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orbit and surface landers, during the Apollo era of exploration. 

 
 
Key words: Quantum Gravity, Lunar Exosphere, Dusty Plasma, Sunlight Scattering.  
  
1. Introduction 
          
       While orbiting the Moon, the crews of 
Apollo 8, 10, 12, and 17 have observed 
“horizon glow” and “streamers” at the lunar 
horizon, during sunrise and sunset. This was 
observed from the dark side of the Moon 
[1,2] (e.g., Fig. 1). NASA's Surveyor 
spacecraft also photographed "horizon 
glows," much like what the astronauts saw 
[3]. These observations were quite 
unexpected, since it was thought that the 
Moon had a negligible atmosphere. 
 

 
Fig.1 – At sunrise and sunset many Apollo crews 
saw glows and light rays. This Apollo 17 sketch 
depicts the mysterious twilight rays. 
 
 
 

 
 
          Now a new mission of NASA, called: 
“The Lunar Atmosphere and Dust 
Environment Explorer (LADEE)”, was sent 
to study the Moon's thin exosphere and the 
lunar dust environment [4]. One of the 
motivations for this mission is to determine 
the cause of the diffuse emission seen at 
lunar horizon  by astronauts in orbit and 
surface landers. 
          Here, we explain how sub-micron dust 
is able to reach the lunar exosphere and cause 
the diffuse emission at the lunar horizon.  
 
2. Theory 
 
          It is known that the lunar dust results 
of mechanical disintegration of basaltic and 
anorthositic rock, caused by continuous 
meteoric impact and bombardment by 
interstellar charged atomic particles over 
billions of years [5]. Dust grains are 
continuously lifted above the lunar surface 
by these impacts and dust clouds are formed. 
They are dusty plasma clouds* because 
atoms from the dust grains are ionized by the 
UV radiation and X-rays from the solar radiation 
that incides continuously on the lunar surface 
[6].  
          The gravitational interaction between 
these dusty plasma clouds and the Moon only 
can be described in the framework of 
Quantum Gravity. 
                                           
* A dusty plasma is a plasma containing millimeter 
(10−3) to nanometer (10−9) sized particles suspended in 
it. Dust particles are charged and the plasma and 
particles behave as a plasma [7,8]. 
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          The quantization of gravity shows that 
the gravitational mass mg and the inertial 
mass mi are correlated by means of the 
following factor [9]: 
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where  is the rest inertial mass of the 
particle and  is the variation in the 
particle’s kinetic momentum;  is the speed 
of light.   

0im
pΔ

c

      In general, the momentum variation pΔ  
is expressed by tFp ΔΔ =  where  is the   
applied force during a time interval

F
tΔ . Note 

that there is no restriction concerning the 
nature of the force , i.e., it can be 
mechanical, electromagnetic, etc. 

F

          For example, we can look on the 
momentum variation pΔ   as due to 
absorption or emission of electromagnetic 
energy. In this case, it was shown previously 
that the expression of χ , in the particular 
case of incident radiation on a heterogeneous 
matter(powder, dust, clouds, etc),  can be 
expressed by the following expression [10]:  
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where and  are respectively the 
frequency and the power density of the 
incident radiation; n  is the number of 
molecules per unit of volume;  is the total 
surface area of the dust grains, which can be 
obtained by multiplying the specific surface 
area (SSA) of the grain (which is given by 

f D

fS

grgrrρgrgrgr VSSSA ρ 3== ) by the total mass of 

the grains ( ( ) grgrgrtotali NVM ρ=0 );  is 
the area of the cross-section of the grain; 

2
grrS πα =

mφ  
is the average “diameter” of the molecules of 
the grain, 2

4
1

mmS πφ=  is the cross section area, 
and  is the index of refraction of the 
heterogeneous body. 

rn

          In the case of dust grain,  is given by 
the following expression 

n

A
N

n grρ0=

where  is 
the Avogadro’s number; 

kmolemoleculesN /1002.6 26
0 ×=

grρ  is the matter 
density of the dust grain (in kg.m-3) and A is 
the molar mass of the molecules                   
(in kg.kmol-1). Then, Eq. (2), in the case of a 
dust cloud, can be rewritten in the following 
form 

( ) ( )31256121 24

22444246
0

0 ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛+−=

fc
DnSNS

A
N

m
m rmmgrgr

i

g φρ α

where,  

( )

( ) ( )
( )

( )
82

4
0

43
3
4

224
0

4

24
042

4

424

256
81

gr

totali

gr

grtotali

gr

totali
gr

gr

gr
grgr

r
M

r

rM
V

SM
NS

V
m

NS

ππ

π

ρ α
αα

==

==⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

and, ( ) cloudcloudgrgrgrtotali VNVM ρρ ==0 . Thus, 
we can write that 
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Substitution of this expression into Eq. (3) 
gives 
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          The analysis of the lunar rocks 
collected by Apollo and Luna missions 
shows the following average composition       
(principal components) of the lunar soil [11]: 
SiO2 (44.6%), Al2O3 (16.5%), FeO (13.5%), 
CaO (11.9%). Considering the following 
data: SiO2 ( 45.1=rn ,  
and ), Al

1.07.60 −= kmolkgA
mm

10106.5 −×=φ 2O3 ( 7.1=rn , 
 and ), 

FeO (

1.96.101 −= kmolkgA mm
10108.7 −×=φ

23.2=rn ,  and 
), CaO (

1.84.71 −= kmolkgA
mm

10103.5 −×=φ 83.1=rn , 
 and )1.08.56 −= kmolkgA mm

10109.5 −×=φ †, 
we can calculate the value of the factor 
                                           
† The values of mφ were calculated starting from the 
unit cell volume, i.e., 92.92 Å3, 253.54 Å3, 80.41 Å3, 
110.38Å3, respectively [12]. 
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6244 AnS rmmφ (Eq. (4)), for these components 

of the lunar soil. The result is: , 
, , , 

respectively. Then, considering the respective 
percentages, we can calculate the average value 
for the factor

1221062.1 −×
1221096.4 −× 12210673.0 −× 1221029.7 −×

6244 AnS rmmφ , i.e.,  

[ ] ( )
( ) (
( ) 122122

122122

1226244

105.21029.7119.0
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1062.1446.0

−−
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        Substitution of this value into Eq. (4) 
gives 
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Note that the value of 0ig mm  becomes 
highly relevant in the case of sub-micron 
particles ( )mrgr μ01.0~ .  
          By applying Eq. (5) for the particular 
case of  lunar clouds of dusty plasma 
composed by sub-micro dust, we get 
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The factor fD can be expressed by the 
Planck’s radiation law i.e.,  
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where  is the Boltzmann’s 
constant;  is given by the Wien’s law 

Kjk /1038.1 23−×=
f

( )T310886.2 −×=λ , i.e., 310886.2 −×= cTf ; 
T  is the dusty plasma temperature. Thus, the 
Equation above can be rewritten as follows: 
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Substitution of Eq. (7) into Eq. (6) yields 
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         Near the Moon’s surface, the density 
of the lunar atmosphere is about 

[312 .10 −− mkg 13]. Thus, we can assume that 
this is the density of dusty plasma clouds 
near the Moon’s surface. The temperature of 
sub-micron dusty plasma can be evaluated by 

means of the following expression: 
[ ] ( ) kTleeeVvm 2
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whence, we get . Thus, Eq. (8) 
gives 
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Note that, for the factor 337.334 mVcloud > χ  
becomes negative. Under these conditions, 
the gravitational interaction between the 
Moon and the cloud becomes repulsive, i.e.,  
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In this way, sub-micron dusty plasma can reach 
the lunar exosphere.  
 
   
 
 
  
 
 
 
 
 
 
 
 
 
  
Fig.2 - How sub-micron dusty plasma can reach the  
            lunar exosphere. 
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          In the case of large clouds of sub-micron 
dusty plasma ,  Eq. (9) shows 
that  

3910 mV cloud >

262 10>χ
Thus, the gravitational attraction between 
two sub-micron particles inside the cloud 
will be given by 
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Note that this force is much greater than the 
electric force 
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This means that, inside the clouds, thousands 
of sub-micron particles will be strongly 
attracted among them (See Fig.3), forming 
thousands of large particles with radius in the 
range mμ100010 −  or more. 
   
 
 
  
 
 
 
  
 
  
 
 
                         eg FF >>  
 
 
 Fig.3 –Strong gravitational attraction between sub- 
       micron dust, producing microclusters of dust that 
       will cause strong scattering of the sunlight in the  
       lunar exosphere   
                 

Sub-micron dust 

Thus, when a cloud of this type arrives to 
lunar exosphere it increases the number of 
these particles (gravitational microclusters of 
lunar dust) inside the lunar exosphere. Under 
these circumstances, it density becomes 
equal to the density of the lunar exosphere 
( )318 .10~ −− mkg [14]. The amount of 
Rayleigh scattering that occurs for a beam of 
light depends upon the size of the particles 
and the wavelength of the light. Specifically, 
the intensity of the scattered light varies as 
the sixth power of the particle size, and varies 
inversely with the fourth power of the 
wavelength.  
          Thus, the lunar exosphere is 
fundamentally a very large cloud of sub-
millimeter dust plasma. Consequently, in 
order to calculate the factor χ  for the lunar 
exosphere, we can use the Eq. (5), assuming 
that most of the particles has mrgr μ100≅  and 

that . The result is   318 .10 −−≈ mkgcloudρ
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Considering that the Moon’s radius is 
1738km and that, evidences observed during 
the Apollo missions, indicate the existence of 
solar light scattering from a significant 
population of lunar particles, which  exist in 
a little thick region (~1km) starting from  
100km above the lunar surface [15], we can 
write that 
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Substitution of this value into Eq. (12) yields 

( )131−≈χ
Alternatively, we may put Eq.(2) as a 
function of the radiation power density , D  
[9], i.e., 
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From Electrodynamics we know that when 
an electromagnetic wave with frequency 

and velocity  incides on a  material  with 
relative  permittivity 
f c

rε , relative magnetic 
permeability rμ  and electrical conductivity 
σ , its velocity is reduced to rncv =  where 

 is the index of refraction of the material, 
given by  [

rn
16]   
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If  ωε>> f,σ π2ω = , Eq. (15) reduces to 
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Due to the lunar exosphere be a plasma its 
electrical conductivity,σ , must be high. 
Thus, we can consider that its  can be 
expressed by Eq. (16). Substitution of Eq. 
(16) into Eq. (14) gives 

rn
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By substituting Eq. (7) into Eq. (17) we 
obtain the following expression of χ  for the 
lunar exosphere: 
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By comparing Eq. (18) with Eq. (13) we can 
conclude that in the lunar exosphere: 
 

( )19/.10 3163 mSKT r ≈σμ
 
Since the temperature T  of the dusty plasma 
near the Moon’s surface, giving by 
[ ] kTvm 2

32
2
1 =μμ , is . Then, 

considering that in the exosphere the 
particles are dust clusters with larger masses 

KT 10≅

μm  (radii ~1,000 times larger), and also with 
larger velocities μv  (due to the low density 
of the exosphere), we can conclude that 

. The temperature of dust in a 
plasma is typically 1-1,000K [

KT 000,1>
17, 18]. 

However, it can reach up to 1,000,000K [19].        
          In a previous paper, we have shown 
that the explanation of the Allais effect 
requires 1.1−=χ  for the lunar exosphere [9, 
Appendix A]. This is in agreement with the 
value here obtained (Eq.13). However, in the 
mentioned paper, we consider erroneously 
that the effect was produced by the incidence 
of sunlight on the exosphere. Here, we can 
see the exact description of the phenomenon 
starting from the same equation (Eq. (14)) 
used in the above-cited paper. 
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1. Introduction

       While orbiting the Moon, the crews of Apollo 8, 10, 12, and 17 have observed “horizon glow” and “streamers” at the lunar horizon, during sunrise and sunset. This was observed from the dark side of the Moon [1,2] (e.g., Fig. 1). NASA's Surveyor spacecraft also photographed "horizon glows," much like what the astronauts saw [3]. These observations were quite unexpected, since it was thought that the Moon had a negligible atmosphere.



[image: image1]

Fig.1 – At sunrise and sunset many Apollo crews saw glows and light rays. This Apollo 17 sketch depicts the mysterious twilight rays.

          Now a new mission of NASA, called: “The Lunar Atmosphere and Dust Environment Explorer (LADEE)”, was sent to study the Moon's thin exosphere and the lunar dust environment [4]. One of the motivations for this mission is to determine the cause of the diffuse emission seen at lunar horizon  by astronauts in orbit and surface landers.

          Here, we explain how sub-micron dust is able to reach the lunar exosphere and cause the diffuse emission at the lunar horizon. 


2. Theory


          It is known that the lunar dust results of mechanical disintegration of basaltic and anorthositic rock, caused by continuous meteoric impact and bombardment by interstellar charged atomic particles over billions of years [5]. Dust grains are continuously lifted above the lunar surface by these impacts and dust clouds are formed. They are dusty plasma clouds
 because atoms from the dust grains are ionized by the UV radiation and X-rays from the solar radiation that incides continuously on the lunar surface [6]. 

          The gravitational interaction between these dusty plasma clouds and the Moon only can be described in the framework of Quantum Gravity.


          The quantization of gravity shows that the gravitational mass mg and the inertial mass mi are correlated by means of the following factor [9]:
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 is the rest inertial mass of the particle and 
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 is the variation in the particle’s kinetic momentum; 
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      In general, the momentum variation 
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. Note that there is no restriction concerning the nature of the force
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, i.e., it can be mechanical, electromagnetic, etc.


          For example, we can look on the momentum variation 
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  as due to absorption or emission of electromagnetic energy. In this case, it was shown previously that the expression of 
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, in the particular case of incident radiation on a heterogeneous matter(powder, dust, clouds, etc),  can be expressed by the following expression [10]: 
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where 
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 are respectively the frequency and the power density of the incident radiation; 
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 is the total surface area of the dust grains, which can be obtained by multiplying the specific surface area (SSA) of the grain (which is given by 
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          In the case of dust grain, 
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 is given by the following expression
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 is the Avogadro’s number; 
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 is the matter density of the dust grain (in kg.m-3) and A is the molar mass of the molecules                       (in kg.kmol-1). Then, Eq. (2), in the case of a dust cloud, can be rewritten in the following form




[image: image28.wmf](


)


(


)


3


1


256


1


2


1


2


4


2


2


4


4


4


2


4


6


0


0


ï


þ


ï


ý


ü


ï


î


ï


í


ì


ú


ú


û


ù


ê


ê


ë


é


-


÷


ø


ö


ç


è


æ


+


-


=


f


c


D


n


S


N


S


A


N


m


m


r


m


m


gr


gr


i


g


f


r


a


where, 
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. Thus, we can write that
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Substitution of this expression into Eq. (3) gives
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          The analysis of the lunar rocks collected by Apollo and Luna missions shows the following average composition       (principal components) of the lunar soil [11]: SiO2 (44.6%), Al2O3 (16.5%), FeO (13.5%), CaO (11.9%). Considering the following data: SiO2 (
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, we can calculate the value of the factor 
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(Eq. (4)), for these components of the lunar soil. The result is: 
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, respectively. Then, considering the respective percentages, we can calculate the average value for the factor
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        Substitution of this value into Eq. (4) gives
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Note that the value of 
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 becomes highly relevant in the case of sub-micron particles

[image: image54.wmf](


)


m


r


gr


m


01


.


0


~


. 


          By applying Eq. (5) for the particular case of  lunar clouds of dusty plasma composed by sub-micro dust, we get
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The factor 

[image: image56.wmf]f


D


can be expressed by the Planck’s radiation law i.e., 



[image: image57.wmf](


)


1


2


/


2


3


-


=


kT


hf


e


c


hf


f


D


where 

[image: image58.wmf]K


j


k


/


10


38


.


1


23


-


´


=


 is the Boltzmann’s constant; 
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 is the dusty plasma temperature. Thus, the Equation above can be rewritten as follows:
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Substitution of Eq. (7) into Eq. (6) yields
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         Near the Moon’s surface, the density of the lunar atmosphere is about 
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[13]. Thus, we can assume that this is the density of dusty plasma clouds near the Moon’s surface. The temperature of sub-micron dusty plasma can be evaluated by means of the following expression: 
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Note that, for 
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the factor 
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 becomes negative. Under these conditions, the gravitational interaction between the Moon and the cloud becomes repulsive, i.e., 
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In this way, sub-micron dusty plasma can reach the lunar exosphere. 
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Fig.2 - How sub-micron dusty plasma can reach the  


            lunar exosphere. 
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          In the case of large clouds of sub-micron dusty plasma 
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,  Eq. (9) shows that 
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Thus, the gravitational attraction between two sub-micron particles inside the cloud will be given by
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Note that this force is much greater than the electric force
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This means that, inside the clouds, thousands of sub-micron particles will be strongly attracted among them (See Fig.3), forming thousands of large particles with radius in the range 
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 Fig.3 –Strong gravitational attraction between sub- 


       micron dust, producing microclusters of dust that  


       will cause strong scattering of the sunlight in the  


       lunar exosphere   
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Thus, when a cloud of this type arrives to lunar exosphere it increases the number of these particles (gravitational microclusters of lunar dust) inside the lunar exosphere. Under these circumstances, it density becomes equal to the density of the lunar exosphere 
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[14]. The amount of Rayleigh scattering that occurs for a beam of light depends upon the size of the particles and the wavelength of the light. Specifically, the intensity of the scattered light varies as the sixth power of the particle size, and varies inversely with the fourth power of the wavelength. 


          Thus, the lunar exosphere is fundamentally a very large cloud of sub-millimeter dust plasma. Consequently, in order to calculate the factor 
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 for the lunar exosphere, we can use the Eq. (5), assuming that most of the particles has 
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Considering that the Moon’s radius is 1738km and that, evidences observed during the Apollo missions, indicate the existence of solar light scattering from a significant population of lunar particles, which  exist in a little thick region (~1km) starting from  100km above the lunar surface [15], we can write that
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Substitution of this value into Eq. (12) yields
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Alternatively, we may put Eq.(2) as a function of the radiation power density ,
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 [9], i.e.,



[image: image87.wmf](


)


14


1


1


2


1


2


3


2


0


ï


þ


ï


ý


ü


ï


î


ï


í


ì


ú


ú


û


ù


ê


ê


ë


é


-


÷


÷


ø


ö


ç


ç


è


æ


+


-


=


=


c


D


n


m


m


r


i


g


r


c


From Electrodynamics we know that when an electromagnetic wave with frequency 
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and velocity 
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 incides on a  material  with relative  permittivity 
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 is the index of refraction of the material, given by  [16]  




[image: image95.wmf](


)


(


)


15


1


1


2


2


÷


ø


ö


ç


è


æ


+


+


=


=


we


s


m


e


r


r


r


v


c


n


If  
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, Eq. (15) reduces to
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Due to the lunar exosphere be a plasma its electrical conductivity,
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, must be high. Thus, we can consider that its 
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 can be expressed by Eq. (16). Substitution of Eq. (16) into Eq. (14) gives
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By substituting Eq. (7) into Eq. (17) we obtain the following expression of
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 for the lunar exosphere:
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By comparing Eq. (18) with Eq. (13) we can conclude that in the lunar exosphere:
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Since the temperature 
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 of the dusty plasma near the Moon’s surface, giving by 
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. Then, considering that in the exosphere the particles are dust clusters with larger masses 
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 (radii ~1,000 times larger), and also with larger velocities 
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 (due to the low density of the exosphere), we can conclude that 
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. The temperature of dust in a plasma is typically 1-1,000K [17, 18]. However, it can reach up to 1,000,000K [19].       

          In a previous paper, we have shown that the explanation of the Allais effect requires 
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 for the lunar exosphere [9, Appendix A]. This is in agreement with the value here obtained (Eq.13). However, in the mentioned paper, we consider erroneously that the effect was produced by the incidence of sunlight on the exosphere. Here, we can see the exact description of the phenomenon starting from the same equation (Eq. (14)) used in the above-cited paper.
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� A dusty plasma is a plasma containing millimeter (10−3) to nanometer (10−9) sized particles suspended in it. Dust particles are charged and the plasma and particles behave as a plasma [� HYPERLINK  \l "g7" ��7�,� HYPERLINK  \l "g8" ��8�].







� The values of � EMBED Equation.3  ���were calculated starting from the unit cell volume, i.e., 92.92 Å3, 253.54 Å3, 80.41 Å3, 110.38Å3, respectively [� HYPERLINK  \l "g12" ��12�].
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 Fig.3 –Strong gravitational attraction between sub-



       micron dust, producing microclusters of dust that 


       will cause strong scattering of the sunlight in the 



       lunar exosphere  
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Fig.2 - How sub-micron dusty plasma can reach the 


            lunar exosphere.
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