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Abstract

First, the basic concept multivector functions and their vector de-
rivative in geometric algebra (GA) is introduced. Second, beginning
with the Fourier transform on a scalar function we generalize to a
real Fourier transform on GA multivector-valued functions (f : R3 →
Cl3,0). Third, we show a set of important properties of the Clifford
Fourier transform (CFT) on Cl3,0 such as differentiation properties,
and the Plancherel theorem. We round off the treatment of the CFT
(at the end of this tutorial) by applying the Clifford Fourier transform
properties for proving an uncertainty principle for Cl3,0 multivector
functions.

For wavelets in GA it is shown how continuous Clifford Cl3,0-
valued admissible wavelets can be constructed using the similitude
group SIM(3), a subgroup of the affine group of R3. We express the
admissibility condition in terms of the CFT and then derive a set of
important properties such as dilation, translation and rotation covari-
ance, a reproducing kernel, and show how to invert the Clifford wavelet
transform of multivector functions. We explain (at the end of this tu-
torial) a generalized Clifford wavelet uncertainty principle. For scalar
admissibility constant it sets bounds of accuracy in multivector wa-
velet signal and image processing. As concrete example we introduce
multivector Clifford Gabor wavelets, and describe important proper-
ties such as the Clifford Gabor transform isometry, a reconstruction
formula, and (at the end of this tutorial) an uncertainty principle for
Clifford Gabor wavelets.

Keywords: vector derivative, multivector-valued function, Clif-
ford (geometric) algebra, Clifford Fourier transform, uncertainty prin-
ciple, similitude group, geometric algebra wavelet transform, geometric
algebra Gabor wavelets.
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1 Introduction to geometric algebra Fourier trans-
formation

In the field of applied mathematics the Fourier transform has developed into
an important tool. It is a powerful method for solving partial differential
equations. The Fourier transform provides also a technique for signal analy-
sis where the signal from the original domain is transformed to the spectral
or frequency domain. In the frequency domain many characteristics of the
signal are revealed. But how to extend the Fourier transform to geometric
algebra?

Brackx et al. [1] extended the Fourier transform to multivector valued
function-distributions in Cl0,n with compact support. A related applied
approach for hypercomplex Clifford Fourier transformations in Cl0,n was
followed by Bülow et. al. [12]. In [14], Li et. al. extended the Fourier
transform holomorphically to a function of m complex variables.

In this tutorial we adopt and expand the generalization of the Fourier
transform in Clifford geometric algebra1 G3 recently suggested by Ebling
and Scheuermann [10]. We explicitly show detailed properties of the real2

1In the geometric algebra literature [4] instead of the mathematical notation Clp,q

the notation Gp,q is widely in use. It is convention to abbreviate Gn,0 to Gn. We will
use the words Clifford algebra and geometric algebra interchangably, similarly the no-
tions of geometric algebra FT and Clifford FT, and we will use both notations Clp,q and
Gp,q. Nowadays geometric algebra is often understood as Clifford algebra together with
geometric interpretation based on the underlying vector space and its subspaces.

2The meaning of real in this context is, that we use the three dimensional volume
element i3 = e123 of the geometric algebra G3 over the field of the reals R to construct
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Clifford geometric algebra Fourier transform (CFT), which we subsequently
use (at the end of this tutorial) to define and prove the uncertainty principle
for G3 multivector functions. In this tutorial we closely follow the approach
described in [15, 16, 17, 35].

In the next section we briefly review the basics of GA, including the
definition of multivector functions. Then we briefly study the vector deri-
vative for a multivector valued function. We demonstrate that with a little
modification it obeys rules which resemble the rules for a scalar partial deri-
vative. Having laid these foundations we define the CFT and study some of
its basic properties. A thorough undertstanding of the CFT will be essential
for constructing Clifford wavelets later in this tutorial.

2 Clifford’s geometric algebra

In this section we introduce the axioms and the vector derivative of geometric
algebra. Fore more details we refer the reader to [4, 7].

2.1 Axioms of geometric algebra

For Gn to be a Clifford geometric algebra over the real n-dimensional Eu-
clidean vector space Rn, the geometric product of elements A, B, C ∈ Gn
must satisfy the following axioms:

Axiom 2.1 Addition is commutative:

A+B = B +A.

Axiom 2.2 Addition and the geometric product are associative:

(A+B) + C = A+ (B + C), A(BC) = (AB)C,

and distributive:

A(B + C) = AB +AC, (A+B)C = AC +BC.

Axiom 2.3 There exist unique additive and multiplicative identities 0 and
1 such that:

A+ 0 = A, 1A = A.

the kernel of the Clifford Fourier transformation of definition 3.3. This i3 has a clear
geometric interpretation.
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Axiom 2.4 Every A in Gn has an additive inverse:

A+ (−A) = 0.

Axiom 2.5 For any nonzero vector a in Gn the square of a is equal to a
unique positive scalar |a|2, that is

aa = a2 = |a|2 > 0.

Depending on the signature of the underlying vector space Rp,q zero and
negative squares of vectors will also occur.

Axiom 2.6 Every k-vector, Ak = a1a2...ak, can be factorized into pairwise
orthogonal vector factors, which satisfy:

aiaj = −ajai, i, j = 1, 2, ..., k and i 6= j.

2.2 Clifford’s geometric algebra G3 of R3

Let us consider an orthonormal vector basis {e1, e2, e3} of the real 3D Eu-
clidean vector space R3. The geometric algebra over R3 denoted by G3 then
has the graded 23 = 8-dimensional basis

{1, e1, e2, e3, e12, e31, e23, e123}, (2.1)

where 1 is the real scalar identity element (grade 0) of Axiom 2.3, e1, e2, e3

are the R3 basis vectors (grade 1), e12 = e1e2, e31 = e3e1, and e23 =
e2e3 are frequently used definitions for the basis bivectors (grade 2), and
e123 = e1e2e3 = i3 defines the unit oriented pseudoscalars3 (grade 3), i.e.
the highest grade blade element in G3.

The associative geometric multiplication of the basis vectors obeys ac-
cording to the axioms

ek el = −el ek for k 6= l, k, l = 1, 2, 3,
e2
k = 1 for k = 1, 2, 3.

Inner products obey therefore

ek · el =
1
2
(ekel + elek) = δkl, k, l = 1, 2, 3.

3Other names in use are trivector or volume element.
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According to these rules the Clifford (geometric) product of two arbitrary
grade 1 vectors x, y comprises the inner product and the outer product, i.e.
the symmetric scalar part and the antisymmetric bivector part:

xy = x · y + x ∧ y,

where in coordinates

x · y =
1
2
(xy + yx)

= (x1e1 + x2e2 + x3e3) · (y1e1 + y2e2 + y3e3)
= x1y1 + x2y2 + x3y3,

and

x ∧ y =
1
2
(xy − yx)

= (x1y2 − x2y1)e12 + (x3y1 − x1y3)e31 + (x2x3 − x3x2)e23.

The general elements of a geometric algebra are called multivectors. Ev-
ery multivector M can be represented as a linear combination of k -grade
elements (k = 0, 1, 2, 3). It means that in G3 a multivector can be ex-
pressed as

M =
∑
A

αAeA = α0︸︷︷︸
scalar part

+α1e1 + α2e2 + α3e3︸ ︷︷ ︸
vector part

+

+ α12e12 + α31e31 + α23e23︸ ︷︷ ︸
bivector part

+ α123e123︸ ︷︷ ︸
trivector part

, (2.2)

where A ∈ {0, 1, 2, 3, 12, 31, 23, 123}, and αA ∈ R. Note that i3 = e123

commutes with all other elements of G3 and squares to i23 = -1. The grade
selector is defined as 〈M〉k for the k-vector part of M , especially 〈M〉 =
〈M〉0. Then equation (2.2) can be rewritten as

M = 〈M〉+ 〈M〉1 + 〈M〉2 + 〈M〉3. (2.3)

The reverse of M is defined by the anti-automorphism

M̃ = 〈M〉+ 〈M〉1 − 〈M〉2 − 〈M〉3, (2.4)

which fulfils (̃MN) = ÑM̃ for every M,N ∈ G3. The square norm of M is
defined by

‖M‖2 = 〈MM̃〉, (2.5)
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Table 2.1: Multiplication table of G3 basis elements.

1 e1 e2 e3 e12 e31 e23 e123

1 1 e1 e2 e3 e12 e13 e23 e123

e1 e1 1 e12 −e31 e2 −e3 e123 e23

e2 e2 -e12 1 e23 -e1 e123 e3 e31

e3 e3 e31 −e23 1 e123 e1 −e2 e12

e12 e12 −e2 e1 e123 -1 e23 −e31 −e3

e31 e31 e3 e123 −e1 −e23 -1 e12 −e2

e23 e23 e123 −e3 e2 e31 −e12 -1 −e1

e123 e123 e23 e31 e12 −e3 −e2 −e1 -1

where
〈MÑ〉 = M ∗ Ñ =

∑
A

αAβA (2.6)

is a real valued (inner) scalar product for any M,N in G3 with M of equation
(2.2) and N =

∑
A βAeA. Note that

〈M N〉 = 〈N M〉 = 〈M̃ Ñ〉 = 〈Ñ M̃〉, (2.7)

and that
x2 ‖M‖2 = ‖x‖2‖M‖2 = ‖xM‖2, x ∈ R3 (2.8)

For N = M in (2.6) we can re-express (2.5) as

‖M‖2 =
∑
A

α2
A. (2.9)

We can therefore show that the norm satisfies4 the inequality

〈MÑ〉 ≤ ‖M‖ ‖N‖ for all M,N ∈ G3. (2.10)

As a consequence of equation (2.10) we obtain the multivector Cauchy-
Schwarz inequality

|〈MÑ〉|2 ≤ ‖M‖2 ‖N‖2 for all M,N ∈ G3. (2.11)

4Compare appendix A for the proof of (2.10) and (2.11).
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2.3 Multivector functions, vector differential and vector de-
rivative

Let f = f(x) be a multivector-valued function of a vector variable x in G3

(compare the expansion of f in the basis (2.1) as given in (3.4)). For an
arbitrary vector a ∈ R3 we define5 the vector differential in the a direction
as

a · ∇f(x) = lim
ε→0

f(x + εa)− f(x)
ε

(2.12)

provided this limit exists and is well defined. The basis independent vector
derivative ∇ defined in [4, 7] obeys equation (2.12) for all vectors a and can
be expanded as

∇ = ek∂k = e1∂1 + e2∂2 + e3∂3, (2.13)

where
∂k = ek · ∇ =

∂

∂xk
, k = 1, 2, 3 (2.14)

is the scalar partial derivative with respect to the kth coordinate xk = x ·ek.
The properties of a vector differential applied to multivector functions

resemble much that of one dimensional scalar differentiation sum, constant
multiple, product, and chain rules. For example, if f and g are multivector
functions of x, then the sum rule gives

a · ∇(f + g) = a · ∇f + a · ∇g, (2.15)

and the product rule gives

a · ∇(fg) = (a · ∇f)g + fa · ∇g. (2.16)

If α is a real scalar constant, the constant multiple rule yields

a · ∇(αf) = α(a · ∇f). (2.17)

Finally, if f = f(λ(x)) where λ = λ(x) is a scalar function of x, then the
chain rule leads to

a · ∇f = (a · ∇λ)
∂f

∂λ
. (2.18)

By using (2.12) and definition 17 of [7] we can derive the general rules6 for
vector differentiation from the corresponding rules for the vector differential
as follows:

5Bracket convention: A·BC = (A·B)C 6= A·(BC) and A∧BC = (A∧B)C 6= A∧(BC)
for multivectors A,B,C ∈ Gp,q. The vector variable index x of the vector derivative is
dropped: ∇x = ∇ and a · ∇x = a · ∇, but not when differentiating with respect to a
different vector variable (compare e.g. proposition 2.10).

6Compare [4, 7] for the frame (basis) independent proofs of these propositions.
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Proposition 2.7 ∇(f + g) = ∇f +∇g.

Proposition 2.8 ∇(fg) = (∇̇ḟ)g + ∇̇fġ = (∇̇ḟ)g +
∑n

k=1 ekf(∂kg).
(Multivector functions f and g do not necessarily commute.)

Proposition 2.9 Forf(x) = g(λ(x)), λ(x) ∈ R,

a · ∇f = {a · ∇λ(x)}∂g
∂λ

Proposition 2.10 ∇f = ∇a (a · ∇f) (derivative from differential)

Differentiating twice with the vector derivative, we get the differential Lapla-
cian operator ∇2. We can write ∇2 = ∇ · ∇ + ∇ ∧ ∇. But for integrable
functions ∇∧∇ = 0. In this case we have ∇2 = ∇ · ∇.

Proposition 2.11 (integration of parts)∫
R3

g(x)[a·∇h(x)]d3x =
[∫

R2

g(x)h(x)d2x

]a·x=∞
a·x=−∞

−
∫

R3

[a·∇g(x)]h(x)d3x

We illustrate proposition 2.11 by inserting a = e3, i.e.∫
R3

g(x)[∂3h(x)]d3x =
[∫

R2

g(x)h(x)dx1dx2

]x3=∞

x3=−∞
−
∫

R3

[∂3g(x)]h(x)d3x,

which is nothing but the usual integration of parts formula for the partial
derivative ∂3h(x).

It is convenient to introduce an inner product of R3 → Cl3,0 functions
f, g as follows

(f, g)L2(R3;Cl3,0) =
∫

R3

f(x)g̃(x) d3x =
∑
A,B

eAẽB

∫
R3

fA(x)gB(x) d3x.

(2.19)
In (2.19) the inner product ( , )L2(R3;Cl3,0) satisfies the following conditions[1]

(f, g + h)L2(R3;Cl3,0) = (f, g)L2(R3;Cl3,0) + (f, h)L2(R3;Cl3,0),

(f, λg)L2(R3;Cl3,0) = (f, g)L2(R3;Cl3,0)λ̃,

(fλ, g)L2(R3;Cl3,0) = (f, gλ̃)L2(R3;Cl3,0),

(f, g)L2(R3;Cl3,0) = (̃g, f)L2(R3;Cl3,0). (2.20)
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where f, g ∈ L2(R3;Cl3,0), and the constant multivector λ ∈ Cl3,0. The
scalar part of the inner product gives the L2-norm

‖f‖2
L2(R3;Cl3,0) =

〈
(f, f)L2(R3;Cl3,0)

〉
=

∫
R3

f(x) ∗ f̃(x)d3x
(2.6)
=
∫

R3

∑
A

f2
A(x)d3x. (2.21)

In particular for g = af, f, g ∈ L2(R3;Cl3,0), a ∈ R3 we get because of
〈af ãf〉0 = 〈aff̃a〉0 = 〈a2ff̃〉0 = a2f ∗ f̃

‖af‖2
L2(R3;Cl3,0) =

∫
R3

a2f(x) ∗ f̃(x)d3x =
∫

R3

a2
∑
A

f2
A(x)d3x. (2.22)

Definition 2.12 (Clifford module) Let Cl3,0 be the real Clifford algebra
of 3D Euclidean space R3. A Clifford algebra module L2(R3;Cl3,0) is defined
by

L2(R3;Cl3,0) = {f : R3 −→ Cl3,0 | ‖f‖L2(R3;Cl3,0) <∞}. (2.23)

3 Clifford Fourier transform

In this section we present the Fourier transform in R and generalize it to
Clifford’s geometric algebra G3. Generalizations to other dimensions can be
found in [16, 17, 18].

3.1 Fourier transform in R

Popoulis [8] defined the Fourier transform and its inverse as follows:

Definition 3.1 For an integrable function f ∈ L2(R), the Fourier trans-
form of f is the function F{f}: R → C given by

F{f}(ω) =
∫

R
f(x) e−iωx dx, (3.1)

where i2=-1 is the unit imaginary, and exp(−iωx) = cos(ωx) + i sin(ωx).

The function F{f}(ω) has the general form

F{f}(ω) = A(ω) + iB(ω) = C(ω)eiφ(ω). (3.2)

C(ω) is called the Fourier spectrum of f(t), C2(ω) its energy spectrum, and
φ(ω) its phase angle.
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Table 3.1: Properties of the traditional Fourier transform

Property Function Fourier Transform
Linearity αf(x)+βg(x) αF{f}(ω)+ βF{g}(ω)
Delay f(x− a) e−iωaF{f}(ω)
Shift eiω0xf(x) F{f}(ω − ω0)
Scaling f(ax) 1

|a|F{f}(
ω
a )

Convolution (f ? g)(x) F{f}(ω)F{g}(ω)
Derivative f (n)(x) (iω)nF{f}(ω)
Parseval theorem

∫
R |f(x)|2 dx 1

2π

∫
R |F{f}(ω)|2 dω

Definition 3.2 If F{f}(ω) ∈ L2(R) and f ∈ L2(R), the inverse Fourier
transform is given by

F−1[F{f}(ω)] = f(x) =
1
2π

∫
R
F{f}(ω) eiωx dω. (3.3)

The following table 3.1 summarizes some basic properties of the Fourier
transform.

3.2 Clifford geometric algebra Fourier transform in G3

Consider a multivector valued function f(x) in G3, i.e. f : R3 → G3 where x
is a vector variable. With the help of equation (2.2) f(x) can be decomposed
as

f(x) =
∑
A

fA(x)eA = f0(x) + f1(x)e1 + f2(x)e2 + f3(x)e3

+ f12(x) e12 + f31(x)e31 + f23(x)e23 + f123(x)e123, (3.4)

where the fA are eight real-valued functions. Equation (3.4) can also be
written as (compare table 2.1)

f(x) = [f0(x) + f123(x)i3] + [f1(x) + f23(x)i3] e1

+ [f2(x) + f31(x)i3] e2 + [f3(x) + f12(x)i3] e3. (3.5)

Equation (3.5) can be regarded as a set of four complex functions. This mo-
tivates the extension of the Fourier transform to G3 multivector functions f .
We will call this the Clifford Fourier transform (CFT).
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Alternatively to (3.7), Bülow et. al. [12] extended the real Fourier trans-
form to the n-dimensional geometric algebra G0,n. This variant of the Clif-
ford Fourier transform of a multivector valued function in G0,n is given by

F{f}(ω) =
∫

Rn

f(x)
n∏
k=1

e−ek2πωkxkdnx, (3.6)

where

x =
k=n∑
k=1

xkek, ω =
k=n∑
k=1

ωkek, and ei · ej = −δij i, j = 1, 2, ..., n.

Yet in the following we will adopt (compare [10])

Definition 3.3 The Clifford Fourier transform of f(x) is the function F{f}:
R3 → G3 given by

F{f}(ω) =
∫

R3

f(x) e−i3ω·x d3x, (3.7)

where we can write ω = ω1e1 + ω2e2 + ω3e3, x = x1e1 + x2e2 + x3e3 with
e1, e2, e3 the basis vectors of R3. Note that7

d3x =
dx1 ∧ dx2 ∧ dx3

i3
(3.8)

is scalar valued (dxk = dxkek, k = 1, 2, 3, no summation). Because i3
commutes with every element of G3, the Clifford Fourier kernel e−i3ω·x will
also commute with every element of G3.

Theorem 3.4 The Clifford Fourier transform F{f} of f ∈ L2(R3,G3),∫
R3 ‖f‖2d3x <∞ is invertible and its inverse is calculated by

F−1[F{f}](x) = f(x) =
1

(2π)3

∫
R3

F{f}(ω) ei3ω·x d3ω. (3.9)

7The division by the geometric algebra unit volume element i3 in (3.8) to obtain a scalar
infinitesimal volume is a matter of choice. Defining instead the pseudoscalar d3xp = dx1∧
dx2 ∧ dx3 would work equally well. It would simply mean, that all integrals using d3xp

instead of d3x in this paper would have to be multiplied by −i3 = 1
i3

, which commutes
with every multivector.
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Proof Substituting equation (3.7) in equation (3.9) gives

F−1[F{f}](x) =
1

(2π)3

∫
R3

∫
R3

f(y) e−i3ω·y d3y ei3ω·x d3ω

=
∫

R3

f(y)
1

(2π)3

∫
R3

ei3(x − y)·ω d3ω d3y

=
∫

R3

f(y) δ(x − y) d3y

= f(x).

Equation (3.9) is called the Clifford Fourier integral theorem. It describes
how to get from the transform back to the original function f .

4 Basic properties of Clifford Fourier transform

We summarize some important properties of the Clifford Fourier transform
which are similar to the traditional scalar Fourier transform properties. Most
can be proved via substitution of variables.

4.1 Linearity

If f(x) = αf1(x)+βf2(x) for constants α and β, f1(x), f2(x) ∈ G3 then by
construction

F{f}(ω) = αF{f1}(ω) + βF{f2}(ω). (4.1)

4.2 Delay property

If the argument of f(x) is offset by a constant vector a, i.e. fd(x) =
f(x − a), then

F{fd}(ω) = e−i3ω·aF{f}(ω). (4.2)

Proof Equation (3.7) gives

F{fd}(ω) =
∫

R3

f(x − a)e−i3ω·x d3x.

We substitute t for x − a in the above expression, and get with d3x= d3t

F{fd}(ω) =
∫

R3

f(t)e−i3ω·ae−i3ω·t d3t

= e−i3ω·aF{f}(ω).

This proves (4.2).
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4.3 Scaling property

Let a be a positive scalar constant, then the Clifford Fourier transform of
the function fa(x) = f(ax) becomes

F{fa}(ω) =
1
a3
F{f}(ω

a
). (4.3)

Proof. Equation (3.7) gives

F{fa}(ω) =
∫

R3

f(ax)e−i3ω·x d3x.

We substitute u for ax, and get

F{fa}(ω) =
1
a3

∫
R3

f(u)e
−i3

(ω

a
· u

)
d3u

=
1
a3
F{f}(ω

a
).

4.4 Shift property

If ω0 ∈ R3 and f0(x) = f(x)ei3ω0·x, then

F{f0}(ω) = F{f}(ω − ω0) (4.4)

Proof Using equation (3.7) and simplifying it we obtain

F{f0}(ω) =
∫

R3

f(x)e−i3(ω−ω0)·x d3x

= F{f}(ω − ω0).

The shift property shows that the multiplication by ei3ω0·x shifts the CFT
of the multivector function f(x) so that it becomes centered on the point
ω = ω0 in the frequency domain.

5 Differentiation of Clifford Fourier transform

The CFT differentiation properties also resemble that of the traditional
scalar Fourier transform of table 3.1.
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5.1 Vector differential and partial differentiation

The Clifford Fourier transform of the vector differential of f(x) is

F{a · ∇f}(ω) = i3 a · ωF{f}(ω). (5.1)

The vector differential in the a direction is

a · ∇f(x) = a · ∇ 1
(2π)3

∫
R3

F{f}(ω) ei3ω·x d3ω

=
1

(2π)3

∫
R3

F{f}(ω) (a · ∇ei3ω·x) d3ω

Prop. 2.9
=

1
(2π)3

∫
R3

F{f}(ω) (i3 a · ω)ei3ω·x d3ω

= F−1[i3 a · ωF{f}](x).

This proves (5.1). Setting a = ek we get for a partial derivative of f(x)

F{∂kf}(ω) = i3ωkF{f}(ω), k = 1, 2, 3. (5.2)

By a similar calculation we can find the derivatives of second order, i.e.

F{a · ∇ b · ∇f}(ω) = −a · ω b · ω F{f}(ω). (5.3)

For a = ek, b = el we therefore get

F{∂k∂l}(ω) = −ωkωlF{f}(ω) k, l = 1, 2, 3. (5.4)

If x is a vector variable, then

F{xf(x)}(ω) = i3∇ωF{f}(ω) (5.5)

Proof Direct calculation gives

F{xf(x)}(ω) =
∫

R3

xf(x) e−i3ω·x d3x

=
∫

R3

x e−i3ω·xf(x) d3x

=
∫

R3

i3 ∇ω e−i3ω·xf(x) d3x

= i3 ∇ω

∫
R3

f(x) e−i3ω·x d3x

= i3∇ωF{f}(ω),
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because we get with propositions 2.9 and 2.10

∇ω e−i3ω·x = −i3 [∇ω (ω · x)] e−i3ω·x = −i3xe−i3ω·x. (5.6)

The Clifford Fourier transform of a · x f(x) gives

F{a · x f(x)}(ω) =
∫

R3

a · x f(x) e−i3ω·x d3x

=
∫

R3

f(x) a · x e−i3ω·x d3x

Prop. 2.9
=

∫
R3

f(x) i3 a · ∇ω e−i3ω·x d3x

= i3 a · ∇ω

∫
R3

f(x) e−i3ω·x d3x

= i3 a · ∇ωF{f}(ω). (5.7)

For a = ek (k = 1, 2, 3) we get

F{xk f(x)}(ω) = i3
∂

∂ωk
F{f}(ω). (5.8)

5.2 Vector derivative and Laplace operator

The Clifford Fourier transform of the vector derivative is

F{∇f}(ω) = i3ωF{f}(ω) (5.9)

and of the Laplace operator

F{∇2f}(ω) = −ω2F{f}(ω) (5.10)

Proof For g(x)= ei3λ(x), λ(x) = ω · x reference [7] gives

a · ∇g = a · ω i3 e
i3ω·x,

where we used proposition 2.9 and a ·∇(ω ·x) = a ·ω. Applying proposition
2.10, we obtain

∇g = ∇a (a · ∇g)
= ∇a {a · ω i3 e

i3ω·x}
= ∇a {a · ω} i3 ei3ω·x

= i3 ω ei3ω·x. (5.11)
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According to proposition 72 of [7], the application of (5.11) leads to

∇f(x) = ∇ 1
(2π)3

∫
R3

F{f}(ω)ei3ω·xd3ω

=
1

(2π)3

∫
R3

∇ ei3ω·xF{f}(ω) d3ω

=
1

(2π)3

∫
R3

i3ω ei3ω·xF{f}(ω) d3ω

= F−1[i3ωF{f}](x), (5.12)

and therefore
F{∇f}(ω) = i3ωF{f}(ω).

Vector differentiating equation (5.12) once more we get

F{∇2f} = F{∇(∇f)}
= i3ωF{∇f}(ω)
= −ω2F{f}(ω). (5.13)

In general8 we get

F{∇mf} = (i3ω)mF{f}(ω), m ∈ N. (5.14)

6 Convolution and CFT

The most important property of the Clifford Fourier tansform for signal pro-
cessing applications is the convolution theorem. Because of the
non-Abelian geometric product we have the following definition:

Definition 6.1 Let f and g be multivector valued functions and both have
Clifford Fourier transforms, then the convolution of f and g is denoted f?g,
and defined by

(f?g)(x) =
∫

R3

f(y)g(x − y) d3y, (6.1)

Theorem 6.2 The Clifford Fourier transform of the convolution of f(x)
and g(x) is equal to the product of the Clifford Fourier transforms of f(x)
and g(x), i.e

F{f?g}(ω) = F{f}(ω)F{g}(ω), (6.2)
8This general formula should prove very useful for transforming partial differential

equations (more precisely: vector derivative equations) into algebraic equations.
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Proof Let F{f}(ω) and F{g}(ω) denote the Clifford Fourier transforms of
f(x) and g(x) respectively. Transforming equation (6.1), we get

F{f?g}(ω) =
∫

R3

[
∫

R3

f(y)g(x − y)d3y] e−i3ω·x d3x

=
∫

R3

f(y)[
∫

R3

g(x − y) e−i3ω·x d3x] d3y.

By introducing the vector z = x − y, the transform can be reexpressed as

F{f?g}(ω) =
∫

R3

f(y)[
∫

R3

g(z) e−i3[ω·(y+z)] d3z] d3y

=
∫

R3

f(y)[
∫

R3

g(z) e−i3ω·z d3z] e−i3ω·y d3y

=
∫

R3

f(y)e−i3(ω·y) d3yF{g}(ω)

= F{f}(ω)F{g}(ω).

7 Plancherel and Parseval theorems

Just as in the case of the traditional scalar Fourier transform, the Plancherel
theorem in the geometric algebra G3 relates two multivector functions with
their Clifford Fourier transforms.

Theorem 7.1 Assume that f1(x), f2(x) ∈ G3 with Clifford Fourier trans-
form F{f1}(ω) and F{f2}(ω) respectively, then

〈f1(x) f̃2(x)〉V =
1

(2π)3
〈F{f1}(ω) ˜F{f2}(ω)〉V , (7.1)

where we define the volume integral

〈f1(x) f̃2(x)〉V =
∫

R3

f1(x)f̃2(x)d3x (7.2)
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Proof Direct calculation yields

〈f1(x) f̃2(x)〉V =
∫

R3

f1(x)f̃2(x)d3x

=
1

(2π)3

∫
R3

[
∫

R3

F{f1}(ω) ei3ω·xd3ω] f̃2(x)d3x

=
1

(2π)3

∫
R3

F{f1}(ω)
˜[∫

R3

f2(x) e−i3ω·x d3x

]
d3ω.

=
1

(2π)3

∫
R3

F{f1}(ω) ˜F{f2}(ω)d3ω

=
1

(2π)3
〈F{f1}(ω) ˜F{f2}(ω)〉V .

In particular, with f1(x) = f2(x) = f(x), we get the (multivector) Parseval
theorem, i.e.

〈f(x) f̃(x)〉V =
1

(2π)3
〈F{f}(ω) ˜F{f}(ω)〉V , (7.3)

Note that equation (7.1) is multivector valued. This theorem holds for each
grade k of the multivectors on both sides of equation (7.1)

〈〈f1(x) f̃2(x)〉V 〉k =
1

(2π)3
〈〈F{f1}(ω) ˜F{f2}(ω)〉V 〉k, k = 0, 1, 2, 3.

(7.4)
For k = 0 and according to equations (7.2) and (2.5), the (scalar) Parseval
theorem becomes∫

R3

‖f(x)‖2 d3x =
1

(2π)3

∫
R3

‖F{f}(ω)‖2 d3ω. (7.5)

Because of the similarity with equation (3.2) we call
∫

R3 ‖f(x)‖2 d3x the
energy of f . Finally, we summarize the properties of the Clifford Fourier
transform (CFT) in table 7.1.

8 Introduction to the geometric algebra treatment
of wavelets

Transformations such as the Fourier transformation are powerful methods
for signal representations and feature detection in signals. The signals are
transformed from the original domain to the spectral or frequency domain.
In the frequency domain many characteristics of a signal are seen more
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Table 7.1: Properties of the Clifford Fourier transform (CFT)

Property Multivector Function CFT
Linearity αf(x)+β g(x) αF{f}(ω)+ βF{g}(ω)
Delay f(x− a) e−i3ω·aF{f}(ω)
Shift ei3ω0·xf(x) F{f}(ω − ω0)
Scaling f(ax) 1

a3F{f}(ωa )
Convolution (f?g)(x) F{f}(ω)F{g}(ω)
Vec. diff. a · ∇f(x) i3 a · ωF{f}(ω)

a · x f(x) i3 a · ∇ω F{f}(ω)
xf(x) i3 ∇ω F{f}(ω)

Vec. deriv. ∇mf(x) (i3 ω)mF{f}(ω)

Plancherel T. 〈f1(x)f̃2(x)〉V 1
(2π)3

〈F{f1}(ω) ˜F{f2}(ω)〉V
sc. Parseval T.

∫
R3 ‖f(x)‖2 d3x 1

(2π)3

∫
R3 ‖F{f}(ω)‖2 d3ω

clearly. In contrast to the Fourier kernel, wavelet basis functions are local-
ized in both spatial and frequency domains and thus yield very sparse and
well-structured representations of piecewise smooth signals (signals that are
smooth except for a finite number of discontinuous jumps), important facts
from a signal processing point of view.

On the other hand Clifford geometric algebra leads to the consequent
generalization[1] of real and harmonic analysis to higher dimensions. Clifford
algebra accurately treats geometric entities depending on their dimension as
scalars, vectors, bivectors (plane area elements), and volume elements, etc.
The distinction of axial and polar vectors in physics, e.g. is resolved in the
form of vectors and bivectors. The quaternion description of rotations[6]
is fully incorporated in the form of rotors. With respect to the geometric
product of vectors division by non-zero vectors is defined. Clifford algebra
has applications in signal and image processing.[13]

This motivated Mitrea[29] to generalize discrete real wavelets to dis-
crete Clifford algebra wavelets. Some properties of these extended wavelets
were also demonstrated. This first work was then followed by Brackx and
Sommen[30, 31] who proposed an extension of real wavelets to the Clif-
ford algebra Cl0,n called the continuous Clifford wavelet transform. This
approach used a group composed of dilations, translations and the Spin-
group. Quaternion (Cl0,2) wavelets have been studied by Zhao and Peng,
[32] and applied by Bayro-Corrochano.[34] Zhao[33] also constructed con-
tinuous Clifford algebra Cl0,n-valued wavelets using the semi-direct product
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of closed GL(n,R) subgroups with the translation subgroup of Rn. Some
properties of these extended wavelets were investigated using the classical
Fourier transform.

The purpose in our tutorial is to construct Clifford algebra Cl3,0-valued
wavelets using the similitude group SIM(3) and then give a detailed expla-
nation of their properties using the Clifford Fourier transform (CFT).[15, 16]

Based on the uncertainty principle for the CFT we derive a generalized
Clifford wavelet uncertainty principle. For scalar admissibility constant the
interpretation of this uncertainty principle proceeds as usual.

As a concrete example we generalize complex Gabor wavelets to multi-
vector Clifford Gabor wavelets. Next, we describe some of their important
properties and we consequently establish an uncertainty principle for Clif-
ford Gabor wavelets.

The outline of the next part of the tutorial is as follows. In section 9, we
briefly review Clifford algebra, the CFT, and the similitude group SIM(3).
In section 10, we discuss the basic ideas for constructing the Clifford alge-
bra wavelet transform. We then derive important properties of our newly
constructed wavelet transform. In section 11, we present the example of
multivector Gabor wavelets and show to what extent the properties of these
Clifford Gabor wavelets resemble that of real wavelets.

Section 12 is devoted to uncertainty principles (minima of products of
variances) for the CFT and GA wavelets. For geometric algebra wavelets
we show a generalized Clifford wavelet uncertainty principle. This leads to
the uncertainty principle for the Clifford Gabor wavelet transform.

9 Wavelet basics: Similitude group

This section recalls the similitude group SIM(3) and its properties from the
viewpoint of wavelets.

We consider the similitude group SIM (3) denoted by G, a subgroup of
the affine group of motion on R3 associated with wavelets as follows (for
more details see [22])

G = R+ × SO(3)⊗ R3 = {(a, rθ, b)|a ∈ R+, rθ ∈ SO(3), b ∈ R3}, (9.1)

where SO(3) is the special orthogonal group of R3, and θ = (θ1, θ2, θ3)
with θ1 ∈ [0, π], θ2, θ3 ∈ [0, 2π]. Instead of (a, rθ, b) we often write simply
(a,θ, b). More precisely, we represent SO(3) of R3 by rotors R

SO(3) = {r | r(x) = R̃xR,R ∈ Cl+3,0, R̃R = RR̃ = 1}. (9.2)
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Any r ∈ SO(3) has a unique Euler angle representation with rotors of the
form

R = Rz(θ3)Ry(θ1)Rz(θ2), (9.3)

where Rz, Ry denote rotors about the z- and y-axes, respectively. Note that
the group G includes dilations, rotations and translations. The representa-
tion defined by (9.1) is consistent with the group action (a,θ, b) on R3 as
follows

(a,θ, b) : R3 → R3

x 7→ aR̃(θ)xR(θ) + b. (9.4)

The above leads to two important propositions.

Proposition 9.1 With respect to the representation defined by (9.1), G is a
non-abelian group in which (1, 1, 0) and (a−1, r−1,−a−1r−1(b) = −RbR̃/a)
are its identity element and inverse element, respectively.

Proposition 9.2 The left Haar measure9 on G (see [23]) is given by

dλ(a,θ, b) = dµ(a,θ)d3b,

dµ(a,θ) =
dadθ

a4
, dθ =

1
8π2

sin θ1dθ1dθ2dθ3, (9.5)

where dθ is the Haar measure on SO(3) (see [24]).

We often abbreviate dµ = dµ(a,θ), dλ = dλ(a,θ, b). Similar to (7.2)
the inner product of f(a,θ, b), g(a,θ, b) ∈ L2(G;Cl3,0) is defined by

(f, g)L2(G;Cl3,0) =
∫
G
f(a,θ, b) ˜g(a,θ, b) dλ(a,θ, b), (9.6)

and its associated scalar norm

‖f‖2
L2(G;Cl3,0) =

〈
(f, f)L2(G;Cl3,0)

〉
=
∫
G
f(a,θ, b) ∗ f̃(a,θ, b)dµ. (9.7)

10 Clifford algebra Cl3,0-valued wavelet transform

10.1 Wavelet family and Fourier transform

Based on the concepts of Clifford algebra, one can extend the real contin-
uous wavelet transform to a continuous Clifford wavelet transform. This

9The right Haar measure on G is dδ(a,θ, b) = dadθ
a
d3b.
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section constructs the Clifford algebra Cl3,0-valued wavelets from a group
theoretical point of view. We will see how some properties of the classical
wavelet transform are extended in the new construction. In particular we
look at the admissibility condition, inner product and norm identities, and
a reproducing kernel. We define the unitary linear operator

Ua,θ,b : L2(R3;Cl3,0) −→ L2(G;Cl3,0)

ψ(x) −→ Ua,θ,b ψ(x) = ψa,θ,b(x)

=
1
a3/2

ψ(r−1

θ
(
x− b

a
)). (10.1)

The family of wavelets ψa,θ,b are so-called daughter Clifford wavelets
with a ∈ R+ as dilation parameter, b ∈ R3 as the translation vector param-
eter, and θ as the SO(3) rotation parameters. The normalization constant
a−3/2 ensures that the norm of ψa,θ,b is independent of a, i.e.

‖ψa,θ,b‖L2(R3;Cl3,0) = ||ψ||L2(R3;Cl3,0). (10.2)

This can be seen from

‖ψa,θ,b‖
2
L2(R3;Cl3,0) =

∫
R3

∑
A

1
a3
ψ2
A(r−1

θ
(
x− b

a
)) d3x

=
1
a3

∫
R3

∑
A

ψ2
A(z)a3 det(rθ) d3z

=
∫

R3

∑
A

ψ2
A(z) d3z. (10.3)

Applying (2.21) to the last line of (10.3), we obtain the desired result. �
In the Cl3,0 Clifford Fourier domain, equation (10.1) can be represented

in the form

F{ψa,θ,b}(ω) = e−i3b·ωa
3
2 ψ̂(ar−1

θ
(ω)). (10.4)

Substituting (x− b)/a = y for the argument of (10.1) under the CFT inte-
gral of (10.4) gives

F{ψa,θ,b}(ω) =
∫

R3

1

a
3
2

ψ(r−1

θ
y)e−i3ω·(b+ ay)a3 d3y

= e−i3b·ωa
3
2

∫
R3

ψ(r−1

θ
y)e−i3aω · y d3y

= e−i3b·ωa
3
2 ψ̂(ar−1

θ
(ω)).

�
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10.2 Admissibility

Following Zhao[33] we call ψ ∈ L2(R3;Cl3,0) admissible wavelet if

Cψ =
∫

R+

∫
S0(3)

a3{ψ̂(ar−1

θ
(ω))}∼ ψ̂(ar−1

θ
(ω)) dµ, (10.5)

is an invertible multivector constant and finite at a.e. ω ∈ R3. The ad-
missibility condition is important to guarantee that the Clifford wavelet
transform is invertible as we will see later. We notice that for ω = 0 we get
ψ̂(0) =

∫
R3 ψ(x)ei30·x d3x = 0 for the scalar part of Cψ to be finite. There-

fore, like classical wavelets (see [25]), an admissible Clifford-valued mother
wavelet ψ ∈ L2(R3;Cl3,0) has to satisfy∫

R3

ψ(x) d3x =
∫

R3

ψA(x)eA d3x = 0, (10.6)

where ψA(x) are real-valued wavelets. It means that the integral of every
component of the Clifford mother wavelet is zero. The admissibility constant
(10.5) can be simplified to

Cψc =
∫

R3

˜̂
ψ(ξ)ψ̂(ξ)
|ξ|3

d3ξ. (10.7)

According to (10.5) it is not difficult to see that Cψ = C̃ψ. Consequently,
we have

Cψ = 〈Cψ〉+ 〈Cψ〉1, (10.8)

with positive scalar part (〈Cψ〉 > 0)

〈Cψ〉 =
∫

R3

〈{ψ̂(ξ)}∼ψ̂(ξ)〉 1
|ξ|3

dξ3 =
∥∥∥ |ξ|−3/2 ψ̂(ξ)

∥∥∥
L2(R3;Cl3,0)

(10.9)

=
∫

R3

[〈ψ̂(ξ)〉2 + 〈ψ̂(ξ)〉21 − 〈ψ̂(ξ)〉22 − 〈ψ̂(ξ)〉23]
1
|ξ|3

dξ3,

and vector part

〈Cψ〉1 =
∫

R3

〈{ψ̂(ξ)}∼ψ̂(ξ)〉1
1
|ξ|3

dξ3 (10.10)

=
∫

R3

[〈ψ̂(ξ)〉〈ψ̂(ξ)〉1 + 〈ψ̂(ξ)〉1 · 〈ψ̂(ξ)〉2 − 〈ψ̂(ξ)〉2 · 〈ψ̂(ξ)〉3]
1
|ξ|3

dξ3.

The inverse of Cψ is given by

C−1
ψ =

〈Cψ〉 − 〈Cψ〉1
〈Cψ〉2 − 〈Cψ〉21

. (10.11)

The inverse exists therefore if and only if 〈Cψ〉21 6= 〈Cψ〉2.
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10.3 Clifford wavelet transform

Definition 10.1 (Clifford wavelet transform) We define the Clifford wa-
velet transform with respect to the mother wavelet ψ ∈ L2(R3;Cl3,0) as fol-
lows

Tψ : L2(R3;Cl3,0) → L2(G;Cl3,0)

f → Tψf(a,θ, b) =
∫

R3

f(x) ˜ψa,θ,b(x) d3x

= (f, ψa,θ,b)L2(R3;Cl3,0). (10.12)

Note that in general the order of (10.12) is fixed because Clifford multipli-
cation is non-commutative. Alternatively, we may use a convolution (?) to
express (10.12) by

Tψf(a,θ, b) =
∫

R3

f(x) ˜ψa,θ,b(x) d3x = (f ? ψa,θ)(b) (10.13)

where
ψa,θ(x) =

1

a
3
2

ψ{(r−1

θ
(
−x

a
))}∼.

The Clifford wavelet transform (10.12) has a Clifford Fourier represen-
tation of the form

Tψf(a,θ, b) =
1

(2π)3

∫
R3

f̂(ω) ei3b·ωa
3
2 {ψ̂(ar−1

θ
(ω))}∼ d3ω (10.14)

Proof We have

Tψf(a,θ, b)
(10.12)

= 〈f, ψa,θ,b〉L2(R3;Cl3,0)

Planc. T.=
1

(2π)3
〈f̂ , ψ̂a,θ,b〉L2(R3;Cl3,0)

=
1

(2π)3

∫
R3

f̂(ω)
[
ψ̂a,θ,b(ω)

]∼
d3ω

(10.4)
=

1
(2π)3

∫
R3

f̂(ω) ei3b·ωa
3
2

[
ψ̂(ar−1

θ
(ω))

]∼
d3ω.

This proves (10.14). �
With the inverse CFT (10.14) becomes

Tψf(a,θ, b) = F−1
{
a

3
2 f̂(.)[ψ̂(ar−1

θ
(.))]∼

}
(b), (10.15)
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or equivalently

F(Tψf(a,θ, .))(ω) = a
3
2 f̂(ω){ψ̂(ar−1

θ
(ω))}∼. (10.16)

10.4 Properties of the Clifford wavelet transform

Theorem 10.2 (Left linearity) Let f, g ∈ L2(R3;Cl3,0) and ψ ∈ L2(R3;Cl3,0)
be a Clifford mother wavelet. The Clifford wavelet transform Tψ is a linear
operator, i.e.,

[Tψ(λf + µg)](a,θ, b) = λTψf(a,θ, b) + µTψg(a,θ, b), (10.17)

with multivector constants λ, µ in Cl3,0.

Theorem 10.3 (Translation covariance) Let ψ ∈ L2(R3;Cl3,0) be a Clif-
ford mother wavelet. If the argument of Tψf(x) is translated by a constant
x0 ∈ R3 then

[Tψf(· − x0)](a,θ, b) = Tψf(a,θ, b− x0). (10.18)

Proof Equation (10.12) gives

[Tψf(· − x0)](a,θ, b) =
∫

R
f(x− x0) ˜ψa,θ,b(x) d3x

=
∫

R
f(x− x0)

1
a3/2

[
ψ(a−1r−1

θ
(x− b)

]∼
d3x

=
∫

R3

f(y)
1
a3/2

[
ψ
(
a−1r−1

θ
(y − (b− x0))

)]∼
d3y

= Tψf(a,θ, b− x0).

Theorem 10.4 (Dilation covariance) Let ψ ∈ L2(R3;Cl3,0) be a Clif-
ford mother wavelet. If c is a real positive constant, then

[Tψf(c·)](a,θ, b) =
1
c3/2

Tψf(ac,θ, bc). (10.19)

Proof Equation (10.12) gives again

[Tψf(c·)](a,θ, b) =
∫

R3

f(cx)
1
a3/2

[
ψ(r−1

θ
(
x− b

a
))
]∼

d3x

=
∫

R3

f(y)
1
a3/2

[
ψ

(
r−1

θ
(
y/c− b

a
)
)]∼ 1

c3
d3y

=
1

c
3
2

∫
R3

f(y)
1

(ac)3/2

[
ψ

(
r−1

θ
(
y − bc

ac
)
)]∼

d3y

=
1
c3/2

Tψf(ac,θ, bc).
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Theorem 10.5 (Rotation covariance) Let ψ ∈ L2(R3;Cl3,0) be a Clif-
ford mother wavelet. If rθ and rθ0

are both rotations, then

[Tψf(rθ0
·)](a,θ, b) = Tψf(a,θ′, rθ0

b), (10.20)

with rotors Rθ′ = Rθ0
Rθ.

Proof Applying equation (10.12) and using the fact that the product of two
rotations is always a rotation,[3] we obtain

[Tψf(rθ0
·)](a,θ, b) =

∫
R3

f(rθ0
x) ˜ψa,θ,b(x) d3x

=
∫

R3

f(rθ0
x)
[
ψ(r−1

θ
(
x− b

a
))
]∼

d3x

=
∫

R3

f(y)

[
ψ

(
r−1

θ
(
r−1

θ0
y − b

a
)

)]∼
det−1(rθ) d3y

=
∫

R3

f(y)
[
ψ

(
r−1

θ
r−1

θ0
(
y − rθ0

b

a
)
)]∼

d3y

=
∫

R3

f(y)
[
ψ

(
(rθ0

rθ)−1(
y − rθ0

b

a
)
)]∼

d3y

= Tψf(a,θ′, rθ0
b),

where we omit brackets like rθ0
x = rθ0

(x). This proves (10.20). �
These four properties above correspond to classical wavelet transform prop-
erties. Now we will see the differences between the Clifford and the classical
wavelet transforms.

Theorem 10.6 (Inner product relation) Let ψ ∈ L2(R3;Cl3,0) be an
admissible Clifford mother wavelet and f, g ∈ L2(R3;Cl3,0) arbitrary. Then
we have

(Tψf, Tψg)L2(G;Cl3,0) = (fCψ, g)L2(R3;Cl3,0)

= 〈Cψ〉(f, g)L2(R3;Cl3,0) + (f〈Cψ〉1, g)L2(R3;Cl3,0). (10.21)

Before proving theorem 10.6 we remark that for 〈Cψ〉1 = 0 the operator
〈Cψ〉−1/2Tψ is an isometry from L2(R3;Cl3,0) to L2(G;Cl3,0).
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Proof By inserting (10.14) into the left side of (10.21), we obtain

(Tψf, Tψg)L2(G;Cl3,0)

=
∫
G
Tψf(a, b,θ) {Tψg(a, b,θ)}∼ d3bdµ

=
∫

R+

∫
S0(3)

a3

(2π)6
(
∫

R3

[
∫

R3

f̂(ω){ψ̂(ar−1

θ
(ω))}∼ei3b·ωd3ω∫

R3

{
(ĝ(ω′){ψ̂(ar−1

θ
(ω′))}∼ei3b·ω′

}∼
d3ω′]d3b)dµ. (10.22)

For abbreviation, we use the notation

Fa(ω) = f̂(ω){ψ̂(ar−1

θ
(ω))}∼, Ga(ω′) = ĝ(ω′){ψ̂(ar−1

θ
(ω′))}∼.

Equation (10.22) can then be rewritten as

(Tψf, Tψg)L2(G;Cl3,0)

=
1

(2π)6

∫
R+

a3

∫
S0(3)

(
∫

R3

[
∫

R3

Fa(ω)ei3b·ω d3ω∫
R3

{Ga(ω′)ei3b·ω
′}∼ d3ω′]d3b)dµ

(3.7)
=

1
(2π)6

∫
R+

a3

∫
S0(3)

(∫
R3

F̂a(−b) {Ĝa(−b)}∼d3b

)
dµ

P. T.=
∫

R+

∫
S0(3)

a3

(2π)3

(∫
R3

Fa(ξ)G̃a(ξ) d3ξ

)
dµ

=
∫

R3

1
(2π)3

(∫
R+

a3

∫
S0(3)

f̂(ξ){ψ̂(ar−1

θ
(ξ))}∼ ψ̂(ar−1

θ
(ξ))˜̂g(ξ) d3ξ

)
dµ

=
1

(2π)3

∫
R3

f̂(ξ)

(∫
R+

∫
S0(3)

a3{ψ̂(ar−1

θ
(ξ))}∼ ψ̂(ar−1

θ
(ξ))dµ

) ˜̂g(ξ) d3ξ

10.5=
1

(2π)3

∫
R3

f̂(ξ)Cψ ˜̂g(ξ) d3ξ

P. T.=
∫

R3

f(x)Cψ g̃(x) d3x = (fCψ, g)L2(R3;Cl3,0),

where P.T. denotes the Plancherel theorem of table 7.1. �
As a consequence of theorem 10.6, we immediately obtain

Corollary 10.7 (Norm relation) Let ψ ∈ L2(R3;Cl3,0) be a Clifford mother
wavelet that satisfies the admissibility condition (10.5). Then for any f ∈
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L2(R3;Cl3,0) we have

‖Tψf‖2
L2(G;Cl3,0) = 〈(fCψ, f)L2(R3;Cl3,0)〉 = Cψ ∗ (f, f)L2(R3;Cl3,0)

= 〈Cψ〉‖f‖2
L2(R3;Cl3,0) + 〈(f〈Cψ〉1, f)L2(R3;Cl3,0)〉 (10.23)

= 〈Cψ〉‖f‖2
L2(R3;Cl3,0) + 〈Cψ〉1 ∗ 〈(f, f)L2(R3;Cl3,0)〉1

According to (2.21) we can rewrite the left hand side of (10.23) in the form

‖Tψf‖2
L2(G;Cl3,0) =

∫
R3

∫
R+

∫
SO(3)

∑
A

〈Tψf(a,θ, b)〉2A dµd3b. (10.24)

10.5 Inverse Clifford wavelet transform, reproducing kernel

In the following we will first derive the important inverse Clifford Cl3,0
wavelet transform for multivector functions.

Theorem 10.8 (Inverse Clifford Cl3,0 wavelet transform) Let ψ ∈
L2(R3;Cl3,0) be a Clifford mother wavelet that satisfies the admissibility
condition (10.5). Then any f ∈ L2(R3;Cl3,0) can be decomposed as

f(x) =
∫
G
Tψf(a, b,θ)ψa,θ,bC

−1
ψ dµd3b,

=
∫
G
(f, ψa,θ,b)L2(R3;Cl3,0)ψa,θ,bC

−1
ψ dµd3b, (10.25)

the integral converging in the weak sense.

Proof Indeed, we have for every g ∈ L2(R3;Cl3,0)

(Tψf, Tψg)L2(G;Cl3,0) =
∫
G
Tψf(a,θ, b){Tψg(a,θ, b)}∼ dµd3b

=
∫
G

∫
R3

Tψf(a,θ, b)ψa,θ,b(x)g̃(x) d3xdµd3b

=
∫

R3

∫
G
Tψf(a,θ, b)ψa,θ,b(x)g̃(x) dµd3bd3x

=
(∫

G
Tψf(a,θ, b)ψa,θ,b dµd

3b , g

)
L2(R3;Cl3,0)

.(10.26)

Applying (10.21) of theorem 10.6 gives for every g ∈ L2(R3;Cl3,0)

(fCψ, g)L2(R3;Cl3,0) =
(∫

G
Tψf(a,θ, b)ψa,θ,b dµd

3b , g

)
L2(R3;Cl3,0)

.

(10.27)
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Taking the scalar part of (10.27) we obtain

〈(fCψ, g)L2(R3;Cl3,0)〉 = 〈
(∫

G
Tψf(a,θ, b)ψa,θ,b dµd

3b , g

)
L2(R3;Cl3,0)

〉.

(10.28)
Because the inner product identity (10.28) holds for every g ∈ L2(R3;Cl3,0)
(and in particular for all basis elements of the Clifford module of def. 2.12)
we conclude that

f(x)Cψ =
∫
G
Tψf(a, b,θ)ψa,b,θ(x) dµd3b , (10.29)

or equivalently, because of the assumed invertibility of Cψ

f(x) =
∫
G
Tψf(a, b,θ)ψa,b,θ(x)C−1

ψ dµd3b.

(10.12)
=

∫
G
(f, ψa,θ,b)L2(R3;Cl3,0)ψa,θ,bC

−1
ψ dµd3b. (10.30)

which completes the proof. �
Weak convergence of (10.25) means that for all g ∈ L2(R3;Cl3,0) holds

(
∫
G
Tψf(a, b,θ)ψa,θ,bdµd

3b C−1
ψ , g)L2(R3;Cl3,0) → (f, g)L2(R3;Cl3,0).

(10.31)
Using the properties of the inner product (2.20), it is not difficult to show

that (10.25) can alternatively be rewritten in the form (C−1
ψ = C̃−1

ψ because
of (10.11))

f(x) = C−1
ψ

∫
G
{ψa,b,θ}

∼ (ψa,θ,b , f̃ )L2(R3;Cl3,0) dµd
3b. (10.32)

Theorem 10.9 (Reproducing kernel) We define for an admissible Clif-
ford mother wavelet ψ ∈ L2(R3;Cl3,0)

Kψ(a,θ, b; a′,θ′, b′) = (ψa,θ,bC
−1
ψ , ψ

a′,θ′
,b′)L2(R3;Cl3,0). (10.33)

Then Kψ(a,θ, b; a′,θ′, b′) is a reproducing kernel in L2(G, dλ), i.e,

Tψf(a′,θ′, b′) =
∫
G
Tψf(a,θ, b)Kψ(a,θ, b; a′,θ′, b′) dλ. (10.34)
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Proof By inserting (10.25) into the definition of the Clifford wavelet trans-
form (10.12) we obtain

Tψf(a′,θ′, b′) =
∫

R3

{∫
G
Tψf(a,θ, b) ψa,θ,b(x) dλ C−1

ψ

}
˜ψ

a′,θ′
,b′(x) d3x

=
∫
G
Tψf(a,θ, b)

{∫
R3

ψa,θ,b(x)C−1
ψ {ψ

a′,θ′
,b′(x)}∼ d3x

}
dλ

=
∫
G
Tψf(a, b,θ)Kψ(a,θ, b; a′,θ′, b′) dλ, (10.35)

which completes the proof. �

11 Extension of complex Gabor wavelets to mul-
tivector Clifford Gabor wavelets

In signal processing complex Gabor wavelets are used extensively for sig-
nal analysis.[26, 27, 28] Complex Gabor wavelets are well localized in both
space and frequency domains which is very important in understanding sig-
nals. Two-dimensional complex Gabor wavelets are composed of a complex
exponential function and a Gaussian function. They generally can be writ-
ten as

h(x) =
1

2πσ1σ2
e
− 1

2

(
x2
1

σ2
1
+

x2
2

σ2
2

) [
ei(u0x1+v0x2) − e−

1
2
(σ2

1u
2
0+σ2

2u
2
0)
]
, (11.1)

where σ1 and σ1 are the standard deviations of the Gaussian function.
Complex Gabor wavelets can be extended to multivectors. This exten-

sion is obtained by replacing the complex kernel ei(u0x1+v0x2) in the 2D
complex Gabor wavelets (11.1) by the Clifford Fourier kernel ei3ω·x. It
then takes the form

ψc(x) = g(x;σ1, σ2, σ3)
(
ei3ω0·x − e−

1
2
(σ2

1u
2
0+σ2

2u
2
0+σ2

3w
2
0)
)

= g(x;σ1, σ2, σ3) ei3ω0·x − η(x), (11.2)

where ω0 = u0e1+v0e2+w0e3 denotes a frequency vector. The 3D Gaussian
function g(x;σ1, σ2, σ3) in (11.2) is defined by

g(x;σ1, σ2, σ3) =
1

(2π)
3
2σ1σ2σ3

e
− 1

2

(
x2
1

σ2
1
+

x2
2

σ2
2
+

x2
3

σ2
3

)
,
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and
η(x) = g(x;σ1, σ2, σ3)e−

1
2
(σ2

1u
2
0+σ2

2u
2
0+σ2

3w
2
0)

is a correction term in order for equation (10.6) to be satisfied (see [22]).
Applying the shift and the scaling properties of table 7.1, we can rewrite
the Clifford Gabor wavelets (11.2) in terms of the Cl3,0 Clifford Fourier
transform as follows

F{ψc}(ω) = e−
1
2(σ2

1(ω1−u0)2+σ2
2(ω2−v0)2+σ2

3(ω3−w0)2) −

e−
1
2(σ2

1(ω2
1+u2

0)+σ2
2(ω2

2+v20)+σ2
3(ω2

3+w2
0)). (11.3)

It is easy to see that F{ψc}(0) = 0. The representation of the Clifford
Gabor wavelets (11.2) shows that they are formally analogous to the 3D
complex Gabor wavelets. We can apply the Euler formula to the trivector
exponential which gives the Clifford Gabor wavelets (11.2) in the form

ψc(x) = g(x;σ1, σ2, σ3) cos(ω0 · x) + i3g(x;σ1, σ2, σ3) sin(ω0 · x)− η(x).
(11.4)

This shows that the resulting wavelets consist of a real scalar part and a
trivector part. We note that (11.3) is a real-valued scalar function. As a
consequence the admissibility constant (10.5) will also be real. It means
that we have

0 < Cψc =
∫

R+

∫
SO(3)

a3
[
ψ̂c(ar−1

θ
(ω))

]2
dµ

(10.7)
=

∫
R3

(ψ̂c(ξ))2

|ξ|3
d3ξ <∞,

(11.5)
is a real positive scalar constant and finite at a.e. ω ∈ R3.

We summarize some important properties of Clifford Gabor wavelet
transform in the following theorems corresponding to theorem 10.6, corollary
10.7 and theorem 10.8.

Theorem 11.1 (Inner product relation) Let ψc ∈ L2(R3;Cl3,0) be a
Clifford Gabor wavelet and f, g ∈ L2(R3;Cl3,0) arbitrary. Then we have

(Tψcf, Tψcg)L2(G;Cl3,0) = Cψc(f, g)L2(R3;Cl3,0). (11.6)

In other words the operator C
− 1

2
ψc Tψc is an isometry from L2(R3;Cl3,0) to

L2(G;Cl3,0). An immediate consequence of (11.6) is

Theorem 11.2 (Norm relation) Let ψc ∈ L2(R3;Cl3,0) be a Clifford Ga-
bor wavelet that satisfies the admissibility condition in the sense of (11.5).
Then for any f ∈ L2(R3;Cl3,0) we get

‖Tψcf‖2
L2(G;Cl3,0) = Cψc‖f‖2

L2(R3;Cl3,0) (11.7)
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Theorem 11.3 (Reconstruction formula) Let ψc ∈ L2(R3;Cl3,0) be a
Clifford Gabor wavelets that satisfies the admissibility condition (11.5). Then
any f ∈ L2(R3;Cl3,0) can be decomposed as

f(x) = C−1
ψc

∫
G
(f, ψc

a,θ,b )L2(R3;Cl3,0) ψ
c
a,θ,bdµd

3b, (11.8)

the integral converging in the weak sense.

This theorem shows that any multivector function f can be reconstructed
from the Clifford Gabor transform.

12 Precision limits - minimal variance products

12.1 The uncertainty principle for geometric algebra Fourier
transforms

The uncertainty principle plays an important role in the development and
understanding of quantum physics. It is also central for information pro-
cessing [19]. In quantum physics it states e.g. that particle momentum
and position cannot be simultaneously known. In Fourier analysis such con-
jugate entities correspond to a function and its Fourier transform which
cannot both be simultaneously sharply localized. Futhermore much work
(e.g. [19, 20]) has been devoted to extending the uncertainty principle to a
function and its Fourier transform. From the view point of geometric alge-
bra an uncertainty principle gives us information about how a multivector
valued function and its Clifford Fourier transform are related.

Theorem 12.1 Let f be a multivector valued function in G3 which has the
Clifford Fourier transform F{f}(ω). Assume

∫
R3 ‖f(x)‖2 d3x = F < ∞,

then the following inequality holds for arbitrary constant vectors a, b:∫
R3

(a · x)2‖f(x)‖2 d3x

∫
R3

(b · ω)2 ‖F{f}(ω)‖2d3ω ≥ (a · b)2
(2π)3

4
F 2

(12.1)
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Proof Applying previous results we have10∫
R3

(a · x)2 ‖f(x)‖2 d3x

∫
R3

(b · ω)2 ‖F{f}(ω)‖2d3ω

(5.1)
=

∫
R3

(a · x)2 ‖f(x)‖2 d3x

∫
R3

‖F{b · ∇f}(ω)‖2 d3ω

(7.5)
= (2π)3

∫
R3

(a · x)2 ‖f(x)‖2 d3x

∫
R3

‖b · ∇f(x)‖2 d3x

footnote 10
≥ (2π)3

(∫
R3

a · x ‖f(x)‖ ‖b · ∇f(x)‖ d3x

)2

(2.11)

≥ (2π)3
(∫

R3

a · x|〈f̃(x) b · ∇f(x)〉| d3x

)2

≥ (2π)3
(∫

R3

a · x〈f̃(x) b · ∇f(x)〉 d3x

)2

.

Because of
(b · ∇)‖f‖2 = 2〈f̃ (b · ∇)f〉, (12.2)

we furthermore obtain∫
R3

(a · x)2 ‖f(x)‖2 d3x

∫
R3

(b · ω)2 ‖F{f}(ω)‖2d3ω

≥ (2π)3
(∫

R3

a · x 1
2

(b · ∇‖f‖2) d3x

)2

Prop. 2.11
=

(2π)3

4

([∫
R2

a · x‖f(x)‖2d2x

]b·x=∞
b·x=−∞

−
∫

R3

[(b · ∇)(a · x)] ‖f(x)‖2 d3x

)2

=
(2π)3

4

(
0− a · b

∫
R3

‖f(x)‖2 d3x)
)2

= (a · b)2
(2π)3

4
F 2.

Choosing b = ±a, with a2 = 1 we get the following uncertainty principle,
i.e.∫

R3

(a · x)2 ‖f(x)‖2 d3x

∫
R3

(a · ω)2 ‖F{f}(ω)‖2d3ω ≥ (2π)3

4
F 2. (12.3)

10φ, ψ : Rn → C,
∫

Rn |φ(x)|2dnx
∫

Rn |ψ(x)|2dnx ≥ (
∫

Rn φ(x) ¯ψ(x) dnx)2
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In (12.3) equality holds for Gaussian multivector valued functions (See ap-
pendix B)

f(x) = C0 e
−k x2

(12.4)

where C0 ∈ G3 is a constant multivector, 0 < k ∈ R.

Theorem 12.2 For a · b =0, we get∫
R3

(a · x)2 ‖f(x)‖2 d3x

∫
R3

(b · ω)2 ‖F{f}(ω)‖2d3ω ≥ 0. (12.5)

Proof The right side of equation (12.1) is 0 for (a · b) = 0.
Note that with

x2 =
3∑

k=1

x2
k =

3∑
k=1

(ek · x)2, ω2 =
3∑
l=1

ω2
l =

3∑
l=1

(el · ω)2 (12.6)

we can extend the formula of the uncertainty principle to

Theorem 12.3 Under the same assumptions as in theorem 12.1, we obtain∫
R3

x2 ‖f(x)‖2 d3x

∫
R3

ω2 ‖F{f}(ω)‖2d3ω ≥ 3
(2π)3

4
F 2. (12.7)

Proof Direct calculation gives∫
R3

x2 ‖f(x)‖2 d3x

∫
R3

ω2 ‖F{f}(ω)‖2d3ω

(12.6)
=

3∑
k, l=1

∫
R3

(ek · x)2‖f(x)‖2 d3x

∫
R3

(el · ω)2 ‖F{f}(ω)‖2 d3ω

=
3∑

k=1

∫
R3

(ek · x)2‖f(x)‖2 d3x

∫
R3

(ek · ω)2 ‖F{f}(ω)‖2 d3ω

+
3∑
k 6=l

∫
R3

(ek · x)2‖f(x)‖2 d3x

∫
R3

(el · ω)2 ‖F{f}(ω)‖2 d3ω︸ ︷︷ ︸
≥0

Theor. 12.2
≥

3∑
k=1

∫
R3

(ek · x)2‖f(x)‖2 d3x

∫
R3

(ek · ω)2 ‖F{f}(ω)‖2 d3ω

Theor. 12.1= 3
(2π)3

4
F 2.

In the last step we used theorem 12.1 with a = b = ek, k = 1, 2, 3.
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12.2 Uncertainty principles for Clifford algebra Cl3,0 wavelets

The uncertainty principle for the continuous wavelet transforms establishes
a lower bound of the product of the variances of the continuous wavelet
transform of a function and its Fourier transform (see e.g. [21]).

We extend this idea to the Clifford algebra Cl3,0 wavelet transform, i.e.
we show how the Clifford algebra Cl3,0 wavelet transform and the Clifford
Fourier transform of a multivector function are related.

12.2.1 Uncertainty principles for general admissibility constant

Let us first formulate a general statement in the following theorem. That
this is indeed the generalized form of an uncertainty principle will be seen
in the special case of scalar Cψ in corollary 12.7, which follows in section
12.2.2.

Theorem 12.4 (Generalized Clifford wavelet uncertainty principle)
Let ψ be a Clifford algebra wavelet that satisfies the admissibility condition
(10.7). Then for every f ∈ L2(R3;Cl3,0), the following inequality holds

‖bTψf(a,θ, b)‖2
L2(G;Cl3,0) Cψ ∗ (ω̃f̂ , ω̃f̂)L2(R3;Cl3,0)

≥ 3(2π)3

4

[
Cψ ∗ (f, f)L2(R3;Cl3,0)

]2
. (12.8)

Before we attempt the proof of theorem 12.4 we derive the following two
useful lemmas.

Lemma 12.5 (Integrated variance of CFT of Cliff. wavelet transf.)∫
R+

∫
SO(3)

‖ω F{Tψf(a,θ, . )}‖2
L2(R3;Cl3,0) dµ = Cψ ∗ (ω̃f̂ , ω̃f̂)L2(R3;Cl3,0).

(12.9)

Proof We observe that∫
R+

∫
SO(3)

‖ω F{Tψf(a,θ, . )}‖2
L2(R3;Cl3,0) dµ (12.10)

(2.22)
=

∫
R3

∫
R+

∫
SO(3)

ω2[F{Tψf(a,θ, . )}(ω)] ∗ F̃{Tψf(a,θ, . )}(ω) dµ d3ω

(10.16)
=

∫
R3

∫
R+

∫
SO(3)

a3[˜̂ψ(ar−1

θ
(ω))ψ̂(ar−1

θ
(ω))]︸ ︷︷ ︸ ∗[

˜̂
f(ω)f̂(ω)] ω2dµd3ω

= Cψ ∗ (ω̃f̂ , ω̃f̂)L2(R3;Cl3,0) .
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�
In some cases only the scalar part of the admissibility constant matters

on the right hand side of (12.9), as shown in

Lemma 12.6 (With scalar admissibility constant) If either one of the
factors is scalar, or the two vector parts are perpendicular, i.e.

〈Cψ〉1 ⊥ 〈(ω̃f̂ , ω̃f̂)L2(R3;Cl3,0)〉1 we get instead∫
R+

∫
SO(3)

‖ω F{Tψf(a,θ, . )}‖2
L2(R3;Cl3,0) dµ = 〈Cψ〉0 ‖ωf̂‖2

L2(R3;Cl3,0).

(12.11)

Now we begin with the proof of theorem 12.4.
Proof We apply to Tψcf(a,θ, b), where b ∈ R3 is regarded as the main inde-
pendent variable and a,θ as function parameters, the uncertainty principle
for multivector functions of theor. 12.3 in order to get with (2.21)

‖bTψf(a,θ, . )‖2
L2(R3;Cl3,0) × ‖ω F{Tψf(a,θ, . )}‖2

L2(R3;Cl3,0)

≥ 3(2π)3

4
‖Tψf(a,θ, . )‖4

L2(R3;Cl3,0) (12.12)

Taking the square root on both sides of (12.12) we obtain[
‖bTψf(a,θ, . )‖2

L2(R3;Cl3,0)

] 1
2 ×

[
‖ω F{Tψf(a,θ, . )}‖2

L2(R3;Cl3,0)

] 1
2

≥
√

3(2π)3/2

2
‖Tψf(a,θ, . )‖2

L2(R3;Cl3,0) (12.13)

Integrating both sides of (12.13) with respect to dµ we obtain∫
R+

∫
SO(3)

([
‖bTψf(a,θ, . )‖2

L2(R3;Cl3,0)

] 1
2

×
[
‖ω F{Tψf(a,θ, . )}‖2

L2(R3;Cl3,0)

] 1
2

)
dµ

≥
√

3(2π)3/2

2

∫
R+

∫
SO(3)

‖Tψf(a,θ, . )‖2
L2(R3;Cl3,0) dµ. (12.14)
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Applying the multivector Cauchy-Schwartz inequality to the left hand side
of (12.14) gives(∫

R+

∫
SO(3)

‖bTψf(a,θ, . )‖2
L2(R3;Cl3,0) dµ

) 1
2

×

(∫
R+

∫
SO(3)

‖ω F{Tψf(a,θ, . )}‖2
L2(R3;Cl3,0) dµ

) 1
2

≥
√

3(2π)3/2

2

∫
R+

∫
SO(3)

‖Tψf(a,θ, . )‖2
L2(R3;Cl3,0) dµ. (12.15)

Taking the square on both sides of (12.15) and inserting the definitions of
the norms of lines 1 and 3 of (12.15) we get with (2.22)∫

R+

∫
SO(3)

∫
R3

b2Tψf(a,θ, b) ∗ [Tψf(a,θ, b)]∼ dµd3b

×
∫

R+

∫
SO(3)

‖ω F{Tψf(a,θ, . )}‖2
L2(R3;Cl3,0) dµ

≥ 3(2π)3

4

(∫
R+

∫
SO(3)

∫
R3

Tψf(a,θ, b) ∗ [Tψf(a,θ, b)]∼ dµd3b

)2

.(12.16)

We now recognize the L2(G;Cl3,0)-norms in lines 1 and 3 of (12.16) and
with lemma 12.5 we replace the second line of (12.16) to become

‖bTψf(a,θ, b)‖2
L2(G;Cl3,0) Cψ ∗ (ω̃f̂ , ω̃f̂)L2(R3;Cl3,0)

≥ 3(2π)3

4
‖Tψf‖4

L2(G;Cl3,0). (12.17)

Substituting for the right hand side (10.23) we finally get

‖bTψf(a,θ, b)‖2
L2(G;Cl3,0) Cψ ∗ (ω̃f̂ , ω̃f̂)L2(R3;Cl3,0)

≥ 3(2π)3

4

[
Cψ ∗ (f, f)L2(R3;Cl3,0)

]2
, (12.18)

which concludes the proof of theorem 12.4. �

12.2.2 Uncertainty principle for scalar admissibility constant

For scalar Cψ we get due to (12.11) and a similar identity for the right hand
side of (12.18) the following corollary
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Corollary 12.7 (Uncertainty principle for Clifford wavelet) Let ψ be
a Clifford algebra wavelet that satisfies the admissibility constant (10.7).
Then for every f ∈ L2(R3;Cl3,0), the following inequality holds

‖bTψf(a,θ, b)‖2
L2(G;Cl3,0) ‖ωf̂‖

2
L2(R3;Cl3,0) ≥ 3Cψ

(2π)3

4
‖f‖4

L2(R3;Cl3,0).

(12.19)

This shows indeed, that theorem 12.4 represents a multivector gener-
alization of the uncertainty principle of corollary 12.7 for Clifford wavelets
with scalar admissibility constant.

In the field of information theory and image processing corollary 12.7
establishes bounds for the effective width times frequency extension of pro-
cessed signals or images.

12.2.3 Uncertainty principle for Clifford geometric algebra Ga-
bor wavelets

As a consequence of the general uncertainty principle for Clifford wavelets
with scalar admissibility constant of corollary 12.7 we have

Theorem 12.8 (Uncertainty principle for Clifford Gabor wavelet)
Let ψc be a Clifford Gabor wavelet that satisfies the admissibility condition
(11.5). Assume ‖f‖2

L2(R3;Cl3,0) = F < ∞ for every f ∈ L2(R3;Cl3,0), then
the following inequality holds

‖bTψcf(a,θ, b)‖2
L2(G;Cl3,0) ‖ωf̂‖

2
L2(R3;Cl3,0) ≥ 3Cψc

(2π)3

4
F 2. (12.20)

13 Conclusions

We showed how the (real) Clifford geometric algebra Fourier transform (FT)
extends the traditional Fourier transform on scalar functions to multivector
functions. Basic properties and rules for differentiation, convolution, the
Plancherel and Parseval theorems were demonstrated.

It is known that the Fourier transform is successfully applied to solving
physical equations such as the heat equation, wave equations, etc. There-
fore in the future, we can apply geometric algebra and the Clifford Fourier
transform to solve such problems involving scalar, vector, bivector and pseu-
doscalar fields. A closely related relative of the geometric algebra FT is the
quaternion FT (QFT), since quaternions are nothing but the bivector sub-
algebra of the geometric algebra of 3D Euclidean space R3. Based on the
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QFT far reaching generalizations to high dimensional geometric algebra are
possible, including the geometric algebra of spacetime [18].

As for the geometric algebra treatment of wavelets, we showed how Clif-
ford algebra Cl3,0-valued wavelets extend the classical wavelets on scalar
functions to multivector functions. Important properties such as translation,
dilation and rotation covariances, a reproducing kernel, and a reproduction
formula for multivector functions were demonstrated.

We then applied our formalism by extending complex Gabor wavelets to
Gabor multivector wavelets, and looked at some of their important proper-
ties.

We finally studied uncertainty principles in the geometric algebra G3

which describe how a multivector-valued function and its Clifford geometric
algebra Fourier transform or geometric algebra wavelet transform relate.

For Clifford geometric algebra wavelets we infact established the general
form of a new uncertainty principle, which becomes analogous to the usual
scalar formulation (corollary 12.7) when the admissibility constant itself is
scalar. We also established a new uncertainty principle for the Clifford
Gabor wavelets.

In the field of information theory and image processing these geometric
algebra uncertainty principles establish bounds or limits for the effective
width times frequency extension of processed signals or images.

The formulas of the derived uncertainty principles in G3 can be extended
to Gn using properties of the Clifford Fourier transform for geometric alge-
bras with unit pseudoscalars squaring to -1. Similar extensions are possible
for the uncertainty principle of the geometric algebra wavelet transform.
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Ordering of the references

References [1] to [7] introduce Clifford geometric algebra (and quaterions):
from foundations to more advanced results, and applications. References [8]
and [9] are about the classical Fourier transform. References [10] to [18] give
more literature on geometric algebra Fourier transforms. References [19] to
[21] are general treatments of uncertainty principles. References [22] to [28]
are on standard (not geometric algebra) wavelet theory and applications.
References [29] to [35] give more literature on geometric algebra wavelets.
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[12] T. Bülow, M. Felsberg and G. Sommer, Non-commutative Hypercom-
plex Fourier Transforms of Multidimensional Signals, in G. Sommer
(ed.), Geom. Comp. with Cliff. Alg., Theor. Found. and Appl. in Comp.
Vision and Robotics, Springer, 2001.
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A Multivector Cauchy-Schwartz inequality

We will show that
|〈MÑ〉| ≤ ‖M‖ ‖N‖ (A1)

Proof Note that for any t ∈ R holds

0 ≤ ‖M + tN‖2 = (M + tN) ∗ ˜(M + tN)
= M ∗ M̃ + t(M ∗ Ñ +N ∗ M̃) + t2N ∗ Ñ
= ‖M‖2 + 2t〈MÑ〉+ t2‖N‖2. (A2)

The negative discriminant of this quadratic polynomial implies

〈MÑ〉2 − ‖M‖2‖N‖2 ≤ 0. (A3)

This proves (A1) and (2.11):

〈MÑ〉 = M ∗ Ñ ≤ |〈MÑ〉| ≤ ‖M‖ ‖N‖. (A4)

Inserting into (2.6) and (2.9) into the multivector Cauchy-Schwartz inequal-
ity (A4) we can express it in a basis (2.1) of the geometric algebra as

|
∑
A

αAβA| ≤

(∑
A

α2
A

) 1
2
(∑

B

β2
B

) 1
2

. (A5)
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B Uncertainty equality for Gaussian multivector
functions

Note that according to line 3 of the proof for theorem 12.1 the uncertainty
principle (12.3) can be rewritten as

(2π)3
∫

R3

(a · x)2‖f(x)‖2 d3x

∫
R3

‖a · ∇f(x)‖2d3x ≥ (2π)3

4
F 2. (B1)

Now we have for Gaussian multivector functions (12.4)

a · ∇f = a · ∇ C0 e
−kx2

= −2k a · x C0 e
−k x2

= −2k a · x f. (B2)

so, we get

a · x f =
−1
2k

a · ∇f, (B3)

and
‖a · ∇f‖2 = 4k2‖(a · x)f‖2 = 4k2 (a · x)2‖f‖2 (B4)

Substituting (B4) and (B3) in the left side of (B1) we get for a2 = 1

(2π)3
∫

R3

(a · x)2‖f(x)‖2 d3x

∫
R3

‖a · ∇f(x)‖2d3x

(B4)
= 4k2(2π)3

(∫
R3

a · x a · x‖f‖2d3x

)2

= 4k2(2π)3
(∫

R3

a · xa · x〈ff̃〉d3x

)2

= 4k2(2π)3
(∫

R3

a · x〈a · xff̃〉d3x

)2

(B3)
= 4k2(2π)3

(∫
R3

a · x
−2k

〈(a · ∇f)f̃〉d3x

)2

(12.2)
= (2π)3

(∫
R3

a · x1
2

a ·∇‖f‖2d3x

)2

P. 2.11=
(2π)3

4
(
∫

R3

(a ·∇ a · x)︸ ︷︷ ︸
=a2=1

‖f‖2d3x)
2

=
(2π)3

4
F 2.
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