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Abstract. 

The aim of this presentation is to connect Extenics with new fields of research, i.e. fuzzy logic 

and neutrosophic logic. 

We show herein: 

- How Extenics is connected to the 3-Valued Neutrosophic Logic, 

- How Extenics is connected to the 4-Valued Neutrosophic Logic, 

- How Extenics is connected to the n-Valued Neutrosophic Logic, 

when contradictions occurs. 

 

 

Introduction. 

 

In this paper we present a short history of logics: from particular cases of 2-symbol or 

numerical valued logic to the general case of n-symbol or numerical valued logic, and the way 

they are connected to Prof. Cai Wen’s Extenics Theory (1983). We show generalizations of 2-

valued Boolean logic to fuzzy logic, also from the Kleene’s and Lukasiewicz’ 3-symbol valued 

logics or Belnap’s 4-symbol valued logic to the most general n-symbol or numerical valued 

refined neutrosophic logic. Two classes of neutrosophic norm (n-norm) and neutrosophic 

conorm (n-conorm) are defined. Examples of applications of neutrosophic logic to physics are 

listed in the last section. 

Similar generalizations can be done for n-Valued Refined Neutrosophic Set, and respectively n-

Valued Refined Neutrosopjhic Probability in connections with Extenics. 

 

1. Two-Valued Logic 

 

a) The Two Symbol-Valued Logic.  

It is the Chinese philosophy: Yin and Yang (or Femininity and Masculinity) as contraries: 
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Fig 1. Ying and Yang 

It is also the Classical or Boolean Logic, which has two symbol-values: truth T and falsity F. 
 

b) The Two Numerical-Valued Logic.  

It is also the Classical or Boolean Logic, which has two numerical-values: truth 1 and 

falsity 0. 

More general it is the Fuzzy Logic, where the truth (T) and the falsity (F) can be any 

numbers in [0,1] such that T + F = 1. 

     Even more general, T and F can be subsets of [0, 1]. 

 

2. Three-Valued Logic 

 

a) The Three Symbol-Valued Logics:  

i) Łukasiewicz ’s Logic: True, False, and Possible. 

ii) Kleene’s Logic: True, False, Unknown (or Undefined). 

iii) Chinese philosophy extended to: Yin, Yang, and Neuter (or Femininity, Masculinity, and 

Neutrality) – as in Neutrosophy. 

Neutrosophy philosophy was born from neutrality between various philosophies. Connected with 

Extenics (Prof. Cai Wen, 1983), and Paradoxism (F. Smarandache, 1980). 

Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of 

neutralities, as well as their interactions with different ideational spectra. 

This theory considers every notion or idea <A> together with its opposite or negation <antiA> 

and with their spectrum of neutralities <neutA> in between them (i.e. notions or ideas supporting 

neither <A> nor <antiA>).  

The <neutA> and <antiA> ideas together are referred to as <nonA>.  

Neutrosophy is a generalization of Hegel's dialectics (the last one is based on <A> and <antiA> 

only). 

According to this theory every idea <A> tends to be neutralized and balanced by <antiA> and 

<nonA> ideas - as a state of equilibrium. 

In a classical way <A>, <neutA>, <antiA> are disjoint two by two. But, since in many cases the 

borders between notions are vague, imprecise, Sorites, it is possible that <A>, <neutA>, <antiA> 

(and <nonA> of course) have common parts two by two, or even all three of them as well. Such 

contradictions involves Extenics.  

Neutrosophy is the base of all neutrosophics and it is used in engineering applications (especially 

for software and information fusion), medicine, military, airspace, cybernetics, physics. 

 

b) The Three Numerical-Valued Logic: 

i) Kleene’s Logic: True (1), False (0), Unknown (or Undefined) (1/2),  

and uses “min” for /\, “max” for \/, and “1-” for negation. 



ii) More general is the Neutrosophic Logic [Smarandache, 1995], where the truth (T) and the 

falsity (F) and the indeterminacy (I) can be any numbers in [0, 1], then 0 ≤ T + I + F ≤ 3. 

More general: Truth (T), Falsity (F), and Indeterminacy (I) are standard or nonstandard subsets 

of the nonstandard interval ]-0, 1+[. 

When t + f > 1 we have conflict, hence Extenics. 
 

 

3. Four-Valued Logic 

 

a) The Four Symbol-Valued Logic 

i) It is Belnap’s Logic: True (T), False (F), Unknown (U), and Contradiction (C),  where 

T, F, U, C are symbols, not numbers. 

Now we have Extenics, thanks to C = contradiction. 

Below is the Belnap’s conjunction operator table: 
 

 
Table 1. 

Restricted to T, F, U, and to T, F, C, the Belnap connectives coincide with the connectives in 

Kleene’s logic. 

ii) Let G = Ignorance. We can also propose the following two 4-Symbol Valued Logics:                  

(T, F, U, G), and (T, F, C, G). 

iii) Absolute-Relative 2-, 3-, 4-, 5-, or 6-Symbol Valued Logics [Smarandache, 1995]. 

Let TA be truth in all possible worlds (according to Leibniz’s definition); 

TR be truth in at last one world but not in all worlds; 

and similarly let IA be indeterminacy in all possible worlds; 

IR be indeterminacy in at last one world but not in all worlds; 

also let FA be falsity in all possible worlds; 

FR be falsity in at last one world but not in all worlds; 

Then we can form several Absolute-Relative 2-, 3-, 4-, 5-, or 6-Symbol Valued Logics 

just taking combinations of the symbols TA, TR, IA, IR, FA, and FR. 

As particular cases, very interesting would be to study the Absolute-Relative 4-Symbol 

Valued Logic (TA, TR, FA, FR), as well as the Absolute-Relative 6-Symbol Valued Logic (TA, TR, 

IA, IR, FA, FR). 

b) Four Numerical-Valued Neutrosophic Logic: Indeterminacy I is refined (split) as U = 

Unknown, and C = contradiction. 

T, F, U, C are subsets of [0, 1], instead of symbols; 

This logic generalizes Belnap’s logic since one gets a degree of truth, a degree of falsity, 



a degree of unknown, and a degree of contradiction. 

Since C = T/\F, this logic involves the Extenics. 

 

4. Five-Valued Logic 

 

a) Five Symbol-Valued Neutrosophic Logic [Smarandache, 1995]:  

Indeterminacy I is refined (split) as U = Unknown, C = contradiction, and G = ignorance; 

where the symbols represent:  

T = truth; 

F = falsity; 

U = neither T nor F (undefined); 

C = T/\F, which involves the Extenics; 

G = T\/F. 

 

b) If T, F, U, C, G are subsets of [0, 1] then we get: a Five Numerical-Valued Neutrosophic 

Logic. 

 

5. Seven-Valued Logic 

  

a) Seven Symbol-Valued Neutrosophic Logic [Smarandache, 1995]:  

I is refined (split) as U, C, G, but T also is refined as TA = absolute truth and TR = relative 

truth, and F is refined as FA = absolute falsity and FR = relative falsity. Where: 

U = neither (TA or TR) nor (FA or FR) (i.e. undefined); 

C = (TA or TR) /\ (FA or FR) (i.e. Contradiction), which involves the Extenics; 

G = (TA or TR) \/ (FA or FR) (i.e. Ignorance).  

All are symbols. 
 

b)  But if TA, TR, FA, FR, U, C, G are subsets of [0, 1], then we get a Seven Numerical-

Valued Neutrosophic Logic. 

 

6. n-Valued Logic 
 

a) The n-Symbol-Valued Refined Neutrosophic Logic [Smarandache, 1995].  

In general:   

T can be split into many types of truths: T1, T2, ..., Tp, and I into many types of indeterminacies: 

I1, I2, ..., Ir, and F into many types of falsities: F1, F2, ..., Fs,, where all p, r, s ≥ 1 are integers, and 

p + r + s = n.  

All subcomponents Tj, Ik, Fl  are symbols for j{1,2,…,p},  k{1,2,…,r}, and  l{1,2,…,s}.     

If at least one Ik = Tj /\ Fl = contradiction, we get again the Extenics. 
 

b) The n-Numerical-Valued Refined Neutrosophic Logic.  

In the same way, but all subcomponents Tj, Ik, Fl  are not symbols, but subsets of [0,1], for all  



j  {1,2,…,p}, all k  {1,2,…,r}, and all l  {1,2,…,s}.      

If all sources of information that separately provide neutrosophic values for a specific  

subcomponent are independent sources, then in the general case we consider that each of the 

subcomponents Tj, Ik, Fl  is independent with respect to the others and it is in the non-standard set 

]-0, 1+[.  Therefore per total we have for crisp neutrosophic value subcomponents Tj, Ik, Fl  that: 
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             (1) 

where of course n = p + r + s as above. 

If there are some dependent sources (or respectively some dependent subcomponents), we can 

treat those dependent subcomponents together. For example, if T2 and I3 are dependent, we put 

them together as -0 ≤ T2 + I3 ≤ 1+. 

The non-standard unit interval ]-0, 1+[ , used to make a distinction between absolute and relative 

truth/indeterminacy/falsehood in philosophical applications, is replace for simplicity with the 

standard (classical) unit interval [0, 1] for technical applications.                                        

For at least one Ik = Tj /\ Fl = contradiction, we get again the Extenics. 
 

7. Neutrosophic Cube and its Extenics Part 

 

The most important distinction between IFS and NS is showed in the below Neutrosophic 

Cube A’B’C’D’E’F’G’H’ introduced by J. Dezert in 2002. 

Because in technical applications only the classical interval  is used as range for the 

neutrosophic parameters , we call the cube the technical neutrosophic cube and its extension  

the neutrosophic cube (or absolute neutrosophic cube), used in the fields where we need to 

differentiate between absolute and relative (as in philosophy) notions. 

 

 

 



 

Fig. 2. Neutrosophic Cube 

 

Let’s consider a 3D-Cartesian system of coordinates, where t is the truth axis with value range in  

]
-

0,1
+

[, i is the false axis with value range in ]
-

0,1
+

[, and similarly f   is the indeterminate 

axis with value range in ]
-

0,1
+

[. 

We now divide the technical neutrosophic cube  ABCDEFGH into three disjoint regions: 

1) The equilateral triangle BDE, whose sides are equal to √(2)   which represents the 

geometrical locus of the points whose sum of the coordinates is 1. 

If a point Q is situated on the sides of the triangle  BDE or inside of it, then  tQ+iQ+fQ=1 

as in Atanassov-intuitionistic fuzzy set  (A-IFS). 

2)  The pyramid EABD {situated in the right side of the triangle EBD, including its faces 

triangle ABD(base), triangle EBA, and triangle EDA (lateral faces), but excluding its 

face: triangle BDE } is the locus of the points whose sum of coordinates is less than 1 

(Incomplete Logic). 

3)  In the left side of triangle BDE in the cube there is the solid EFGCDEBD ( excluding  

triangle BDE) which is the locus of points whose sum of their coordinates is greater than 

1 as in the paraconsistent logic. This is the Extenics part. 

It is possible to get the sum of coordinates strictly less than 1 (in Incomplete information), or 

strictly greater than 1 (in contradictory Extenics). For example: 

We have a source which is capable to find only the degree of membership of an element; but it is 

unable to find the degree of non-membership; 



Another source which is capable to find only the degree of non-membership of an element; 

Or a source which only computes the indeterminacy. 

Thus, when we put the results together of these sources, it is possible that their sum is not 1, but 

smaller (Incomplete) or greater (Extenics).  

 

8. Example of Extenics in 3-Valued Neutrosophic Logic 
 

About a proposition P, the first source of information provides the truth-value T=0.8.  

Second source of information provides the false-value F=0.7. 

Third source of information provides the indeterminacy-value I=0.2. 

Hence NL3(P) = (0.8, 0.2, 0.7). 

Got Extenics, since Contradiction: T + F = 0.8 + 0.7 > 1. 

Can remove Contradiction by normalization: 

NL(P) = (0.47, 0.12, 0.41); now T+F ≤ 1. 

 

9. Example of Extenics in 4-Valued Neutrosophic Logic 
 

About a proposition Q, the first source of information provides the truth-value T=0.4, second 

source provides the false-value F=0.3, third source provides the undefined-value U=0.1, fourth 

source provides the contradiction-value C=0.2. 

Hence NL4(Q) = (0.4, 0.1, 0.2, 0.3). 

Got Extenics, since Contradiction C = 0.2 > 0. 

Since C =T/\F, we can remove it by transferring its value 0.2 to T and F (since T and F were 

involved in the conflict) proportionally w.r.t. their values 0. 4,0.3: 

xT/0.4 = yF/0.3 = 0.2/(0.4+0.3), whence xT=0.11, yF=0.09. 

Thus T=0.4+0.11=0.51, F=0.3+0.09=0.39, U=0.1, C=0. 

 

 

Conclusion 

Many types of logics have been presented above related with Extenics. Examples of 

Neutrosophic Cube and its Extenics part, and Extenics in 3-Valued and 4-Valued Neutrosophic 

Logics are given. 



Similar generalizations are done for n-Valued Refined Neutrosophic Set, and respectively n-

Valued Refined Neutrosopjhic Probability in connections with Extenics. 

 

References 

 

Cai Wen. Extension Set and Non-Compatible Problems [J]. Journal of Scientific Exploration, 

1983, (1): 83-97. 

 

Yang Chunyan, Cai Wen. Extension Engineering [M]. Beijing: Science Press, 2007. 

Didier Dubois, Uncertainty Theories, Degrees of Truth and Epistemic States, 

http://www.icaart.org/Documents/Previous_Invited_Speakers/2011/ICAART2011_Dubois.pdf  

Florentin Smarandache, editor, Proceedings of the Introduction to Neutrosophic Physics: Unmatter 

& Unparticle - International Conference, Zip Publ., Columbus, 2011. 

 

Dmitri Rabounski, Florentin Smarandache, Larissa Borisova, Neutrosophic Methods in General 

Relativity. Neutrosophic Book Series, 10. Hexis, Phoenix, AZ, 2005. 78 pp. 

Dmiriǐ Rabunskiĭ, Florenitn Smarandake, Larissa Borisova, \cyr Neĭtrosofskie metody v 

obshcheĭ teorii otnositelʹnosti. (Russian) [Neutrosophic Methods in the General Theory of 

Relativity] Translated from the 2005 English edition [Hexis, Phoenix, AZ]. Hexis, Phoenix, AZ, 

2005. 105 pp. 

F. Smarandache, Neutrosophic Logic and Set, mss., http://fs.gallup.unm.edu/neutrosophy.htm, 

1995. 

Florentin Smarandache, A Unifying Field in Logics: Neutrosophic Field, Multiple-Valued Logic 

/ An International Journal, Vol. 8, No. 3, 385-438, June 2002. 

Umberto Rivieccio, Neutrosophic logics: Prospects and problems, Fuzzy Sets and Systems, Vol. 

159, Issue 14, pp. 1860 – 1868, 2008. 

Florentin Smarandache, An Introduction to the Neutrosophic Probability Applied in Quantum 

Statistics, <Bulletin of Pure and Applied Sciences>, Physics, 13-25, Vol. 22D, No. 1, 2003. 

F. Smarandache, Neutrosophic Set — A Generalization of the Intuitionistic Fuzzy Set. Int. J. 

Pure Appl. Math. 24 (2005), No. 3, 287-297. 

Florentin Smarandache, A Unifying Field in Logics: Neutrosophic Logic,  <Multiple Valued Logic 

/ An International Journal>, USA, ISSN 1023-6627, Vol. 8, No. 3, pp. 385-438, 2002. The whole 

issue of this journal is dedicated to Neutrosophy and Neutrosophic Logic. 

 

J. Dezert, Open questions on neutrosophic inference. Neutrosophy and neutrosophic logic. Mult.-

Valued Log. 8 (2002), no. 3, 439--472. 

Webster's Online Dictionary, Paraconsistent probability {neutrosophic probability}, 

http://fs.gallup.unm.edu/neutrosophy.htm
http://www.websters-online-dictionary.org/definition/Paraconsistent+probability


http://www.websters-online-dictionary.org/definitions/Paraconsistent?cx=partner-pub-

0939450753529744%3Av0qd01-tdlq&cof=FORID  

 

http://www.websters-online-dictionary.org/definitions/Paraconsistent?cx=partner-pub-0939450753529744%3Av0qd01-tdlq&cof=FORID
http://www.websters-online-dictionary.org/definitions/Paraconsistent?cx=partner-pub-0939450753529744%3Av0qd01-tdlq&cof=FORID

