
Disposing Classical Field Theory, Part II

Hans Detlef Hüttenbach
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Abstract

It is shown that the symmetry group of a neutral, energy and momen-
tum conserving particle theory is isomorphic to SU(3)× SU(2)× U(1).

1 Introduction

In its covariant form, Maxwell’s equations read

2Aµ = jµ, (0 ≤ µ ≤ 3),

where the Aµ, jµ are functions of time t = x0 and space coordinates x1, x2, x3,
and c ≡ 1 is understood. Furthermore, A = (A0, · · · , A3) is a 4-vector, if not
subjected to a gauge (see below). Now, 2 is a relativistic invariant, so 2A is a
4-vector, hence j is a 4-vector. Then |j|2 = j∗j = j̄µjµ = |j0|2 − |j1|2 − · · · |j3|2
is Lorentz invariant, and its square root j = j0γ0 + · · ·+ j3γ3 in terms of Dirac
matrices γµ, (0 ≤ µ ≤ 3), is a Lorentz invariant (and unique up to unitary
transformation for each point x = (t,x) in space-time). The representation of
the Dirac matrices are given in the Dirac basis throughout:

γ0 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 , γ1 =


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 ,

γ2 =


0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

 , and γ3 =


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

 .

In particular, let ρ0(t,x) be a stationary charge density of electrons. Boosting
that to a speed v, i.e. under a Lorentz transfomation Λ : (t,x) 7→ (t′,x′) to
a system which moves with speed −v relative to the first, ρ0 transforms to
ργ0 + ργ1v1 + · · ·+ ργ3v3, and, by Lorentz invariance of ρ2, we can choose the
unitary representation such that ρ0 = ργ0 + ργ1v1 · · · ργ3v3. Now I notice that
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the flux ρ(γ · v) is the source of the magnetic fields, and as such it is both,
neutral and unequal zero.

Solving the above equation for ρ then gives ρ in terms of ρ0:

ρ = ρ0
(
γ0 + γ · v

)−1
.

The charge therefore is not a relativistic invariant: it changes under boosts
by the addition of some non-trivial, neutral matter, depending on the boost
velocity. Still, a gauge transformation of the fields manages to eliminate this
additive neutral matter in agreement with Maxwell’s equations. It is easy to see
why: Electrodynamics adds positive and negative charges up, so that only net
charges and net charge fluxes contribute. The original Maxwell equations (in
terms of elecrical and magnetic fields) therefore are invariant to the addition of
energy from matter with zero net charge and zero net flux. That is alright for
non-relativistic considerations. But with special relativity, not the charge, but
the square of the charge enters the calculations first place: relativity asks for
energy content, for which the subtraction of arbitrary neutral energy is not a
symmetry.

That does not mean that electrodynamics was no gauge theory: the contrary
is true: the above subtraction of mass is still a (local) gauge, namely a boost
of −v, but it is not a gauge invariance, when we take energy into account; not
the scalar charge is Lorentz invariant in an inertial system, it’s the rest charge
that is.

All in all, we’ve seen that charge is a part of a 4×4 tensor q, and its geometric
mean, |q| := (q2)1/2 := (q∗q)1/2 transforms like inert mass. Therefore it is mass,
so charges are inert, and so they have a weight. Hence, only by refraining from
the postulate that positive and negative charges add as positive and negative
numbers, it is possible to reconcile mechanics with electrodynamics and even to
include mechanics as a part of electrodynamics. That was grossly what [1] was
about. However, in that article, I left an unanswered remark:

2 Problem Statement

By mapping the scalar charge and flux into the Clifford algebra Cl(1, 3), the
equations in there are only unique up to unitary transformations ω ∈ U(4),
U(4) being the group of all unitary 4×4-matrices. That makes U(4) the overall
symmetry group for that theory. I’ll show in a moment that the mass/charge
tensor can be split into the sum of a pure charge and a neutral part and that the
group of tranformations of these charges is isomorhic to U(2). That decomposes
U(4) into the product of two subgroups: one for the charge transformations, the
other one for transformations which are completely charge invariant.

Then, if there was only the constraint that matter was completely built out
of positive and negative charges, only a fraction of U(4) was needed. So, the
problem is to figure out, how well the standard model SU(3) × SU(2) × U(1)
fits into U(4).
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3 Details

First, let’s factor the charge tensor out: We need to find a charge inversion
operator, C, say, which then will be unique modulo U(4). Writing 12 for the 2×2
unit matrix, C := −γ1γ2γ3 =

(
0 12
12 0

)
does that job, since it anticommutes with

γ0 and commutes with the γj . That allows splitting an arbitrary charge/mass
tensor q into its net charge (1/2)

(
q − CqC

)
which I’ll call pure charge, and its

neutral constituent (1/2)
(
q + CqC

)
.

Now, because charge is being conserved, it must be conserved under Lorentz
transformations, and the unitary group of charge transformations is to be a
normal subroup G of U(4), hence U(4) = (U(4)/G)×G.

Let’s figure out what that is: d2s := dx20 − dx21 − dx22 − dx23 is the Lorentz
invariant square of a differential. So, D := γ0dx0 + · · · + γ3dx3 is the Lorentz
invariant differential. Given j = (j0, · · · , j3), charge conservation then means
that infinitesimally small, global Lorentz transformations must not change that
quantity. That is:

Dj = ∂j0/(∂γ0x0)γ0dx0 + · · ·+ ∂j3/(∂γ3x3)γ3dx3 = 0,

which gives
∂j0/∂x0 + · · ·+ ∂j3/∂x3 = 0.

This is two things at once: it is the standard definition of charge conservation,
and it is the Lorentz gauge condition.

Taking into regard that the γµ all are invariant w.r.t. transformation of the
of the first and second as well as third and fourth component of C4, the group
of unitary charge transformations therefore is isomorphic to U(2), and it is not
just SU(2), because it also contains charge inversion. And that group finally
factors into a complex and unitary combination of two isomorphic groups: a
group SU(2) of pure unit charges, corresponding to a second group SU(2) of
neutral unit charges/masses: χ = cos(φ)qc + i sin(φ)qn), where 0 ≤ φ ≤ 2π and
qn ∈ SU(2) is the neutral counterpart of the charged unit charge qc ∈ SU(2).

Whereas in quantum theory the group SU(2) is associated with the notion
of spin, in here it is of geometric origin and necessary for charge conservation.

Wrapping up, if electrodynamics covering charged and neutral states was the
only theory we had, then on the physical side, all matter will be constructable
from electrons and positrons, which we know to be untrue, and on the side of
mathematics all those charged and uncharged states will be contained in U(2).
That would leave the group U(4)/U(2) of charge invariant symmetries open to
be filled up by something else.

So, the straightforward question is: can the symmetry group of the neutrons
fill up that gap?

Apart from charge, also have energy and momentum are conserved. So,
let’s playing the same trick on energy and momentum, beginning with energy:
T := γ5 := γ0 · · · γ3 is the energy-inversion on U(4)/U(2). With γ0 being the
representative of positive unit energy, −γ0 is its inverse, the line through γ0

and its inverse forms a two dimensional vector space with the time axis, and
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the group of all energy transformations unitarily operates on this vector space,
so that this group is isomorphic to U(2). And again this group is isomorphic
to SU(2)×U(1). SU(2) is associated with isospin, and U(1) defines the hyper-
charge.

For momentum/charge flux, however, replaying the trick fails: The momen-
tum (p1, · · · , p3) maps into Cl(1, 3) as p1γ0 + · · · p3γ3, where P := γ0 is the
sought parity inversion. But γ0 = γ5γ1γ2γ3 = −T C. So, Pmod(U(2) × U(2))
just equals the identity in U(4)/(U(2)×U(2)), and only SU(3) remains as sym-
metry group, which is isomorphic to U(4)/(U(2)×U(2)) as is seen by counting
their dimensions. What at first sight looks to be a break of parity, turns out
to be complete symmetry with negative parity being captured by the other two
symmetry subgroups.

Wrapping up, the symmetry group for a neutral particle theory which which
is conserving energy and momentum in U(4) is exactly the standard model
group SU(3) × SU(2) × U(1), where SU(3) captures the quark colour states,
relating to momentum conservation, SU(2) relates to energy conservation as
isospin, and U(1) captures hypercharge. So, as a gauge theory, standard model
fits into the electromagnetic equations, which in particular would give particles
in that model an inert and gravitational mass.
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