Moreover, as the two systems are characterized by the mass ratio 1q  this implies, among 

other things, that in each system the primary star A of mass Am  should play the role of main gravitational 

source and the secondary star B of mass Bm  should be the orbiting test-body. Therefore, in the two systems 

{AS Cam, DI Her} the effect of CGA-spin-orbit coupling should concern exclusively the secondary star, 

i.e., we are dealing with B's CGA-orbital precession caused by the couple 
D,FΛ . Hence, after substituting 

all the necessary parameters in Eq.(20), we obtain the following CGA-orbital precession rates for AS Cam 

and DI Her, respectively: 

                                                                deg/cy714363.0Ψ (1)

CGA  ,                                                          (23) 

and 

                                                 deg/cy71681.2Ψ (2)

CGA  .                                                            (24) 
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2.4.4. CGA-spin-orbit coupling Effect in Binary Pulsars and Double pulsars 

 

Let us return to the compact stellar objects, dealt with in [3] and let us investigate the CGA-orbital 

precession under the effect of GCA-spin-orbit coupling. It is expected that the CGA-rate, CGAΨ , for the 

binary pulsars PSR B1913+16 and the double pulsar PRS J0737-3039 should be remarkably greater than 

that of the eclipsing binary star systems. This fact is mainly due to the strength of the dynamic gravitational 

force, DF , in these compact stellar objects. For example in [3], we have already found for AS Cam and DI 

Her, respectively, the values of N101476.6 24

D F  and N10730.1 24

D F  as well as for PSR B1913+16 

and PRS J0737-3039, respectively, the values of N10831340.5 26

D F  and N10677426.4 27

D F . 

Hence a simple comparison yields: 

  

761
system)star binary ordinary in(

sytem)pulsar binary compact in(

D

D 
F

F
 

 

In the context of GRT, Weisberg and Taylor [9] found a theoretical geodetic precession rate of 

deg/yr1.213 for PRS B1913+16 and Manchester et al. [10] predicted geodetic precessional periods of 

yr57 and yr17  for PRS J0737-3039A and PRS J0737-3039B, respectively, which correspond to the 

following geodetic precession rates: deg/cy8.4Ψ (A)

GR  and deg/cy070.5Ψ (B)

GR  . 

       Since we have already studied the CGA-apsidal motion in the above mentioned pulsars, thus we can use 

the same orbital and stellar parameters according to [3], we have PRS B1913+16: 6171.0e ; 

day322997.0P ; m10950100.1 9a ;  MmA 4414.1 ;  MmB 3867.1   and  PRS J0737-3039: 

0877.0e ; day102251.0P ; m108.8 8a ;  MmA 338.1 ;  MmB 249.1 . Moreover, as the two 

compact systems are characterized by the mass ratio 1q   this implies that in each system the two compact 

neutron stars should play mutually the role of the main gravitational source. For this case the effect of CGA-

spin-orbit coupling should concern each system as a whole, i.e., we are dealing with {A,B}'s CGA-orbital 

precession caused by the couple 
D,FΛ  in each system. Therefore, after substituting all the necessary 

parameters in Eq.(20), we obtain the following CGA-orbital precession rates for PSR B1913+16  and  PRS 

J0737-3039, respectively: 

 

                                                                deg/cy248659.1Ψ (1913)

CGA  ,                                                         (25) 

and                                                                                                                  

                                                                deg/cy044625.5Ψ (0737)

CGA  .                                                        (26) 

 

As we can remark it repeatedly, that is to say as before for the other investigated gravitational phenomena, 

also our calculated values are in good agreement with those theoretically predicted by [9,10]. Once again, 

the CGA as a post-Newtonian gravity theory is very able to study and predict some old and new 

g r a v i t a t i o n a l  p h e n o m e n a  i n s i d e  a n d  o u t s i d e  t h e  S o l a r  S y s t e m ,  b o t h  i n  

weak and strong (combined) gravitational field. 
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3. Consequence of the Potential Equations 

                                                                                                                      

Let us focus our attention on Eqs.(5,6,7) see [3]. The first one, i.e., Eq.(5) is in fact the well-known Laplace 

equation in radial coordinates, which defining us the potential outside the gravitational source A of mass M 

from where the test-body B of mass m evolving. Beside that, we have also the two other equations,  

viz., Eqs.(6) and (7), respectively: 

                                                         

                                               0,
1

2

2











v

U

vv

U
          0

12











v

U

rvr

U
.                                                     

With          

                                                          









2

2

1)(
w

v

r

k
vr,UU , 

 

which is the velocity-dependent CGA-potential energy function Eq.(3) in [3] and w  is a specific 

kinematical parameter having the dimensions of a constant velocity defined in [3] by  

 






ABv

ABc
w

ofvicinitytheoutsidemotionrelativeinis if,

ofvicinitytheinsidemotionrelativeinis if,

esc

0
, 

 

where 0c  is the light speed in local vacuum and escv  is the escape velocity at the surface of the gravitational 

source A. However, despite their different expressions, the above two equations define us in the context of 

CGA, the same new physical quantity, namely, the gravitational momentum. This new concept is derived 

from the following fact: we have from the above equations  

 

                                 
v

U

v

U
v











2

2

,         
v

U

vr

U
r








 2

. 

Further, we have   

                                                                   )(
2

2
vmε

rw

vk

v

U





 .                                                            (27) 

 

Where )2( 2rwGMε  . Since ε  is a dimensionless physical quantity and ( vm ) is the magnitude of the 

classical linear momentum vector, P , thus (27) may be written as  

                                                          

                                                              

                                                                        PεvrPP  ,GG ,                                                             (28) 

    

where vmP   and GP  is the magnitude of the gravitational momentum vector GP  which is defined below 

as follows: 

                                                                 













z

y

x

vmεP

vmεP

vmεP

)2(

G

)2(

G

)1(

G

G :P
                                                                    (29)   

The quantity ε  plays the role of the factor of proportionality between the magnitude of the gravitational 

momentum and the magnitude of the classical linear momentum. Therefore the existence of the 

gravitational momentum as an additional physical quantity should boost the principal momentum of the 

moving test-body. Note that the rate of change of the gravitational momentum vector (29) should be  
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defined as the derivative of GP with respect to time, that is: 

                                                                 

                                                                           
dt

d
ε

dt

d PP
G ,                                                                   (30) 

or  

                                                                         
td

d
ε

td

d
m

vP
 G1 .                                                               (31) 

 

Remark, since  rwGMε 22  therefore the term on the right hand side of Eq.(31) coincides perfectly with 

the second term on the right hand side of Eqs.(15,18), see [3]. Consequently Eqs.(30) and (31) play the role 

of additional perturbating force and acceleration respectively. Returning to Eq.(29) and considering the case 

when the test-body B orbiting the gravitational source A at average distance r  inside A's vicinity. Thus in 

this case the factor of proportionality, ε , becomes  rcGM 2

02  and with the help of (28), the magnitude of 

the gravitational angular momentum of the orbiting test-body should be of the form 

 

                                                                        rPGG  ,                                                                          (32) 

or explicitly    

                                                                    P
c

GM















2

0

G

2
 .                                                                   (33) 

 

It follows from above equations that any material body in state of orbital motion in combined gravitational 

field is characterized by a gravitational angular momentum vector whose magnitude is given by Eq.(32) or 

(33). Moreover, since the quantity  2

02 cGM  is called, in the framework of GRT, ‘Schwarzschild radius’ 

hence we arrive at the following operational definition. ‘The magnitude of the gravitational angular 

momentum for an orbiting test-body inside the vicinity of the gravitational source is the scalar product of 

the Schwarzschild radius and the magnitude of the classical linear momentum.’ And from (33), we arrive at 

the following result 

                                                                         
2

0

G 2

c

GM

P



.                                                                    (34) 

 

Eq.(34) means that the Schwarzschild radius is in fact a gravitational radius that characterizing any material 

body in state of orbital motion in combined gravitational field.  

 

 

       4. CGA-Binet's orbital Equation 

 

Through the present work we have seen that the CGA as an alternative post-Newtonian gravity theory is 

very capable of predicting some old and new gravitational phenomena. For example, in the second paper [2] 

we have derived two important formulae one for the perihelion advance of Mercury and the other for the 

angular deflection of starlight. Indeed, the two formulae had been deduced from the CGA-Binet's orbital 

equation, which has exactly the same physico-mathematical structure as the general relativistic Binet's 

orbital equation developed in the framework of curved space-time and Schwarzschild metric [11,12,13]. 

The fact seemed a pure coincidence at first sight, but when one analyzes the paper [3] with fully open mind, 

he/she will find that in spit of the concept of curved space-time there is a certain compatibility of CGA with 

GRT reflected by Eq.(25) deduced from Eq.(24) which itself is an expression of the gravitational force 

derived by Ridgely [3] in the context of GRT. Also, from Eq.(25) we can easily deduced the basic result of 

CGA, namely, the dynamic gravitational field-force D,FΛ . Therefore, from all that, we can logically 

assert that the concept of curved space-time is nothing but only a mathematical artifact and the existence of 
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such compatibility signifies, among other things, the CGA is a counterexample to GRT. Furthermore, in 

order to make this compatibility more lucid, more localizable and more understandable, we shall derive 

once again the above mentioned CGA-Binet's orbital equation as follows. Let us consider the test-body B of 

mass m orbiting the gravitational source A of mass M. Therefore B evolving in the combined gravitational 

field. Moreover, supposing that the orbital motion takes place in the polar plan ),,0( eer inside the vicinity 

of A; so that in such case we can replace the orbital velocity v  with r  dtd /   and the kinematical 

parameter w  with 0c  in CGA-potential energy function, see Section 3, we get 

 

                                                             














2

0

22

1
c

r

r

k
U


.                                                                   (35) 

 

Moreover, since the test-body B is in orbital motion, we obtain the following relations regarding  

classical angular momentum 

                                                                      2rmh  ,                                                                           (36) 

from which we get    

                                                        
rm

h
r  .                                                                            (37) 

After substituting (37) in (35), we have  

                                                            














22

0

2
1

rcm

h

r

k
U .                                                              (38)       

 

We can now write directly the force due to the combined gravitational potential energy 

  

                                               




























22

0

2

2

2

3
1

rcm

h

r

k

r

U

r

U

dt

d
F


.                                                (39) 

 

We have also for a central force 

                                                                          rF rf ,                                                                         (40) 

 

and according to Newton's second law 

                                                                          aF m ,                                                                           (41) 

or more explicitly  

                                         

                                                   eerF  rrmrrmr r  2f 2 .                                              (42) 

 

Since we are dealing with elliptical orbits, therefore, by taking into account the Kepler's second law, we get 

f rom (42)  the  fo l lowing d i f fe rent i a l  equat ions  re l a t ive  to  the  d i rec t ions re  and  e  : 

 

                                                                   
  2f

 rr
m

r

m

F
 .                                                                (43) 

                                                   

                                                            02 2    r
dt

d

r

m
rrm .                                                        (44) 

That is          

                                                                constant2  κr  .                                                                  (45) 

Let us put  
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u

r
1

 .                                                                             (46)                                

Thus  

                                                                    2

2
uκ

r

κ
 .                                                                        (47) 

 

By differentiating relation (46), with respect to time, we get 

 

                                         
dt

d

d

du

udt

du

udt

dr 

 










22

11
, 

thus   

                                                                      



d

du

u
r 

2

1
 .                                                                     (48) 

By substituting (47) in (48), we obtain 

                                                                        
d

du
κr  .                                                                        (49) 

From (49), the second time derivative is  

 

dt

d

d

du

d

d
κ

d

d

d

du
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d
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d
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
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
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











 , 

that is  

                                                                    



2

2

d

ud
κr  .                                                                      (50) 

Taking account of (47), Eq.(50) becomes 

                                                                  
2

2

2
2 u

d

ud
κr


 ,                                                                     (51) 

 

Again, by substituting (46), (47) and (51) in (43), we get  

 

                                    
  32

2

2
22422

2

2
2 1f
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d

ud
uκuκ

u
u

d

ud
κ

m

r

m

F



.                                (52) 

 

 

Since GMmk  , thus from (39), (46) and (52), we find  

 

                                                       
2
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22
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
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.                                                  (53) 

 

By taking into account the relations (37) and (47), the quantity included in square brackets, on the  

right hand side of Eq.(53), becomes   

                                                                 







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


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2

0

22
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2

2
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c

GM
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hGM
.                                                             (54) 

 

Final ly,  af ter  subst i tut ion in  ( 53),  we get  the expected CGA-Binet 's  orbi tal  equat ion 
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2

2

2

0

2

2 3

κ

GM
u

c

GM
u

d

ud












.                                                  (55) 

 

Eq.(55) has exactly  the physico-mathematical structure of the general relativistic Binet's orbital equation 

developed in the context of curved space -time and Schwarzschi ld metr ic [ 11,12,13]  . 

 

 

5. Application of CGA to Large-Scale Structures 

 

Preamble: After we have applied the CGA-as post Newtonian gravity theory- to the Solar System, eclipsing 

binary star systems and binary pulsars, we now undertake to apply it to galactic scales. We are here 

interested in the ‘hypothetical’ dark matter (DM) without entering in the full details since there are a lot of 

research articles and books together provide authoritative coverage of the literature on the subject as well as 

derivations of the most important results. Nevertheless, in the present section, we will show that the 

existence of the dynamic gravitational acceleration - defined by Eq.(32) in [3] - at galactic scale should be 

attributed to the gravitodynamical evidence of the DM itself and the characteristic acceleration  

 

                                                                         
210

0 sm102 a  ,                                                         (56) 

 

introduced by Milgrom as a universal constant [14,15,16] in his theory of Modified Newtonian Dynamics 

(MOND) [17,18,19,20], is in fact a special case of Eq.(32). Consequently, MOND as an alternative theory 

to the DM ‘hypothesis’ becomes by means of the CGA an additional support for DM!  

       Brief History: in most cases Newtonian gravitational inverse-square law and its well-known relativistic 

generalization have passed several critical tests on very different spatial and temporal scales. However, the 

first incongruous seems to show up only on galactic scales with the observed discrepancy between the 

gravitodynamical mass and the directly observable luminous mass. To resolve that discrepancy, two 

obvious explanations have been proposed: (i) either large quantities of invisible DM dominate the 

gravitodynamics of large systems [21,22,23,24]; (ii) or gravity itself is not correctly described by 

Newtonian theory on every scale [14,25,26,27]. 

 

 

5.1. Evidence for Dark Matter 
 

Let us begin by the fundamental question arises whether the observed luminous matter distribution is really 

compatible with the rotation curve, without need for additional DM. Forthrightly, to the best of our 

knowledge, no galaxies are known with an extended rotation curve for which luminous matter is sufficient 

to explain the gravitational field without recourse to DM. The main evidence for large amounts of matter in 

the Universe which are not associated with the luminous components. There are several observations which 

are usually interpreted as providing evidence for (cold) DM [28,29,30,31,32,33] including: 

 

1- The rotation curves of galaxies compared with their luminous matter distribution; 

2- The gas content of clusters compared with velocity, x-ray or lensing mass estimates; 

3- The normalization of galaxy clustering compared with microwave anisotropies; 

4- The shape of the large-scale galaxy correlations; 

5- Cosmic flows and redshift space distortions;  

6- The amplitude of weak lensing by large scale structure. 

 

 

 

 

 



 

 

14   

5.2. MOND 

 

As already mentioned, to avoid the need for DM, the best known suggested modification to Newtonian 

gravity theory [14,15,16,17] is usually referred to as MOND. The basic idea of MOND is that there exists a 

fundamental acceleration (56) below which the real acceleration is larger than the Newtonian one 

NN aa . This is essentially formulated by the real observed acceleration, a , through the relation  

 

                                                                       aa 0N / aa ,                                                                 (57) 

 

where  x is an interpolating function with limits         

                                                      

                                                                                        


 


1>>if1

1if

x

xx
x .                                                          (58) 

 

MOND should reach its regime only when 
0aa a  and in this limit 

 

                                                                          
m

F
aa 0 ,                                                                     (59) 

  

which is often given as the fundamental equation of MOND. Further, Milgrom [14,15,16] suggested the 

following expression                                                              

                                                                    
21 x

x
x


 .                                                                 (60) 

 

Phenomenologically speaking, MOND works well for the observed phenomena at the level of galaxies and 

clusters of galaxies almost exactly like DM paradigm. For example, MOND has reproduced the (flat) 

galactic rotation curves and explained the Tully-Fisher law )( 4 Lv  without of course evoking the DM 

hypothesis. But the advocates of DM paradigm claimed that MOND works well for the cited phenomena 

because the low argument from that of  x  and the value of 0a  have been rigged to obtain these 

remarkable results.   

 

         5.3. MOND’s Conceptual difficulties 

 

Before evoking MOND’s ambiguities, we must keep in mind that the Newton’s laws of motion and the law of 

gravitation are very closely woven together in such a way that any simple modifications without profound and 

serious intellectual reflection reinforced by an extreme caution rapidly lead to incalculable consequences. 

Therefore, one urgent basic question is whether MOND applies equally to decelerations as to accelerations, 

or whether the motion needs to be just a change in the vector direction of acceleration in order to show 

MOND effects. Since the usual interpretation is that all changes in velocity are subject to MOND. 

Consequently, we can immediately see a fundamental difference with ordinary dynamics when we consider a 

test-body moving away from a central gravitational source. In the MOND’s vision, the test-body’s 

deceleration never drops below the value of 0a . Thus it cannot escape to infinity that is in MOMD there are 

no unbound orbits.    

      Several critical difficulties with Milgrom’s original scheme as stated were firstly identified by Felten [34] 

soon after the introduction of the MOND in 1983. One pertinent example is that, in MOND, when the 

accelerations a  given to a test-body by two or more attracting bodies acting mutually do not add linearly; 

however in Newtonian gravity theory, accelerations Na  do add linearly, thus their square roots cannot do so.  
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Or equivalently, this is that because acceleration is not inversely proportional to mass, momentum is not in 

general conserved for an isolated system. Furthermore, as the gravitational force is no longer linear, hence in 

MONDian framework the resultant gravitational force not being equal to the sum of partial forces. In 

particular, as it has been pointed out by Felten [34], the motion of the center of mass of a body no longer 

obeys the classical mechanics.  

 

      5.4. MOND is an adjustable phenomenological theory 

 

MOND is exceptionally successful in explaining the shapes of galactic rotation curves because it is an 

adjustable theory. More precisely, MOND has three principal parameters that need to be adjusted, viz., 0a ; 

 x  and the stellar mass to luminosity ratio Υ . Indeed, originally Milgrom [14,15,16] used the forms (56) 

and (60); but several authors employed the following values: 210 sm101  , 210 sm101.2  , 210 sm103.4   

and 210 sm103.9   instead of (56), this is clearly uncomfortable for MOND since  0a  is basically supposed 

to be a universal constant! Accordingly, it follows from the above values that 0a is not strictly speaking a 

universal constant as speculated by Milgrom [14,15,16], but adjustable parameter having the dimensions of 

acceleration defined by 

 

                                                           
210

0

210 sm104sm101   a .                                            (61) 

 

Concerning the interpolating function, Bekenstein [35] proposed     
1

141141


 xxx in 

preference to (60) also Famaey and Binney [36] suggested     1
1


 xxx  rather than (60).  

 

 

       5.5. Some empirical difficulties with MOND 

 

Without mentioning the adjustability, some authors have claimed that MOND has been very successful in 

explaining observations of rotation curves for a variety of objects over a wide range of scales (see e.g., 

Milgrom [37] ; Bekenstein and Sanders [38] ). But huge number of investigations have indicated difficulties 

in reconciling MOND with data under its main postulation that there is no DM, and that the critical 

acceleration parameter 0a is has well fixed value. For example, concerning the astronomical evidence for 

large amounts of DM, Faber and Gallagher [39] and Davis et al., [40] have already revealed that in and 

around galaxies comes almost exclusively from applications of Newton’s second law to galaxies and 

clusters of galaxies. Certainly, the accelerations in these large cosmological systems are much smaller than 

those for which the law has been well tested in the laboratory or in the Solar System. Kent [41] pointed out 

that while MOND could fit his H I rotation curve data there was a factor of 5 required in the value of 0a and 

also no clear evidence for the slightly falling rotation curves that MOND would still predict. Hernquist and 

Quinn [42] examined simulations of shell galaxies within MOND, and arrived at the conclusion that the 

observed value and radial distribution of shells in NGC 3923 could not be rigorously explained without a 

DM halo. The and White [43] found that a MONDian fit to the coma cluster requires a higher value of 0a  

than for galaxies and also does not predicted the correct temperature profile for the x-ray gas. Lake [44] 

identified inconsistencies between MOND and observations of group of seven dwarf galaxies: DDO 125, IC 

1613, VCC 381, NGC 3109, DDO 154, IC 3522 and NGC 3198. Furthermore, Lake and Skillman [45] 

found that MONDian fits to Local Group dwarf IC 1613 would need values of 0a at least an order of 

magnitude below the preferential values. Gerhard and Spergel [46] studied dwarf spheroidal galaxies in the 

Local Group and concluded that a number of the dwarfs need to contain some DM even under MOND 

paradigm. This conclusion is exactly the main purpose of our present section as we will see. We now return 

to CGA with the following typical galaxy scenario. 
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6. Typical Galaxy Scenario 
 

Let us consider a test-body B as a star of mass m  in rotational motion with velocity  rv  at the radial 

distance r  sufficiently far from the galactic center of the main gravitational source A which is in the present 

scenario a typical galaxy of mass  rM  inside the radius r . With these considerations and by taking into 

account the definition of the kinematical parameter w  in Section 3, Eq.(32) of the dynamic gravitational 

acceleration [3] becomes 

                                                                    
   

2

esc

2

2
Λ

v

rv

r

rGM
 .                                                               (62) 

 

Since  rMm   we get, respectively, for rotational and escape velocity at the radius r  the following 

expressions 

                                                                          12  rrGMrv ,                                                              (63) 

  

                                                                         12

esc 2  rrGMv ,                                                               (64) 

  

and after substitution in (62), we get the very important expression for the dynamic gravitational 

acceleration at the galactic scale 

                                                                          
 
r

rv 2

2

1
Λ  .                                                                  (65) 

Furthermore, in view of the fact that  

                                                                           
 

ra
2

2

r

rv
 ,                                                                   (66) 

 

which is, in terms of vector, the classical centrifugal acceleration, hence according to (66), we have 

 

                                                                              aΛ
2

1
 .                                                                     (67) 

Or in terms of force vector 

                                                                           aF m
2

1
D  .                                                                  (68)            

 

As we can remark it easily, the second term in brackets in Eq.(68) represents the well-known Newton’s 

second law that governing the classical dynamics thus Eq.(68) may be obviously written as fF
2

1
D  . But 

what does Eq.(68) mean? Firstly, it means that at the galactic level, the dynamic gravitational force DF  is 

always equal to the half of the inertial force af m ; secondly since DF  is in fact an additional force thus 

this signifies, among other things, that at large-scale structures the force defined by Newton‘s second law is 

not really a single force as in the common classical sense, but a resultant F of two forces f and DF , that is  

 

                                                                               DFfF  .                                                                 (69) 

 

Consequently, if the baryonic (luminous) matter is evidently the main responsible for f this immediately 

implies that the other component DF is causally due to the permanent presence of some invisible matter 

which should be, of course, the DM. Therefore, according to Eq.(68), the DM is not strictly speaking inert, 

on the contrary, it is gravitationally very active and this dynamicity is largely reflected in the manifestation 

of DF  itself as an additional force. Therefore,  if we take into account the universal equivalence between 

inertial mass and gravitational mass, we obtain  from Eq.(69) the net force applied by DM on the moving 
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ordinary matter: fFF D  and precisely for that reason the dynamic gravitational field-

force
D,FΛ should be induced by the motion of ordinary matter under the permanent gravitodynamical 

influence of DM and in such situation Eq.(68) tells us that there is a direct gravitodynamical link between 

moving ordinary matter and DM. Accordingly, the gravitodynamical study of DM’s effects on the moving 

ordinary matter should depending exclusively on the couple 
D,FΛ , i.e., Eqs.(67) and (68). It seems to us 

that the incomprehension of the mentioned process of DM’s gravitodynamical influence has urged some 

researchers to conclude from this incomprehension that the Newton’s second law is not applicable to 

galactic scales. For example, in his very interesting  pedagogical article entitled ‘Does Dark Matter Really 

Exist?’ published in Scientific American, August 2002, Milgrom wrote “When the acceleration is much 

large than 0a , Newton’s second law applies as usual: force is proportional to acceleration. But when the 

acceleration is small compared with 0a , Newton’s second law is altered: force becomes proportional to the 

square of the acceleration. By this scheme, the force needed to impart a given acceleration is always smaller 

than Newtonian dynamics requires. To account for the observed accelerations in galaxies, MOND predicts a 

smaller force–hence, less gravity-producing mass–than Newtonian dynamics does (…). In this way, it can 

eliminate the need for dark matter.” In one sense, Milgrom’s claim was/is correct since his 0a  is 

exceptionally very comparable to the magnitude of (67), i.e., a
2

1
Λ   as we will see more explicitly. 

However, the exclusion of DM from the existence is a mistake mainly caused by the above mentioned 

incomprehension because, here, Milgrom –as a father of MOND– has consciously or unconsciously omitted 

to think of the causal origin of 0a  at large-scale structures and the universality of the equivalence between 

inertial and gravitational mass!   

       As an additional clarification, let us show that conceptually the Milgram’s law for 0aa   is a 

particular case of (65). To this end, substituting Λ  for 0Λ  in (65), and after multiplying the two sides by 

the quantity N2a , where Na  is the Newtonian acceleration in MONDian sense, we get 

  N

12

N02Λ arrva  ; finally if we consider the particular situation   N

122 arrva  , we obtain the 

expected formula 

                                                                        N02Λ aa                                                                         (70) 

 

This is remarkably very similar to Milgrom’s law (59).  We can also deduce an expression more general 

than Milgram’s interpolating function.  In the CGA’s context, we call such a function: functional relation. 

To this end, let us rewrite the vectorial Eq.(69) in terms of acceleration vector fields as follows 

  

                                                                           Λag  .                                                                          (71) 

  

By applying the well-known definition of the scalar product of two vectors θcosBABA  , we get 

 

                                                          222 cos2 ΛΛaag  θ .                                                     (72) 

 

Where θ  is between a  andΛ , hence from (72) we get in terms of magnitude    

                                                                                                   

                                           
221

cos21 
 aΛaΛag θ .                                              (73) 

 

Since according to (67), we have always aΛ  thus by dividing the two sides of (73) by Λ  and 

putting, respectively, 
1

 aΛx and 
11   Λgη  we obtain the very expected functional relation             
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                                                       
2cos21 xθx

x
xηη θ


 ,                                                          (74)  

with                                             

                                                 
1

 aΛx ;   aΛ   ;  Λa , .                                               (75)                                       

 

The functional relation  xηθ  is important because containing some physical and geometrical information 

about acceleration vector fields. To be precise, the modulus x  defines the magnitude ratio of acceleration 

vector fields and the argument θ  defines the angular position of Λwith respect to a in the reference frame 

of the galaxy under consideration. Moreover, the expression of the functional relation (74) is more general 

than that of Milgram’s interpolating function (60). Concretely, we can recover the expression 

  2/121)(


 xxx for the case 2/  , i.e., when aΛ , and also we can recover the expression 

  1
1)(


 xxx of Famaey-Binney [37] for the case 0 , i.e., when aΛ // . It follows from this that, in 

fact, the interpolating functions proposed by Milgram and Famaey-Binney are not fortuitously suggested or 

needed as a mathematical artifact but have quantitatively and qualitatively a deep role and meaning. Hence 

MOND itself is theoretically incorporated in CGA.   

       Now, returning to our scenario. In order to make it heuristically and adequately close to reality and 

without specifying the shape, we attribute to our typical galaxy an average total mass   Θ

11102 MrM  , 

average radius 02Rr  , and the galactic (rotation) constants of kpc5.80 R  and 
1

0 skm229 V . Thus our 

typical galaxy becomes realistically very comparable to the Milky Way.   

 

6.1. Third typical galactic constant 
 

Since the dynamic gravitational acceleration at the galactic scale (65) has mathematical structure of 

function, i.e.,  vr,ΛΛ  , therefore, in addition to the above adopted standard (rotation) constants, we have 

another, which has the dimensions of a constant acceleration and defined for 0Rr  and 0Vv  , 

respectively, as follows: 

                                                               210

0000 sm101,ΛΛ  VR .                                                    (76) 

 

According to (61), the numerical value of third typical galactic constant 0Λ  is exactly equal to the minimal 

value of 0a , viz., 210 sm101  . Moreover, we can evaluate the minimal value of the dynamic gravitational 

acceleration at the average radius 02Rr   with the help of average total mass )(rM  of the typical galaxy 

and by taking into account the expression (63) of rotational velocity at Rr  , we get after substitution in 

(65)                                                                                            

                                                                
211

min sm10828920.4Λ  .                                                      (77) 

 

Form (76) and (77), we obtain the following relation 

 

                                                                        0min Λ
2

1
Λ  .                                                                   (78) 

 

It follows from (78) that 0Λ  may be used as an acceleration-scale at galactic level exactly like 0a in 

MOND’s framework. Hence, from all that we arrive at the following result: according to CGA, MOND is 

the natural sister of DM with only different family name! This result coincides perfectly with Milgrom’s 

conclusion that ending the above mentioned article “But it is possible that MOND follows from the dark 

matter paradigm in a different way. Time will tell.”   

 



 

 

19   

6.2. Galactic rotation curves 

 

In galaxies, particularly spiral ones, the presence of large quantities of invisible matter with a distribution 

different from baryonic (luminous) matter is now to be very well established. It seems the primary 

observational evidence for the existence of DM comes from optical and 21 cm rotation curves of spiral 

galaxies which do not show the expected Keplerian drop-off at large radii but remains flat or even rise over 

their entire observed range Faber [39]; Bosma [47]; Rubin et al., [48] . Theoretically, this DM is supposed 

to be in the form of a spherical (halo) component in order to stabilize the spiral disks against bar instabilities 

Ostriker and Peebles [49]. But the physical and chemical structure and propriety of DM are still completely 

unknown.  

      To exemplify the practical applicability of the formalism developed here, we first determine the shape 

and behavior of rotation curve of our typical galaxy by deriving from (65) an expression for the rotational 

velocity  rv  as a function of the radial distance r  02Rr   

 

                                                                rrv 2Λ , 02Rr  .                                                            (79) 

 

It seems heuristically more convenient for the purpose of our scenario to rewrite (79) for the special case  

0ΛΛ   to obtain the following expected function  

 

                                                             rrv 02Λ , 02Rr  .                                                              (80) 

 

Now, with the help of Mathematica5, we plot the function (80) for 
210

0 sm101  . With this aim, we 

have conveniently converted  kpc17;0  to  m1025.5;0
20

 and  -1
skm300;0  to  -15

sm103;0   
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                                     Figure 2. Rotation curve of a typical galaxy of average total mass Θ

11
102)( MrM    

                                     and average  radius kpc17r using  the function (80) for 
210

0 sm101


 . 

 

In Fig.2 we have constructed the rotation curve of our typical galaxy. This rotation curve obtained through 

CGA’s formalism illustrates the general shape and behavior of the majority of rotation curves of the well-

observed galaxies.                                                                
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7. Tully-Fisher relation 

 

Historically, the Cepheid variable stars were the primary means by which distances are measured over the 

local volume of space. However, beyond about Mpc20  Cepheids become too faints, even for Hubble 

Space Telescope, and so astronomers thought about an alternative means of measuring distances are needed.      

       Fortunately, one solution came from the several astronomical observations that show more conclusively 

that for disc galaxies the fourth power of the rotational velocity of stars moving around the core of the 

galaxy is proportional to the total luminosity of the galaxy  Lv 4 , this is well-known as the (empirical) 

Tully-Fisher relation [50]. Since L  itself is proportional to the mass M of the galaxy, therefore we will find 

Mv 4 . Like Milgrom’s law under the expression (70), let us show that an equivalent expression to Tully-

Fisher relation may be naturally occurred from CGA’s formalism as follows: we have from (63) 
2/ vGMr   and after direct substitution in (65), we get immediately the desired relation 

 

                                                                                MGv Λ24  .                                                            (81) 

 

This is exactly the Tully-Fisher relation under another expression, which here may be called ‘mass-

rotational velocity relation’ Furthermore, it is worthwhile to note that according to the above law, there are 

two types of dependence, namely implicit and explicit dependence. More precisely, in (81), the quantity is 

depending implicitly on the radial distance r , and also it is depending explicitly on the mass 

 rMM  which itself is inside the radius r . Consequently, the rotational velocity is not strictly speaking 

independent of the radial distance. A very analogous relation has been already found in MOND’s context 

for the special case 0ΛΛ  , namely 

                                                                               MGv 0

4 Λ2 .                                                            (82)                                                                         

 

Since the proportionality coefficient 0Λ2G  is constant thus we have really Mv 4 and accordingly we 

deduce from (82) the two following significant relations   

                                                                               

                                                                                4/1

0Λ2 MGv  ,                                                          (83)                                                                               

                                                                         

                                                                               41

0Λ2 vGM


 .                                                        (84) 

 

Now, let us illustrate graphically the double importance of the relation (82), i.e., when 4v  and v  are, 

respectively, considered as functions of the same (distributed) average total mass, M , of the typical galaxy 

in question. The first graph should have the same usual aspect and behavior of that defined by the original 

expression of Tully-Fisher relation [50] and the second graph should have, in general, the same standard 

aspect and behavior of the observed rotation curves. With this aim, we have conveniently converted 

 Θ11
102;0 M  to  kg104;0

41
  and  1-

skm300;0  to  15 -
sm103;0  ; and as before, with the help of 

Mathematica5, we plot the functions (82) and (83) for 
210

0 sm101  . 
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                            Figure 3. Fourth power of the rotational velocity, 
4

v , plotted versus the distributed average total  

                            mass, M , of a typical galaxy using mass-rotational velocity relation (82) for 
210

0 sm101


 . 

 

In Fig.3 we have plotted 4v  as a function of M . The graph illustrates perfectly the correlation between   

fourth power of the rotational velocity and the distribution of the average total mass of a typical galaxy. 

This is in good agreement with the original empirical Tully-Fisher relation and the usual aspect and 

behavior of the observed curves. 
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                                   Figure 4. The rotational velocity, v , plotted versus the distributed average total mass 

                                  M of a typical galaxy using relation (84) for 
210

0 sm101


 . 

 

In Fig.4, we have plotted the rotational velocity, v , as a function of the distributed average total mass M of 

a typical galaxy. As we can remark it, the illustrated rotation curve is in good conformity with the standard 

aspect and behavior of the observed rotation curves. Moreover, this result has a number of interesting 

implications. First, according to (82) and (83), there is an apparently universal correlation between baryonic 

mass and rotational velocity through the gravitodynamical influence of DM, which is phenomenologically 

reflected by the presence of the dynamic gravitational accelerations 0 in (82) and (83). Secondly, the 

mass-rotational velocity relation (82) or (83) provides the physical basis to the empirical Tully-Fisher 

relation that remained unclear before the CGA advent. 
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        8. Conclusion 

 

The CGA could be regarded as an alternative gravitational model to compare with the others that have 

already existed for a long time.  As we have seen, the CGA enabled us to study and solve some old and 

new problems related to gravitational phenomena through a novel comprehension and interpretation of 

the gravity itself; the famous Newton’s law of gravitation was corrected and reformulated in a new more 

general form [1,2,3]. In the CGA’s context, dark matter ’hypothesis’ and MOND paradigm have been 

finally reconciled with each other; and also the empirical Tully-Fisher relation has found its physical 

basis. 
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