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Abstract 

We discuss two theoretical arguments strongly suggesting that the continuum limit of Quantum 

Field Theory (QFT) leads to fractal geometry. The first argument stems from the Path Integral 

formulation of QFT, whereas the second one is an inevitable consequence of the 

Renormalization Group (RG). 
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1. QFT as Critical Behavior in Statistical Physics 

A basic task in perturbative QFT is to compute the time-ordered n-point Green function, i.e. [1] 
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Performing the rotation to Euclidean space ESiSe e and taking the above integral to run over all 

configurations that vanish as the Euclidean time goes to infinity ( Et   ), leads to the 

conclusion that (1) is formally identical to the correlation function of a classical statistical 

system. A natural question is then: What kind of statistical system is able to duplicate the 

properties of a QFT described by (1)? 
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In order to compute (1), it is convenient to discretize the Euclidean space using, for example, a 

four-dimensional lattice with constant spacing  . Under the assumption that the number of 

lattice sites is finite, the path integral of (1) becomes well defined and the question posed above 

amounts to taking the continuum limit 0   at the end of calculations. 

To fix ideas, consider the two-point Green function for a massive field theory defined on four-

dimensional spacetime with Euclidean metric 

  
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 with 
2

p p p

  and px p x

 . Calculations are considerably simplified if m x  >> 1 , in 

which case (2) becomes 

 ( ) (0)x   ~ 
2

1
exp( )m x

x
  (3) 

Expressing the spacetime separation as x n and assuming n  >> 1  leads to 

 ( ) (0)x   ~ exp( )n m  (4) 

By analogy with statistical physics, the behavior of  

 ( ) (0)x   ~ exp( )
n


  (5) 

determines the dimensionless correlation length  . Comparing (4) and (5) yields 
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It is immediately apparent that the continuum limit 0   of the massive theory ( m≠ 0 ) implies 

singular correlation length, that is,   .  This conclusion shows that QFT models phenomena 

that are strikingly similar with the ones describing critical behavior in statistical physics. Since 

all phenomena near criticality are scale-free and lay on a fractal foundation [2], it is clear that the 

continuum limit of QFT necessarily leads to fractal geometry.   

2. RG and the Onset of Self-similarity in QFT 

As it is known, the RG studies the evolution of dynamical systems scale-by-scale as they 

approach criticality [2]. It does so by defining a mapping between the observation scale (  ) and 

the distance (
cx    ) from the critical point, where the passage 0x   defines the 

continuum limit in energy space. The universal utility of the RG is based on the existence of self-

similarity of all observables as 0x  .  

To illustrate this point, consider a generic model whose fields are evenly distributed on the 

discrete lattice of points. The behavior of the Lagrangian ( )L x  in the RG formalism is given by 

the following set of transformations [2]  

 ' ( )x x  (7)     
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Here,   is a constant describing the rescaling of the Lagrangian upon shifting the scale to the 

critical value (
c  ), the function ( )x is called the flow map and 

 ( ) ( ) ( )cL x L L    (9) 

such that ( ) 0L x   at the critical point. The function ( )h x  represents the non-singular part of

( )L x . Assuming that both ( )L x  and ( )x  are differentiable, the critical points are defined as 

the set of values at which ( )L x  becomes singular, that is, when 
dL

dx
 . Then, the formal 

solution of (8) can be presented as the recursive sequence 

 0( ) ( )f x h x  (10) 

 1 0

1
( ) ( ) ( ) ,n nf x f x f x  


  0,1,2....n   (11) 
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Here, the superscripts ( i ) denote composition, that is, 

  (2) (3) (2)( ) , ( ) ...x x           (13) 

The renormalized Lagrangian assumes the form 

 ( ) lim ( )n
n

L x f x


  (14) 
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The above relation indicates that all copies of the Lagrangian specified by the iteration index n

become self-similar in the limit n. Furthermore, if x  designates a generic coupling constant 

( ( )x g  ) whose critical value occurs at ( )c cg g  , the Lagrangian  
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may be shown to become singular at 
cg g . In the neighborhood of 

cg g  (15) follows a 

power law that is typical for the onset of fractal behavior, namely: 

 ( ) ( ).( )m

cL g const g g   (16) 

where m  stands for the critical exponent. 

3. Conclusion 

This brief analysis points out that QFT is a manifestation of fractal geometry. As we have 

repeatedly shown over the years, exploiting the fractal underpinnings of QFT and RG may 

provide viable solutions for the many puzzles associated with the Standard Model of particle 

physics [3-4].   
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