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Two gravitational effects related to rotating masses are described. The first is the decreasing of the gravitational mass 
when the rotational kinetic energy is increased. In the case of ferromagnetic materials, the effect is strongly increased 
and the gravitational mass can even become negative. The second is the gravitational shielding effect produced by the 
decreasing of the gravitational mass of the rotating mass.  
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.    
1. Introduction 
 
        In 1918, H. Thirring [1] showed that a 
rotating mass shell has a weak dragging 
effect on the inertial frames within it. In 
today’s literature these results are known as 
Lense-Thirring effects.  
        Recently, the Lense-Thirring effect has 
received new interest because it becomes 
now possible to directly measure this tiny 
effect [2]. In the years 1959-1960 it was 
discovered by G. E. Pugh [3] and Leonard 
Schiff [4,5] that the mentioned dragging 
phenomenon leads to another effect - called 
the Schiff effect -  which might be suited for 
experimental confirmation: The rotation axis 
of a gyroscope, inside a satellite orbiting the 
Earth, in a height of 650 km, suffers a 
precession of 42 milliarcseconds per year, 
due to the Earth’s rotation [6].  
          Here, we show new gravitational 
effects related to rotating gravitational 
masses, including superconducting masses. 
 
2. Theory 
 
          From the quantization of gravity it 
follows that the gravitational mass mg and 
the inertial mass mi are correlated by means 
of the following factor [7]: 
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where  is the rest inertial mass of the 
particle and  is the variation in the 
particle’s kinetic momentum;  is the speed 
of light.   
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          That equation shows that only for 

0=Δp the gravitational mass is equal to the 
inertial mass.  
      In general, the momentum variation pΔ  
is expressed by tFp ΔΔ =  where  is the   
applied force during a time interval

F
tΔ . Note 

that there is no restriction concerning the 
nature of the force , i.e., it can be 
mechanical, electromagnetic, etc. 

F

          For example, we can look on the 
momentum variation pΔ   as due to 
absorption or emission of electromagnetic 
energy by the particle.  
          In this case pΔ  can be obtained as 
follows: It is known that the radiation 
pressure, , upon an area  of a 
volume 

dP dxdydA =
dxdydzd =V  of a particle (the 

incident radiation normal to the surface ) 
is equal to the energy  absorbed (or 
emitted) per unit volume 

dA
dU
( )VddU .i.e.,  

( )2
dAdz
dU

dxdydz
dU

d
dUdP ===
V

Substitution of vdtdz =  ( v  is the speed of 
radiation) into the equation above gives 

( ) ( )3
v

dD
v
dAdtdU

d
dUdP ===
V

Since   dFdPdA =  we can write: 

( )4
v

dUdFdt=

However we know that dtdpdF= , then 

( )5
v

dUdp =

 From this equation it follows that  
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where  is the index of refraction.  rn
         Substitution of Eq.(6) into Eq. (1) 
yields 
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          In the case of absorption of a single 
photon with wavelengthλ and frequency , 
Eq. (7) becomes 

f
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where cmh i00 =λ  is the De Broglie 
wavelength for the particle with rest inertial 
mass .   0im
          From Electrodynamics we know that 
when an electromagnetic wave with 
frequency and velocity  incides on a  
material  with relative  permittivity 

f c

rε , 
relative magnetic permeability rμ  and 
electrical conductivity σ , its velocity is 
reduced to rncv =  where  is the index of 
refraction of the material, given by  [

rn
8]   
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If  ωεσ >> f, πω 2= , Eq. (9) reduces to 
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4 0 f

n r
r πε

σμ
=

Thus, the wavelength of the incident 
radiation (See Fig. 1) becomes 
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Fig. 1 – Modified Electromagnetic Wave. The 
wavelength of the electromagnetic wave can be
strongly reduced, but its frequency remains the same.

v = c v = c/nr 

λ = c/f λmod = v/f = c/nr f

nr 

  
        If a lamina with thickness equal toξ  
contains  atoms/mn 3, then the number of 
atoms per area unit is ξn . Thus, if the 
electromagnetic radiation with frequency 

incides on an area  of the lamina it 
reaches
f S

ξnS  atoms. If it incides on the total 
area of the lamina, , then the total number 
of  atoms reached by the radiation is 

fS

ξfnSN = .  The number of atoms per unit of 
volume, , is given by n

( )120

A
N

n
ρ

=

where  is the 
Avogadro’s number; 

kmoleatomsN /1002.6 26
0 ×=

ρ  is the matter density 
of the lamina (in kg/m3) and A is the molar 
mass(kg/kmole).                
          When an electromagnetic wave incides 
on the lamina, it strikes  front atoms, 
where

fN
( ) mff SnN φ≅  , mφ  is the “diameter” of 

the atom. Thus, the electromagnetic wave 
incides effectively on an area  , where mf SNS=

2
4
1

mmS πφ=  is the cross section area of one atom. 
After these collisions, it carries out  
with the other atoms (See Fig.2).   

collisionsn

 
  
 
 
 
 
 
 
 
Fig. 2 – Collisions inside the lamina.   
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Thus, the total number of collisions in the 
volume ξS is 

( )
( )13ξ

φξφ
Sn

SnSnSnnNN
l

mmlmlcollisionsfcollisions
=

=−+=+=           

The power density, , of the radiation on the 
lamina can be expressed by 

D

( )14
mf SN

P
S
PD ==

           We can express the total mean number 
of collisions in each atom, , by means of 
the following equation  

1n

( )151 N
Nn

n collisionsphotonstotal=

Since in each collision a momentum λh  is 
transferred to the atom, then the total 
momentum transferred to the lamina will be 

( ) λhNnp 1=Δ . Therefore, in accordance 
with Eq. (8), we can write that 
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 Since Eq. (13) gives ξSnN lcollisions = , we get 

( ) (172 ξSn
hf
PNn lcollisionsphotonstotal ⎟⎟
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Substitution of Eq. (17) into Eq. (16) yields 
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Substitution of P given by Eq. (14) into Eq. 
(18) gives 
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Substitution of ( ) mflf SnN φ≅  and mf SNS =   
into Eq. (19) results 
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where ( ) ( ) ( )llli Vm ρ=0 .           

In the case in which the area is just the 
area of the cross-section of the lamina

fS
( )αS , 

we obtain from Eq. (20), considering that 
( ) ( ) ξρ αSm lli =0 , the following expression 
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If the electrical conductivity of the lamina, 
( )lσ , is such that ( ) ωεσ >>l , then Eq. (9) 

reduces to 
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Substitution of Eq. (22) into Eq. (21) gives  
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          This is therefore the expression of 
correlation between gravitational mass and 
inertial mass in the particular case of incident 
radiation on ordinary matter (non-coherent 
matter) at rest.          
          If the body is also rotating, with an 
angular speed ω  around its central axis, then 
it acquires an additional energy equal to its 
rotational energy ( )2

2
1 ωIEk = .  Since this is 

an increase in the internal energy of the body, 
and this energy is basically electromagnetic, 
we can assume that , such as U , 
corresponds to an amount of electromagnetic 
energy absorbed by the body. Thus, we can 
consider  as an increase in the 
electromagnetic energy U  absorbed by the 
body. Consequently, in this case, we must 
replace U  in Eq. (7) for ( ) , i.e., 

kE

kE kEU =Δ

UU + Δ

( )241121 0

2

2
0

ir
i

g mn
cm
UUm

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ Δ+
+−=

Note that the variable U  can refer to both the 
electromagnetic energy of a radiation as the 
electromagnetic energy of the 
electromagnetic field due to an electric 
current through the rotating gravitational 
mass.   
         Thus, Eq. (24) can be rewritten as 
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Note that  is not an amplitude of a wave such 
as ,  ( )

kE

mU ftUU m π2sin= . Therefore,  and kE
fπ2sin  are independent parameters. 

Consequently, there is no sense to talk about 
average value for fEk π2sin , such as in the case 

of ftUm π2sin , where the average value for  

is equal to 

2U
2

2
1

mU  because U  varies sinusoidaly 
( is the maximum value forU ).  mU
        Then, if U , the Eq. (25) reduces to km E<<
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For ωεσ >> , Eq.(9) shows that  and 
fcnr πμσ 42= . In this case, Eq. (26) gives 
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Note that the effect of the electromagnetic 
field applied upon the mass is highly relevant, 
because in the absence of this radiation the index 
of refraction, present in Eq. (26), becomes equal 
to 1. Under these circumstances, the possibility of 
reducing the gravitational mass is null. On the 
other hand, the equation above shows that, in 
practice, the decreasing of the gravitational mass 
can become relevant in the particular case of 
ferromagnetic materials subjected to 
electromagnetic fields with extremely low 
frequencies (ELF).  
          Figure 3 shows a schematic diagram of a 
Mumetal disk ( gaussatr 100000,105=μ ; 

) with radius 16 .101.2 −×= mSσ mR 10.0=  
( )2

02
1 RmI i=  rotating with an angular velocity 

( )rpmsrad 000,200~/1009.2 4×=ω . Thus, if an 
ELF radiation or an electrical current with 
extremely low frequency e.g.,  is 
applied on the Mumetal disk, then according to 
Eq.(27), the gravitational mass of the disk will 
oscillate between and 

Hzf 1.0=

0ig mm =

( )2896.0 0ig mm −≅                   
          It has been shown that there is an 
additional effect - Gravitational Shielding effect - 
produced by a substance whose gravitational 

mass was reduced or made negative [9]. The 
effect extends beyond substance (gravitational 
shielding) , up to a certain distance from it  
(along the central axis of gravitational shielding). 
This effect shows that in this region the gravity 
acceleration, , is reduced at the same 
proportion, i.e.,

1g
gg

11 χ=  where 01 ig mm=χ  
and  is the gravity acceleration before the 
gravitational shielding.  Here, according to 
Eq.(28), we have 

g

196.0 1 ≤≤− χ . Thus, the 
gravity acceleration above the Mumetal disk will 
vary in the range ggg ≤≤− 196.0  since the gravity 
before (below) the gravitational shielding is . g
          Let us now consider the case in which the 
rotating mass is a superconducting material.  
          The most famous characteristic of 
superconductivity is zero resistance. However, 
the superconductors are not the same as a perfect 
conductor. The observed surface resistance , , 
of most superconductors to alternating currents 
shows that the resistivity can be extremely small 
at the internal region close to the surface of the 
superconductor. The thickness of this region is 
known as London penetration depth, 

sR

Lλ [10]. 
According to BCS theory 

( )( )221 sLsR σσσλ +=  where σ  is the 

normal-state conductivity and sσ  is the 
conductivity of the mentioned region, which is 
given by [11]: 

( )29
2

1
2 fL

s λπμ
σ =

          It is important to note that Eq. (16) refers 
to the case of ordinary matter (non-coherent 
matter). In the case of superconductors the 
radiation is absorbed by the Cooper-pairs fluid 
(coherent part of the superconductors) and there 
is no scattering of the incident radiation. 
Consequently, (the total number of 
collisions). Therefore, in the case of 
superconductors Eq. (16) reduces to 

1=collisionsN
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which is exactly the equation (7). Thus, we 
conclude that Eq. (7) is general for all types 
of matter (coherent and non-coherent). 
          Since ftUU m π2sin=  , the average 
value for  is equal to 2U 2

2
1

mU  because U  
varies sinusoidaly (   is the maximum 
value forU ). On the other hand, 

mU

2mrms UU = . Consequently we can 
change  by in the Eq. (7). 2U 2

rmsU
          Alternatively, we may put this 
equation as a function of the radiation power 
density, D rms, since vVDU rmsrms =  (See Eq. 
(3)). Thus, we obtain 
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where Vmi0=ρ .  
.          For ωεσ >> , Eq.(9) shows that  and 

fcnr πμσ 42= . In this case, equation above 
becomes 
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          Now consider a superconducting disk 
(YBCO) on the Earth’s atmosphere.  It is 
known that the Schumann resonances [12] 
are global electromagnetic resonances (a set 
of spectrum peaks in the extremely low 
frequency ELF), excited by lightning 
discharges in the spherical resonant cavity 
formed by the Earth’s surface and the inner 
edge of the ionosphere (60km from the 
Earth’s surface). The Earth–ionosphere 
waveguide behaves like a resonator at ELF 
frequencies and amplifies the spectral signals 
from lightning at the resonance frequencies. 
In the normal mode descriptions of 
Schumann resonances, the fundamental mode 

 is a standing wave in the Earth–
ionosphere cavity with a wavelength equal to 
the circumference of the Earth. This lowest-
frequency (and highest-intensity) mode of the 
Schumann resonance occurs at a frequency 

 [

( 1=n )

Hzf 83.71 = 13].    
          It was experimentally observed that 
ELF radiation escapes from the Earth–

ionosphere waveguide and reaches the Van 
Allen belts [14-17]. In the ionospheric 
spherical cavity, the ELF radiation power 
density, , is related to the energy density 
inside the cavity,W , by means of the well-
known expression: 

D

( )33
4

WcD =

where is the speed of light, and c
2

02
1 EW ε= . The electric field E , is given by 

( )34
4 2

0 ⊕

=
r

qE
πε

where Cq 000,500=  [16] and . 
Therefore, we get 

mr 610371.6 ×=⊕

( )35/1.4
,/104.5

,/7.110

2

38

mWD
mJW

mVE

rms ≅
×=

=
−

 In the case of YBCO nmL 140≅λ  [18,19]. 
Then, substitution of this value into Eq.(29) 
gives 

( )361012.8
2

1 12

2 ffL
s

×
==

πλ
μσ

The variableσ  in Eq. (32) is sσ , and the 
density of the YBCO is  
[

3.6300 −= mkgρ
20,21]. Thus, we can rewrite Eq. (32) as 

follows 
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Since the superconducting disk is inside the 
Earth’s atmosphere then it is subjected to 
Schumann resonances. Thus, the values of  
and  are given respectively by 

f

rmsD
Hzff 83.71 ==  and  (Eq. (35)). 

Therefore the value of 

2/1.4 mWDm =

χ  given by Eq. (37) 
is 
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( )389995.0

0

==
li

lg

m
m

χ

Since the weight of the disk is gmi0χ  then 

 is the decrease 
in the weight of the disk. Therefore the disk 
0.05% of its weight (without any rotation). 
Due to the Gravitational Shielding effect, 
these variations are the same for a sample 
above the disk . 

gmgmgm iii 0
4

00 105 −×=− χ
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          When the disk acquires an angular 
velocity ω , then the additional value aχ , 
due to the rotation, can be obtained making 

0=mU  in Eq.(25), i.e.,  

( )391
16

2sin121 22
0

224

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+−≅

cfm
fI

i
a π

πμσωχ

In the Podkletnov experiment, the YBCO 
disk is a rectangular toroid with radius 

, mmRouter 275= mmRinner 80= ,  10 mm-thickness, 
with an angular velocity srad /6.523=ω  
(5,000 rpm) [22,23]. Considering these 
values and the value of sμσ  given by Eq. 
(36), then Eq. (39) shows that aχ , in this 
case, is given by 

1−≅aχ
Note that this value corresponds to the region 
of the disk with thickness Lλ . Thus, we can 
write that  

( ) ( ) ( )

( )
( )

( )
( ) ( )400

0

0
0

00

diski
diski

i
adiski

iadiskidiskg

m
m
m

m

mmm

L

L

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=

=+=

λ

λ

χχ

χχ

where  
( ) ( )LL

Vm YBCOi λλ ρ=0 and ( ) ( )diskYBCOdiski Vm ρ=0  
Thus, we get  

( )

( )

( )

( )
( )41200

10
2

0

0
L

L

diskdiski

i

mmV
V

m
m

LL λ
λλλ ≅==  

Substitution of Eq. (41) into Eq. (40) gives 
( ) ( ) ( )

( ) ( ) ( )42109.2

200

0
5

0

00

diskidiski

diskiaLdiskidiskg

mm

mmm

−×−=

=+=

χ

χλχ

In this case the disk loses more  
of its weight due to its rotation. This 
corresponds to a decrease of about on 
the initial value of 0.05% that the disk loses 
without any rotation. Due to the 
Gravitational Shielding effect, a sample 
above the disk will have its weight decreased 
of the same percentage ( on the initial 
value of 0.05% that the sample loses). 

%109.2 3−×

%8.5

%8.5

          Thus, when 0sin =tω  Eq. (39) shows 
that 1=aχ , i.e., the decreases of 
gravitational mass vanish, this corresponds 
to an increase in the weight of the sample of 
about  5.8% on the initial value of 0.05% that 

the sample lost more a portion due to the 
increase of the weight of the air column 
above the sample. Due to the gravitational 
shielding effect, the gravity acting on the air 
column above the sample (height~12Router 
[24]) is reduced in the same proportion that is 
reduced the gravitational mass of the disk 
(gravitational shielding). Thus, there is also 
an increase in the weight of the sample of 
5.8% on the weight of the air column above 
the sample. Considering that 5.8% on the 
weight of the air column is equivalent to x% 
on the initial value of 0.05% that the sample 
lost, i.e.,     

( ) ( )gmofxgm samplegairg ′=′ %05.0%%8.5
Then,  we get 

( )

( )

( )

( )
%2

%05.0
%8.5
%05.0

%8.5%

≅⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

samplesample

airair

sampleg

airg

V
V

m
m

x

ρ
ρ

Since ,  and 3.2.1 −= mkgairρ 3.1400 −= mkgsampleρ
228015012~ ≅≅= outeroutersampleair RmmRVV . 

          Under these circumstances, the balance 
measures an increase correspondent to 5.8% 
on the initial value of 0.05% more 2%on the 
initial value of 0.05%, i.e., a total increase of 
about 7.8% on the initial value of 0.05%.         
          Consequently, the weight of the 
sample becomes unstable with fluctuations 
from −5.8% to +7.8% of the initial value of 
0.05%. This means that the total variation of 
the weight of the sample oscillates in the 
range 

%053.0%047.0 to
 of its weight.  
          In the Podkletnov’s experiment the 
findings were −2.5% to +5.5% of the initial 
value of 0.05% [22,23]. This means that the 
total variation of the weight of the sample 
oscillates in the range 

%052.0%048.0 to
of its weight.  
          Note that, according to Eq. (39) and 
Eq. (42), for  (200,000 
rpm) the sample weight decrease can reach 

srad /1009.2 4×=ω

about 17%.  This very smaller than the 96% 
in the case of the Mumetal disk (Eq. (28)). 
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 Fig.3 – Schematic diagram of an experimental set-up to measure the decrease of the gravitational  
             mass of the Mumetal disk and the gravitational shielding effect produced by the rotating  
             disk. 
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Two gravitational effects related to rotating masses are described. The first is the decreasing of the gravitational mass when the rotational kinetic energy is increased. In the case of ferromagnetic materials, the effect is strongly increased and the gravitational mass can even become negative. The second is the gravitational shielding effect produced by the decreasing of the gravitational mass of the rotating mass. 
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.   

1. Introduction

        In 1918, H. Thirring [1] showed that a rotating mass shell has a weak dragging effect on the inertial frames within it. In today’s literature these results are known as Lense-Thirring effects. 


        Recently, the Lense-Thirring effect has received new interest because it becomes now possible to directly measure this tiny effect [2]. In the years 1959-1960 it was discovered by G. E. Pugh [3] and Leonard Schiff [4,5] that the mentioned dragging phenomenon leads to another effect - called the Schiff effect -  which might be suited for experimental confirmation: The rotation axis of a gyroscope, inside a satellite orbiting the Earth, in a height of 650 km, suffers a precession of 42 milliarcseconds per year, due to the Earth’s rotation [6]. 


          Here, we show new gravitational effects related to rotating gravitational masses, including superconducting masses. 

2. Theory


          From the quantization of gravity it follows that the gravitational mass mg and the inertial mass mi are correlated by means of the following factor [7]:
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 is the rest inertial mass of the particle and 
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 is the variation in the particle’s kinetic momentum; 
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 is the speed of light.  

          That equation shows that only for 
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the gravitational mass is equal to the inertial mass. 

      In general, the momentum variation 
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 is the   applied force during a time interval
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. Note that there is no restriction concerning the nature of the force
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, i.e., it can be mechanical, electromagnetic, etc.


          For example, we can look on the momentum variation 
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  as due to absorption or emission of electromagnetic energy by the particle. 


          In this case 
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 is the speed of radiation) into the equation above gives
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 is the index of refraction. 

         Substitution of Eq.(6) into Eq. (1) yields
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          In the case of absorption of a single photon with wavelength
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, Eq. (7) becomes
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 is the De Broglie wavelength for the particle with rest inertial mass 
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          From Electrodynamics we know that when an electromagnetic wave with frequency 
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 incides on a  material  with relative  permittivity 
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Thus, the wavelength of the incident radiation (See Fig. 1) becomes
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Fig. 1 – Modified Electromagnetic Wave. The 


wavelength of the electromagnetic wave can be 


strongly reduced, but its frequency remains the same. 
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        If a lamina with thickness equal to
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 atoms/m3, then the number of atoms per area unit is
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. Thus, if the electromagnetic radiation with frequency 
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 atoms. If it incides on the total area of the lamina,
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.  The number of atoms per unit of volume, 
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, is given by
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 is the Avogadro’s number; 
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 is the matter density of the lamina (in kg/m3) and A is the molar mass(kg/kmole).               

          When an electromagnetic wave incides on the lamina, it strikes 
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 is the “diameter” of the atom. Thus, the electromagnetic wave incides effectively on an area 
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 is the cross section area of one atom. After these collisions, it carries out 
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 with the other atoms (See Fig.2).  
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Fig. 2 – Collisions inside the lamina.   
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Thus, the total number of collisions in the volume 
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          The power density,
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, of the radiation on the lamina can be expressed by
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           We can express the total mean number of collisions in each atom,
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, by means of the following equation 
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Since in each collision a momentum 
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 is transferred to the atom, then the total momentum transferred to the lamina will be 
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 Since Eq. (13) gives 
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Substitution of Eq. (17) into Eq. (16) yields
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Substitution of 
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given by Eq. (14) into Eq. (18) gives
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Substitution of

[image: image81.wmf](


)


m


f


l


f


S


n


N


f


@


 and 

[image: image82.wmf]m


f


S


N


S


=


  into Eq. (19) results
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where 
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In the case in which the area 

[image: image85.wmf]f


S


is just the area of the cross-section of the lamina

[image: image86.wmf](


)


a


S


, we obtain from Eq. (20), considering that 

[image: image87.wmf](


)


(


)


x


r


a


S


m


l


l


i


=


0
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If the electrical conductivity of the lamina, 
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Substitution of Eq. (22) into Eq. (21) gives 
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          This is therefore the expression of correlation between gravitational mass and inertial mass in the particular case of incident radiation on ordinary matter (non-coherent matter) at rest.         

          If the body is also rotating, with an angular speed 
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 around its central axis, then it acquires an additional energy equal to its rotational energy 
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.  Since this is an increase in the internal energy of the body, and this energy is basically electromagnetic, we can assume that
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 absorbed by the body. Consequently, in this case, we must replace 
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Note that the variable 
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 can refer to both the electromagnetic energy of a radiation as the electromagnetic energy of the electromagnetic field due to an electric current through the rotating gravitational mass.  

         Thus, Eq. (24) can be rewritten as
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Note that 
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        Then, if 
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, the Eq. (25) reduces to
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Note that the effect of the electromagnetic field applied upon the mass is highly relevant, because in the absence of this radiation the index of refraction, present in Eq. (26), becomes equal to 1. Under these circumstances, the possibility of reducing the gravitational mass is null. On the other hand, the equation above shows that, in practice, the decreasing of the gravitational mass can become relevant in the particular case of ferromagnetic materials subjected to electromagnetic fields with extremely low frequencies (ELF). 

          Figure 3 shows a schematic diagram of a Mumetal disk (
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 rotating with an angular velocity 
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. Thus, if an ELF radiation or an electrical current with extremely low frequency e.g., 
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 is applied on the Mumetal disk, then according to Eq.(27), the gravitational mass of the disk will oscillate between 
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          It has been shown that there is an additional effect - Gravitational Shielding effect - produced by a substance whose gravitational mass was reduced or made negative [9]. The effect extends beyond substance (gravitational shielding) , up to a certain distance from it  (along the central axis of gravitational shielding). This effect shows that in this region the gravity acceleration,
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 and 
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 is the gravity acceleration before the gravitational shielding.  Here, according to Eq.(28), we have 
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. Thus, the gravity acceleration above the Mumetal disk will vary in the range 
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          Let us now consider the case in which the rotating mass is a superconducting material. 

          The most famous characteristic of superconductivity is zero resistance. However, the superconductors are not the same as a perfect conductor. The observed surface resistance ,
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, of most superconductors to alternating currents shows that the resistivity can be extremely small at the internal region close to the surface of the superconductor. The thickness of this region is known as London penetration depth, 
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[10]. According to BCS theory 
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 where 
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 is the normal-state conductivity and 
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 is the conductivity of the mentioned region, which is given by [11]:
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          It is important to note that Eq. (16) refers to the case of ordinary matter (non-coherent matter). In the case of superconductors the radiation is absorbed by the Cooper-pairs fluid (coherent part of the superconductors) and there is no scattering of the incident radiation. Consequently, 
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(the total number of collisions). Therefore, in the case of superconductors Eq. (16) reduces to
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which is exactly the equation (7). Thus, we conclude that Eq. (7) is general for all types of matter (coherent and non-coherent).

          Since 
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          Alternatively, we may put this equation as a function of the radiation power density, 
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 (See Eq. (3)). Thus, we obtain
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          Now consider a superconducting disk (YBCO) on the Earth’s atmosphere.  It is known that the Schumann resonances [12] are global electromagnetic resonances (a set of spectrum peaks in the extremely low frequency ELF), excited by lightning discharges in the spherical resonant cavity formed by the Earth’s surface and the inner edge of the ionosphere (60km from the Earth’s surface). The Earth–ionosphere waveguide behaves like a resonator at ELF frequencies and amplifies the spectral signals from lightning at the resonance frequencies. In the normal mode descriptions of Schumann resonances, the fundamental mode 
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 is a standing wave in the Earth–ionosphere cavity with a wavelength equal to the circumference of the Earth. This lowest-frequency (and highest-intensity) mode of the Schumann resonance occurs at a frequency 
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          It was experimentally observed that ELF radiation escapes from the Earth–ionosphere waveguide and reaches the Van Allen belts [14-17]. In the ionospheric spherical cavity, the ELF radiation power density,
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, is related to the energy density inside the cavity,
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 In the case of YBCO 
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 [18,19]. Then, substitution of this value into Eq.(29) gives
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The variable
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 in Eq. (32) is 
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 [20,21]. Thus, we can rewrite Eq. (32) as follows



[image: image178.wmf](


)


(


)


(


)


37


1


34


.


0


1


2


1


2


2


0


ï


þ


ï


ý


ü


ï


î


ï


í


ì


ú


ú


û


ù


ê


ê


ë


é


-


÷


÷


ø


ö


ç


ç


è


æ


+


-


=


f


D


m


m


rms


l


i


l


g


Since the superconducting disk is inside the Earth’s atmosphere then it is subjected to Schumann resonances. Thus, the values of 
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 (Eq. (35)). Therefore the value of 
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Since the weight of the disk is 
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 is the decrease in the weight of the disk. Therefore the disk 0.05% of its weight (without any rotation). Due to the Gravitational Shielding effect, these variations are the same for a sample above the disk .

          When the disk acquires an angular velocity 
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In the Podkletnov experiment, the YBCO disk is a rectangular toroid with radius 
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 (5,000 rpm) [22,23]. Considering these values and the value of 
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Note that this value corresponds to the region of the disk with thickness 
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Substitution of Eq. (41) into Eq. (40) gives
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In this case the disk loses more
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on the initial value of 0.05% that the disk loses without any rotation. Due to the Gravitational Shielding effect, a sample above the disk will have its weight decreased of the same percentage (
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          Thus, when 
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 Eq. (39) shows that 
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, i.e., the decreases of gravitational mass vanish, this corresponds to an increase in the weight of the sample of about  5.8% on the initial value of 0.05% that the sample lost more a portion due to the increase of the weight of the air column above the sample. Due to the gravitational shielding effect, the gravity acting on the air column above the sample (height~12Router [24]) is reduced in the same proportion that is reduced the gravitational mass of the disk (gravitational shielding). Thus, there is also an increase in the weight of the sample of 5.8% on the weight of the air column above the sample. Considering that 5.8% on the weight of the air column is equivalent to x% on the initial value of 0.05% that the sample lost, i.e.,    
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          Under these circumstances, the balance measures an increase correspondent to 5.8% on the initial value of 0.05% more 2%on the initial value of 0.05%, i.e., a total increase of about 7.8% on the initial value of 0.05%.        


          Consequently, the weight of the sample becomes unstable with fluctuations from −5.8% to +7.8% of the initial value of 0.05%. This means that the total variation of the weight of the sample oscillates in the range 
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 of its weight. 

          In the Podkletnov’s experiment the findings were −2.5% to +5.5% of the initial value of 0.05% [22,23]. This means that the total variation of the weight of the sample oscillates in the range
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          Note that, according to Eq. (39) and Eq. (42), for 
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 (200,000 rpm) the sample weight decrease can reach about 17%.  This very smaller than the 96% in the case of the Mumetal disk (Eq. (28)).
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 Fig.3 – Schematic diagram of an experimental set-up to measure the decrease of the gravitational  


             mass of the Mumetal disk and the gravitational shielding effect produced by the  rotating  


             disk. 
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Fig. 1 – Modified Electromagnetic Wave. The wavelength of the electromagnetic wave can be strongly reduced, but its frequency remains the same.
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 Fig.3 – Schematic diagram of an experimental set-up to measure the decrease of the gravitational 


             mass of the Mumetal disk and the gravitational shielding effect produced by the rotating 



             disk.
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Fig. 2 – Collisions inside the lamina.  
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