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ABSTRACT 

The Dirac spinor and its transformation properties form an important part in the foundation of 
Relativistic Quantum Mechanics and of course of particle physics. The Dirac spinor is neither a 
scalar nor a four vector. It has an identity of its own ---- it is a spinor. The article clearly brings out 
the fact that the spinor components transform individually on the passage from one reference 
frame to another though the spinor transformation matrix seems to produce the impression that 
each component in the transformed frame is created by the interaction of the four spinor 
components in the original frame. Such issues  have been handled in this article. 
 
Keywords: Relativistic Quantum Mechanics Dirac Spinor, Klein-Gordon Equation, Dirac 
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INTRODUCTION 
The concept of the Dirac spinor1,2 and its 
transformation properties form an important entity in 
the construction of Relativistic Quantum Mechanics 
and of course of particle physics. The Dirac spinor is 
neither a scalar nor a four vector. It has its own 
transformation rules defined by its transformation 
matrix and as such has an identity of its own ---- it is 
a spinor. Each component of the transformed Dirac 
solution is obtained by the interaction of all the 
components of the original solution and this 
procedure is quite different from the transformation of 
scalars. A careful reconsideration reveals that the 
component solutions of the Dirac equation transform 
individually. 
. The matter will be confirmed by proving a new result 
S(Λ)Ψ(t, x, E, p) = Ψ[Λ(t, x) Λ(E, p)] ---------------- (1) 
Where , 
Λ: Lorentz-Transformation Matrix3 
S(Λ): Spinor Transformation Matrix 4,5 
It is important to note that Ψ[Λ(t, x) Λ(E, p)] is the 
value of Ψ at (t/, x/, p/, E/)) = [Λ(t, x),Λ(E, p)] 
One may also envisage the component solutions of 
the Dirac equation to be scalars. This is in view of the 
fact that the individual components of the Dirac 
solution are also solutions of the Klein-Gordon 
equation [6,7] and that the Klein –Gordon solution is 
necessarily a scalar. The matter may be resolved if 
we assume that the Klein-Gordon Equation has non-
scalar solutions apart from the scalar ones. 
 
The Dirac Equation and its Lorentz-Covariance 
The Dirac equation 8,9 is Lorentz-covariant. In the 
unprimed frame it reads: 

 
 (i γµ∂µ – m) Ψ (t, x, E, p) = 0     ----------------------- (2) 
In the primed frame it reads: 
  (i γµ∂/

µ – m)  Ψ/( t/, x/, E/,  p/ ) = 0  --------------------- (3) 
 
The preserved nature of the equations reveals the 
fact that they have identical solutions in their 
respective frames of reference 
 In particular we may write, 
 
Ψ (t, x,E, p) = Ψ/(t, x, E, p)   ----------------------------- (4) 
(t ,x,E, p) on the right hand side and the left hand 
side represents different points in the two reference 
frames having identical values of the coordinates. By 
“different points” we mean that they are not the 
corresponding points of a Lorentz transformation. 
This result shall be of immense use to us in the future 
course of developing the article. It is a direct 
consequence of the principle of relativity. 
 
The transformation matrix re-examined: Let the 
function Ψ(t, x, E, p) in the unprimed frame transform 
to Ψ/( t/, x/, E/, p/) in the primed frame .Thus we have, 
 Ψ/ (t/, x/, E/, p/) = S(Λ)Ψ(t, x, E, p)     ------------------ (5) 
And   (t/, x/, E/, p/) = [Λ (t, x), Λ(E, p)]            -----   (6) 
In the above relations we cannot assume that 
Ψ/(t/, x/,E/, p/) =Ψ[Λ(t, x),Λ(E, p)]       -------------- (7) 
Rather we are defining Ψ/ by equation (5) so as to 
preserve the form of the Dirac equation on 
transformation. 
At this point let us define a new transformation in the 
following way: 
 
NT[Ψ(t, x, E, p)] = Ψ[Λ(t, x) Λ(E, p)]             ------ (8) 
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In the above relation i.e., (7), NT stands for our new 
transformation and NT(Ψ) is the value of Ψ at    (t/, x/, 
E/, p/) = [Λ(t, x),Λ(E, p)]. We may use the above 
transformation to move inside the same frame from 
one point to another inside the same reference frame 
and determine the psi function at the new location (of 
the same frame) or we may use it to move from one 
frame of reference to another. But this is not our 
spinor transformation. The action of the new 
transformation has been illustrated in the figure 
below. 

 
Fig 1. The first interpretation will be applied in the 
subsequent discussion. 
 
Performing the exercise: Let us perform the 
following exercise. We apply the new transformation 
to move from the point (t, x, p) to (t/, x/, p/) inside the 
unprimed reference frame and calculate the psi 
function at the new location. At the same time we 
apply the S matrix on the psi-function at (t, x, p) and 
pass to the primed reference frame. The action has 
been portrayed in the diagram below. 

 
Fig 2. 

 
Now by applying equation (4) we may claim that Ψ(t/, 
x/, p/) = Ψ/(t/, x/, p/). Indeed by applying the new 
transformation we have moved within the unprimed 
frame from (t, x, p) to    (t/, x/, p/).According to 
equation (4) the spinor transformed value at (t/, x/, p/) 
in the primed frame is equal to the value of the psi 
function at (t/, x/, p/) in the unprimed frame. Ψ(t/, x/, p/) 
is the solution of equation (2) at (t/, x/, p/) and Ψ/(t/, x/, 
p/) is the solution of equation (3) at (t/, x/, p/) and 
equations (2) and (3) have identical solutions at the 
“different points” (t/, x/, p/) due to the principle of 
relativity. 
Now, 
Ψ(t/, x/, E/, p/) = Ψ[Λ(t, x), Λ(E, p)] -------------------- (9) 
                
Ψ/(t/, x/,E/, p/) = S(Λ)Ψ(t, x, E, p)   ------------------  (10) 
Therefore, 
S(Λ)Ψ(t, x, E/, p) = Ψ[Λ(t, x), Λ(E, p)]   -------------  (11) 
 
In fact we have proved (7) 
Equation (11) is in perfect conformity with specific 
examples of the Dirac Spinor. We get the same result 
by applying either side of equation on the Dirac 
spinor. 
Supporting Calculations : In the above discussion I 
have proved that 
S(Λ)Ψ(t, x, E, p) = Ψ[Λ(t, x) Λ( E, p) ] 
Where S(Λ) is the spinor transformation matrix 
And Λ is the Lorentz Transformation matrix. 
I have claimed that both the left hand side and the 
right hand side of the formula (11) produce the same 
results. 
Let me illustrate this 
For a particle moving along the x-axis (of the 
unprimed frame) with momentum px the Dirac spinnor 
is given by10: 
 
Ψ(px)= 

0
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0 1 0
exp( )
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Let the primed frame be moving wrt the unprimed 
frame with speed V along the x-x/ direction. 
Momentum=px

/ = Λ(px) 
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The Dirac solution is given by: 
 
Ψ/(px

/)=  
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Indeed we have S(Λ)Ψ = Ψ[Λ(t, x, E, p)] and the right 
had side is more convenient to use. 
Now this problem takes on a special dimension when 
we consider particles at rest .The Dirac solution for 
such particles is given by: 
 
Ψr = ωr(0) exp(-iεrm0t)  , r=1,2,3,4 
 
Where, ω1, ω2, ω3 and ω4 are the usual column 
matrices containing zeros and ones in proper order. 
 
If the conventional psi function of a moving 
spinor(momentum=px) is known to us the right hand 
side of  formula (1) easily predicts the psi function of 
the spinor wrt to a frame where it is at rest. But the 
other way round there is some difficulty if the 
functional dependence on momentum is not known to 
us. If the form of dependence of the psi function on 
momentum is not visible to  the formula Ψ/= Ψ[Λ(t, x) 
Λ(E, p)] it cannot perform the conversion work.  The 
left hand side seems to offer us some advantage in 
this matter. Let us check on this point. 
If a component of the rest spinor be zero it could 
either be a scalar zero  or it could be of the form f(p) 
such f(p)=0 for p=0. A correct knowledge of the 
situation could be gained by considering the Dirac 
equation. Let us write the four component equations 
for motion along the x-axis( 0y zp p= = ) 
 

1 4
0 1 0i i m

t x
ψ ψ ψ∂ ∂

− − + =
∂ ∂

 

32
0 2 0i i m

t x
ψψ ψ∂∂

− − + =
∂ ∂

 

  3 2
0 3 0i i m

t x
ψ ψ ψ∂ ∂

+ + =
∂ ∂

 

  4 1
0 4 0i i m

t x
ψ ψ ψ∂ ∂

+ + =
∂ ∂

 

 
The above set may be grouped into two identical 
parts: 
 

1 4
0 1 0i i m

t x
ψ ψ ψ∂ ∂

− − + =
∂ ∂

 

                               ------------------------------------- (12) 

4 1
0 4 0i i m

t x
ψ ψ ψ∂ ∂

+ + =
∂ ∂

 

 
And, 

32
0 2 0i i m

t x
ψψ ψ∂∂

− − + =
∂ ∂

 

                               ------------------------------------- (13) 

3 2
0 3 0i i m

t x
ψ ψ ψ∂ ∂

+ + =
∂ ∂

 

 
The second set ie, equations(13) may be given trial 
solutions of the form  
               2 3 0ψ ψ= =   
With the first[equations (12)] set we try, 

1 1( ) exp( )xf p ip xµ
µψ = −  

4 2 ( ) exp( )xf p ip xµ
µψ = −  

The exponential part has been predicted from the 
rest spinor solution. Substituting these trial solutions 
into  equations (12)   we have, 
 

1 0 2

0 2 1

0
2 1

( )[ ] ( )
,

[ ] ( ) ( )
,

[ ]( ) ( )

x x x

x x x

x x
x

f p E m p f p
And
E m f p p f p

Or
E mf p f p

p

− =

+ =

−
=

 

Using the relation, 
2 2 2

0 xE m p− =
 

We have, 
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1
2

0

( )( )
[ ]

x x
x

f p pf p
E m

=
+

 

Writing   1/20
1

0

( ) [ ]
2x

E mf p
m
+

=  

We have the normal Dirac Solution for a particle 
moving along the x-direction. The above choice of 

1( )xf p is such that it satisfies the condition that 
†ψ ψ  is a Lorentz-invariant Our solution is: 

 
1/20

0 0

[ ] (1,0,0, ) exp( )
2

TxE m p ip x
m E m

µ
µψ +

= −
+

 

[T  stands for transpose in the above expression] 
 
The solutions for the two-dimensional or three 
dimensional motion may be calculated from the 
transformation rules or directly from the Dirac 
Equations.       
TWO DIMENSIONAL MOTION                     
[ 0, 0, 0x y zp p p≠ ≠ = ] 
 
The Dirac Equation for two-dimensional motion are: 
 

1 4 4
0 1 0i i m

t x y
ψ ψ ψ ψ∂ ∂ ∂

− − − + =
∂ ∂ ∂

----------- (14) 

4 1 1
0 4 0i i m

t x y
ψ ψ ψ ψ∂ ∂ ∂

+ − + =
∂ ∂ ∂

 

 

3 32
0 2 0i i m

t x y
ψ ψψ ψ∂ ∂∂

− − + + =
∂ ∂ ∂

----------- (15) 

3 2 2
0 3 0i i m

t x y
ψ ψ ψ ψ∂ ∂ ∂

+ + + =
∂ ∂ ∂

 

 
Trial Solution: 

2 3 1 1 4 20, ( , , )exp( ), ( , , )exp( )x y x yf E p p ip x f E p p ip xµ µ
µ µψ ψ ψ ψ= = = − = −

 
Substituting the trial solution into equations (14) and 
using the relation 2 2 2 2

0 x yE m p p− = +  we have, 

2 1
0

x yp ip
f f

E m
+

=
+

 

Solution: 

1
0

(1,0,0, )exp( )x yp ip
f ip x

E m
µ

µψ
+

= −
+

 

If the trial solution is taken as: 
 

1 4 2 1 3 20, ( , , )exp( ), ( , , )exp( )x y x yf E p p ip x f E p p ip xµ µ
µ µψ ψ ψ ψ= = = − = −

The Dirac-solution works out to: 

1
0

(0,1, ,0) exp( )x y Tp ip
f ip x

E m
µ

µψ
−

= −
+

 

The condition that †ψ ψ  is a Lorentz invariant gives 

the value of  1/20
1

0

[ ]
2

E mf
m
+

=  in both the above 

cases. 
In the exponential parts we could have used  
exp( )ip xµ

µ  instead of  exp( )ip xµ
µ−  to obtain other 

types of solution. These results conform to the 
standard ones. Fo transformation we simply replace 

,x yp p  by the corresponding Lorentz values of px
/ and 

py
/. Our new transformation rule, 

 
                    / ( , , , ) [ ( , ), ( , )]t x E p t x E pψ ψ= Λ Λ  
indeed remains valid. The three dimensional solution 
may also be evaluated by using suitable trial 
solutions. 
 
An element of arbitrariness: Now the spinor 
transformation matrix is defined by 
 
   S-1γν S =  Λν

µ γµ         ------------------------------- (16) 
 
Let us look into the proof of the above relation: 
 
We have, 
 
      (- i γµ ∂µ + m) Ψ(x) = 0    ----------------------- (17) 
 
     ∂ 
  ------ = Λν

µ ∂/
ν 

    ∂ xµ                                  ------------------------- (18) 
 
And  
 
          S-1 Ψ/(x/) = Ψ(x)        ------------------------- (19) 
 
Equation (3) may be written as  
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(-i γµ Λν
µ

 ∂/
ν Ψ/(x/) + m) S-1 (Λ) Ψ/(x/) = 0 ----------- (20) 

 
Left multiplying the above equation by S we have 
 

-iS Λν
µ γµ S-1 ∂/

ν Ψ/(x/) + m Ψ/(x/) = 0 
[It is important to note that Λν

µ  are 
numbers(matrix elements) while the gammas 
are matrices themselves. ] 

In order to preserve the Dirac equation we must 
have, 
 
    S-1γν S = Λν

µ γµ                  -------------------------- (21) 
But it is especially interesting to take note of the 
matrix operator: 
S/(Λ)  =   S exp(-i M ω) --------------------------------- (22) 
Where ω is the boost angle (tanh ω = vx/c) or the 
rotation angle . Here M is a constant scalar. 
[Please take note of the fact that exp (-i M ω) = 1 for 
ω=0. Also take note of the fact that  exp(-I M ω) is a 
scalar and not a matrix.] 
We shall prove that if the transformation matrix S 
preserves the Dirac equation the matrix S/(Λ) also 
preserves it.              
. 
Now, 
  (S/)-1 = [S exp (-iMω)]-1= exp(iMω) S-1    --------(23) 
  We have,    Ψ(x) = (S/)-1 Ψ//(x/)          
 
 Under the action of S/(Λ) equation (3) transforms to 
                       (-i γµ Λν

µ
 ∂/

ν Ψ//(x/) + m  exp(iMω) S-1 
(Λ) Ψ//(x/) = 0 
                                                                  
Then left multiplying by S/ = S exp (iMω) we obtain, 
                       (S/) (-i γµ Λν

µ
 ∂/

ν Ψ//(x/) + m) (S/)-1 (Λ) 
Ψ//(x/) = 0 
 
Or,  -i S exp(-iMω) Λν

µ γµ exp(iMω)S-1 ∂/
ν Ψ//(x/) + m 

Ψ//(x/) = 0  ----------------- (24) 
 
Or,  -i S Λν

µ γµ S-1 ∂/
ν Ψ//(x/) + m Ψ//(x/) = 0 

By  using (7) that is, 
 
    Λν

µ γµ= S-1γν S, 
 
We obtain, 
       (- i γµ ∂/

µ + m) Ψ//(x/) = 0       ---------------- (25) 
So the Dirac equation is again preserved. 
 
Invariance of norm of the psi function wrt to S implies 
 
                          Ψ†Ψ = Ψ† S† S Ψ 
That is       S† S= I 
Now, 

                           Ψ† S/† S/Ψ = Ψ† exp (iMω)S/† S/(-
iMω)Ψ  
                                            = Ψ† exp iMω)(-iMω)Ψ  
                                            = Ψ† IΨ 
                                            = Ψ† Ψ  
Thus the norm is preserved for S/ also. 
Indeed S and S/ preserve the Dirac equation for the 
same boost or rotation. In fact the scalar M may 
contain expressions containing components of the 
energy-momentum four-vector. Of these several 
matrices the left hand side of (1) chooses a particular 
one for transforming the spinor at rest and so the 
transformation appears to be of a unique nature. 
But the transformation is not actually unique if we 
consider all the matrices given by (8) 
Indeed the right hand and the left hand sides of (1) 
have equal problems in handling spinors at rest if the 
functional dependence of psi on the momentum 
components is not known to us.  
 
The Klein-Gordon Connection: It is a well known 
fact that the individual components of the Dirac 
solution satisfy the Klein-Gordon equation. Now we 
know that the solutions of the K-G equation must 
necessarily be a scalar and therefore the individual 
components of the Dirac equation must also be 
scalars[if they transform individually] and hence the 
four-component Dirac solution should be a scalar. 
But this is not true! The Dirac solution Ψ is not a 
scalar (psi-bar psi is a scalar). Therein lays the 
contradiction! 
Interestingly the Dirac components may be 
transformed in two ways: 

1) By using the rule Ψ/(t/, x/, E/, p/) = Ψ[Λ(t, x), Λ(E, 
p)].This we have proved in the previous section. 

In this case the components transform individually. 
2) By using the relation Ψ/(t/, x/, E/, p/) = S(Λ)Ψ(t, x, 

E,  p). This is the usually followed procedure 
where all the components are involved. But if 
the relation S(Λ)[Ψ(t, x,E p)]=Ψ[Λ(t, x), Λ(E, p)] 
is true both the methods should produce the 
same result. This has been clearly explained in 
the previous section. 

By applying the first method we conclude that the 
components transform individually. At the same time 
they should be  scalars (each component being a 
solution of the K-G equation). 
Let us first write the Klein Gordon Equation (natural 
units have been assumed): 
 

(∂2 + m2) ψ = 0 
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The Klein Gordon operator itself is a Lorentz-invariant 
quantity. Therefore to preserve the above relationship 
(on Lorentz Transformation) we have two options: 
 
1) The function ψ is itself a Lorentz invariant quantity 
2) Keeping in mind that the Klein-Gordon operator is 
a differential operator and that the result of the 
operation depends not only on the point transformed 
but also on the neighboring points, we come to an 
immediate conclusion that other solutions are 
possible (The Dirac solution is such a solution).In fact 
the Klein-Gordon equation is a partial differential 
equation and it may have several solutions 
depending on the boundary conditions. This 
strengthens the argument. The Klein Gordon Solution 
may not be a scalar! 

It is important that we investigate the solutions other 
than the two usual types- the Dirac spinor and the 
usual zero-spin solution. 

CALCULATIONS 
The Klein –Gordon equation (Assuming natural units: 
c=1, h =1): 
           (∂2 + m2) ψ = 0; 
Or, 
   

2 2 2 2
2

2 2 2 2 0m
t x y z
ψ ψ ψ ψ∂ ∂ ∂ ∂

− − − + =
∂ ∂ ∂ ∂

 -------------26)     

We apply the separation of variables technique. 
 
Let  ψ = φ0(t)φ1(x) φ2(y) φ3(z) 
 
Substituting the above trial solution in (1) we obtain, 

2 22 2
20 31 2

2 2 2 2
0 1 2 3

1 1 1 1 0m
t x y z
ϕ ϕϕ ϕ

ϕ ϕ ϕ ϕ
∂ ∂∂ ∂

− − − + =
∂ ∂ ∂ ∂

 

 
The solutions are: 

0 1 0 2 0

1 1 1 2 1

2 1 2 2 2

3 1 3 2 3

exp( ) exp( )
exp( ) exp( )
exp( ) exp( )
exp( ) exp( )

A ik t A ik t
B ik x B ik x
C ik y C ik y
D ik z D ik z

ϕ
ϕ
ϕ
ϕ

= + −
= + −
= + −
= + −

  -----(27) 

 
The separation constants are 

2 2 2 2
0 1 2 3, ,k k k and k− − − −  

General Soln: 0 1 2 3constψ ψ ψ ψ ψ= Σ ×  -----(28) 
Summation is carried over all the values of the 
constants 

The elementary Klein – Gordon eigen-function may 
be obtained form (23) by asigning suitable values to 
the constants. For example putting A1=0,B2=0,C2=0 
and D2= we obtain one of the elementary Klein-
Gordon solutions. Also we assume, k0=E (=ω) .The 
condition k0

2 – k1
2 – k2

2 – k3
2 = m2 gets automatically 

imposed. We may identify k1,k2 and k3 as the 
momenta p1, p2 and p3(since h  =1) 
The Dirac Components: First we take note of the 
fact that the values of energy and individual 
components of momentum four-vector are constants 
in the elementary solutions (eigenfunctions) of both 
the Klein –Gordon and the Dirac equations.(In fact to 
verify the validity of the solutions wrt the equations 
we  partial differentiate them holding each component 
of the energy momentum four-vector  constant with 
respect to t, x , y and z separately).Therefore these 
values may be used as the constants A1, B1 etc. This 
basic information is crucial to what we are to do next. 
First let us consider the usual Dirac solution  for 
particles moving along the x axis with momentum px 
and energy E(Displayed previously): 
 
For r=1, the first Dirac component is:      

     1/20

0

( ) [ ] exp( )
2x

E mp ip x
m

µ
µψ +

= −  

We may get this result from equation Set (23) by 

assuming. 1/20
1

0

[ ]
2

E mA
m
+

=   and k0=m0 

All other constants are assumed to be zero It may 
also be noted that E is constant for a particular 
eigenfunction. 
But the above function is not a scalar since E is not 
an invariant. Moreover one appears in the coefficient 
while the other in the exponent. 
For r=1 the fourth component is: 

0 0

( ) exp( )
2 ( )

x
x

pp ip x
m E m

µ
µψ = −

+
 

Again we may obtain the above function from Set(23) 

by assuming 1
0 02 ( )

xpA
m E m

=
+

,    

K0= m0  and  other constants are zero. It may again 
be noted that px and E being constant fore a 
particular eigenfunctions may be fitted into the 
constants. But the above function is not a scalar 
since px ,E and  transform without preserving the 
function. 
Similar statements may be made in reference to 
other Dirac Components. It is difficult to say whether 
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such solutions exist in nature (they are neither zero-
spin nor half spin particles!) but the possibility should 
be explored. We could predict other solutions of the 
Klein Gordon equation by assigning other suitable 
types of values to the constants and explore the 
possibility of existence of such particles! 
 
CONCLUSIONS 
We have proved the important relation (1) 
 
S(Λ)Ψ(t, x, E, p) =  Ψ[Λ(t, x, E, p )]   
Where , 
Λ: Lorentz-Transformation matrix 
S(Λ): Spinor Transformation matrix 
It is important to note that in the above Ψ[Λ(t, x, E, p)] 
is the value of Ψ at (t/, x/, E/, p/) = Λ(t, x)Λ(E, p) 
So the Dirac components may transform individually 
or collectively producing the same result. It has also 
been shown that the Klein-Gordon solution is not 
necessarily a scalar 
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