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Abstract

PACS:98.62.-g An analytical model of galactic morphology is pre-

sented. This model presents resolutions to two inter-related parameters

of spiral galaxies: one being the flat velocity rotation profile and the other

being the spiral morphology of such galaxies. This model is a mathemat-

ical transformation dictated by the general theory of relativity applied to

rotating polar coordinate systems that conserve the metric. The model

shows that the flat velocity rotation profile and spiral shape of certain

galaxies are both products of the general theory. Validation of the model

is presented by application to 878 rotation curves provided by Salucci,

and by comparing the results of a derived distance modulus to those us-

ing Cepheid variables, water masers and Tully-Fisher calculations. The

model suggests means of determining galactic linear density, mass and

angular momentum. We also show that the morphology of NGC 3198 is

congruent to the geodesic of a rotating reference frame and is therefore

gravitationally viscous and self bound.

1 Introduction

An examination of previous studies of galactic rotation curves and morphology
shows that, although relativistic effects of accelerating reference frames have
been investigated, no integral resolution to theoretical discrepancies has been
found. The special relativistic effects of material in orbit about the center of a
galaxy appear to be negligible since the tangential velocity of such stars have
been measured as moving at non-relativistic speeds. Nevertheless, it can be
shown that general relativistic effects, as a result of rotational acceleration, are
significant and mask the measure of tangential velocity. Tangential velocities of
stars in galaxies are measured using the shifting of spectral lines. This shifting is
assumed to be strictly a Dopplerian effect. However, general, as well as special,
relativistic analysis show that the shifting of spectral lines within rotating bodies
are affected by both Doppler shift and effects of rotational acceleration.
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Historically, Keplerian rotational dynamics have been assumed in examining
spiral galaxies. The observed tangential velocity of matter does not match a
Keplerian model. This has resulted in the inference of significant amounts of
non-luminous matter being required for a Keplerian model to match observed
orbital behavior of galaxies as portrayed in rotation curves. To illustrate, an
example of a rotation curve can be seen in Figure 1 which shows work by Bege-
man (1989) using the luminosity curve of NGC 3198 to calculate the expected
rotation profile assuming Keplerian dynamics in comparison with measured val-
ues.

Two propositions which have resulted from the discrepancy between the ex-
pected and the observed rotation curves of galaxies such as NGC 3198 are:
first, that more mass must exist within the system than appears in order for
Keplerian dynamics to apply; second, that some new hypothesis on the laws of
gravitational dynamics exists in lieu of Kepler’s laws (Kepler , 1619). This paper
demonstrates that existing scientific theories can explain the orbital behavior
of galaxies without requiring assumptions of either additional mass or undis-
covered gravitational principles. This is done by refuting that galaxies behave
as though they consist of non-interacting particles of zero viscosity orbiting a
central massive body; rather, that they consist of interacting orbiting bodies to
which relativistic considerations must be applied. A resolution is presented here
in the form of an analytical model which is a mathematical spiral having a flat
rotation profile resulting from the application of Lorentz transformations in an
accelerating environment.

1.1 Some Previous Approaches

A comprehensive overview examining the spiral structure of galaxies was done
by Binney & Tremain (2008). In this work, Binney assumes a non-viscous Ke-
plerian model, provides extensive substantiation that spiral galaxies are indeed
spirals at all wavelengths, and laments the lack of a complete exposition: “de-
spite much progress, astronomers are still groping towards this goal,” he writes.
He presents a model of spiral morphology of galaxies based on a proposition of
tidal forces generated by density waves. He rejects a model of stationary spiral
structure and utilizes a rotating coordinate system. We present here a model in
which a Keplerian non-viscous assumption is replaced by a general relativistic,
highly viscous model also utilizing a rotating coordinate system. Furthermore,
a similar consequence is found in which the metric, resulting from a rotating
polar coordinate system, rather than density waves, creates a model having a
stable rotating spiral structure of material.

Cooney et al. (2012) attempted to resolve the discrepancy between Ke-
plerian motion and observed line width profiles through a general relativistic
approach that used the Schwarzchild solution to constrain the metric with some
success. Menzies & Mathews (2006) investigated and criticized a different
model presented by Cooperstock & Tieu (2005) which, along with Gallo, &
Feng (2010), utilized gravitational fields and associated curvature in the field
equations balanced against Dopplerian Lorentz transformations in order to ob-
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tain flat velocity curves of galaxies both numerically and analytically. Menzies
showed this approach resulted in requiring an infinite amount of mass. These
previous approaches show that the study of galactic structure and underlying
physical models is still ongoing.

1.2 Galaxies as Non-Keplerian Systems

To apply the laws dictated by Kepler, the system must behave as a central
massive region around which particles orbit without significantly interacting
with each other, such as in the solar system. A useful description for such a
system is provided by Zwicky as having negligible gravitational viscosity, or
“zero-viscosity”. If the distribution of matter in a galaxy were such that the
gravitational viscosity was not negligible, but rather high enough to “equalize
the angular velocity throughout such systems regardless of the distribution of
mass” Zwicky (1937), then such a galaxy would no longer be comprised of a
central disc rotating with orbiting zero-viscosity matter.

Galaxies have a bright, dense central region with a sparse outer disc. Such a
luminosity distribution suggests galaxies should behave as a zero-viscosity Ke-
plerian system as modeled by Begeman (see Figure 1). However, observations
by Begeman, Mathewson et al. (1992) and Persic et al. (1995) have shown
that orbital velocities do not behave accordingly. We shall show that this dis-
crepancy can be resolved by applying general relativistic effects and comparing
it to observation. It is important to note that special relativistic effects apply
to inertial reference frames and general relativistic effects apply to accelerating
reference frames which include rotating bodies. This is especially relevant to
deriving an analytical model of galaxies because general relativity, rather than
special relativity alone, must be applied to rotating bodies since they are not
inertial reference frames. For example, measuring the shifting of spectral lines
in a heavily curved space, such as in the proximity of a black hole, must take
into account the shifting of spectral lines independently of any object’s velocity.
Similarly, space can be heavily curved in a galaxy, due to rotational acceleration,
which is also independent of the measured velocity of member stars.
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Figure 1: Begeman’s plot of observed rotation velocities (bottom) compared
with rotation curve predicted from the photomectric data (top) assuming
a constant mass-luminosity ratio and z-thickness. Begeman used a sech-
squared law with disk thickness of 0.2 × the disk scale length and included
the contribution of the gas component.

2 Relativistic Galactic Model

Restricting ourselves to a mathematical approach, wherein we retain the con-
stancy of measures of the speed of light from the physical world, a model is
derived using a measure in four dimensions. Comparisons can then be made of
measures of length and time between coordinate systems which are moving and
accelerating relative to each other. Consider two four-dimensional Minkowski
spaces in which exist standard clocks and rulers at all points. We may compare
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the behavior of these clocks and rulers through various transformations which
conserve the metric, keeping the measure of the speed of light constant through
each transformation. We may then transform measures into an appropriate
coordinate system which shall prove useful in determining properties of spiral
galaxies.

We derive the metric of a rotating body from Einstein et al. (1923) by
considering the shape of a geodesic in a rotating system using Lorentz transfor-
mations.

Two important properties of a radial geodesic in a rotating coordinate system
are as follows:

Firstly, the tangential velocity of such a coordinate system behaves peculiarly
as a function of distance from the center. A relativistic model must take into
account the fact that the tangential speed of a rotating coordinate system must
never reach the speed of light. It is shown that the measure of tangential velocity
reaches a limit as distance from the center of rotation increases.

Secondly, the path of light traveling radially outward from the center of ro-
tation traces a spiral-shaped path within the rotating coordinate system. More
specifically, it approaches an Archimedes’ Spiral, defined as a spiral having a
constant pitch. The pitch, κ, of an Archimedes’ spiral in polar coordinates is
analogous to the slope of a straight line in Cartesian coordinates. That is:

r = κθ (1)

as compared to
y = mx. (2)

We first show the effect of a strictly mathematical transformation of pixels
of a digital image from one coordinate system to another. Following this, we
examine the effects of general relativity in rotating coordinate systems which
result in these transformations.

2.1 A Spiral Transformation

We present an analytic model in which the distinct spiral shape of galaxies
appears asymptotically as a function of distance from the center. Following
which, we show how it can determine certain galactic parameters which are
of interest. Please note that the resultant model of spiral galaxies is not a
pure Archimedes’ Spiral but uses the morphology of an Archimedes’ Spiral as
an asymptote to which the shape of spiral galaxies quickly approaches as a
function of radial distance depending on their rate of rotation. This model is
applicable to galaxies which have a distinct flat rotation profile; galaxies which
do not have flat velocity profiles would deviate from this model.

The following equations determine a transformation which is applied to the
pixels of an elongated blob as in Figure 2 (left).
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Figure 2: The left figure is an elongated blob of white against a black
background in Cartesian coordinates with the origin at the center of the
figure while the figure on the right is the transformation of the left figure
using Equations (3) and then portrayed on an orthogonal rectilinear grid.
The transformation used a value of κ = 20.

Consider the following spiral transformation:

r =
√

x2 + y2

θ = arctan(y/x)
r′ = r
θ′ = θ − r/κ
x′ = r′ cos(θ′)
y′ = r′ sin(θ′)

(3)

where x and y are the coordinates of a particular pixel in the originating figure
with the origin at the center.

The first two equations in the transformation of Equations (3) transform the
pixels of a figure into polar coordinates. The second two transform the pixels
onto a spiral rotation while the last two transform the results into Cartesian
coordinates and can be portrayed as rows and columns of a resultant figure. Note
that Figure 2 (right), is a shape resembling a spiral galaxy. This mathematical
transformation results in a figure which shows a distinct spiral morphology even
though the original figure is somewhat amorphous.
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Figure 3: The top left figure is an elongated blob with bright radial struc-
ture at the center. This blob is then transformed with a rotation in the
upper right figure. The upper right figure is then portrayed in rectilinear
coordinates with r as the ordinate and θ the abscissa and shown in the
lower figure. The lines in the lower figure slope to the right as a result of
the clockwise “spin” of the upper right figure.

The superimposition of a star shape at the center of an oval cloud is shown
in Figure 3 (upper left). The spiral transformation described by Equations (3)
is applied to the pixels in this figure and then shown in Figure 3 (upper right).
This figure also has a clearly defined spiral morphology including the brighter,
smaller spirals in the middle of the figure. Figure 3 (lower) is a portrayal of the
upper right figure with the ordinate as r and abscissa as θ. The series of parallel
straight lines and their slope denote a value of κ = 20, which was used in the
transformation.

This is a very “powerful” transformation in that an original figure, which
may resemble nothing more than something akin to a slightly elongated blob,
resembles a distinct spiral following this transformation. The analytic model
which follows shows that the general theory of relativity, due to the acceleration
of circular motion, compels this transformation. Therefore, the mathematical
transformation demanded by the general theory of relativity, rather than the
morphology of material being so transformed, results in both the spiral mor-
phology of certain galaxies and their flat rotational velocity profile. This is
demonstrated in the following sections.
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2.2 Comparison of the Spiral Transformation to Some Spi-

ral Galaxies

For a given spiral such as in Figure 3 (upper right), consider mapping r onto y
and θ onto x , in order to observe a possible linear orientation. This results in
a measure of κ, equal to the slope of bright parallel lines in Figure 3 (lower).

Continuing, κ was measured for three different galaxies as shown in Figures
4-6. In these figures, the position of each photograph’s pixel is transformed from
a row-column coordinate to polar coordinates in which the center of the galaxy
is the origin, r is the distance in pixels from the center of the galaxy and θ is the
angular measure from a horizontal axis as in polar coordinates. The position of
these pixels are then transformed where r is the ordinate and θ the abscissa. In
these figures, Equation 1 is investigated by inspecting the linear orientation of
the resultant pixel greyscales.

Figure 4: A three dimensional luminosity figure of NGC 4321 where θ
is the abscissa and radial distance from the center of the galaxy is the
ordinate. Note the linear orientation of luminosity elevations in the figure
which correspond to the spiral arms of the galaxy. Also note the spate of
flocculance near the center of the galaxy is also oriented linearly with the
same slope. The linear ridges appear parallel and encourage the derivation
of Equation (17) from physical parameters.

Note the three dimensional representation of luminosity vs. r and θ of NGC
4321 in Figure 4. In this figure there are two obvious linear ridges of greater
luminosity oriented with consistent negative slope emanating from the abscissa
and separated by π radians. Also in this figure there are other shorter ridges
and peaks emanating from the abscissa with similar slope. In Figure 7, also
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portraying NGC 4321, κ is approximated to be -32 pixels per radian which is
the value of the slope of the two lines superimposed on the figure.

Figure 5: This is a portrayal of a digital photograph of NGC 3198 with
the original photograph on the upper left, a transformation of the pixels of
the galaxy so that the galaxy appears as viewed from directly above on the
lower left and a transformation of the lower left photograph, transforming
the pixels of the photograph into a plot of radial distance from the center
of the galaxy vs. θ as per polar coordinates, on the right. Note in the
transformed photograph on the right, the two bright linear orientations of
lighter shades are parallel and a horizontal distance of π radians from each
other with a slope of -26 pixels per radian.

The galaxy NGC 4321 is oriented with a small angle of incline. As a result,
the above described transformation can be conducted without requiring alter-
ation, which is portrayed in Figures 4 and 7. However, we examine NGC 3198
in Figure 5 by first correcting for the angle of incline as shown in the figures
on the left and then applying the above described transformation, the results of
which are shown on the right of the figure. From this figure we can estimate a
value for κ of -26 pixels per radian.

IC 239 is also a distinct spiral galaxy with a small angle of incline. Figure 6 is
a result of the above transformation in which a value of -13 pixels per radian can
be estimated as a value of κ in a spiral equation approximating the distribution
of luminosity for this galaxy.

These observed properties can be explained through general relativistic con-
siderations.
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Figure 6: This is a portrayal of a digital photograph of IC 239 as a result
of transforming the pixels of the photograph into a plot of radial distance
from the center of the galaxy vs. θ (as per polar coordinates). Note the
prominent linear orientations of bright pixels are parallel and a horizontal
distance of π radians from each other. These lines have a common slope
of approximately -11 pixels per radian. The line on the far left continues
on the right. The lines overlay areas of greater luminosity and mark the
positions of the two spiral arms emanating from the center of the galaxy.
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Figure 7: This is a portrayal of a digital photograph of NGC 4321 (upper
left), a rotation of the photograph (lower left) and the result of transforming
the pixels of the photograph into a plot of radial distance from the center
of the galaxy vs. θ as per polar coordinates (right). Note the two distinct
bright linear orientations of higher luminosity which have been overlaid
by straight lines in the figure on the right. These lines are parallel and
a horizontal distance of π radians apart and have a common slope of -32
pixels per radian.

2.3 Lorentz Transformations in a Rotating Coordinate Sys-

tem

The Lorentz factor between two coordinate systems moving with instantaneous
velocity, v, relative to each other is:

γ =
1

√

1− v2/c2
. (4)

If v is a constant then the Lorentz factor can be applied according to well-known
special relativity. However, if two coordinate systems are accelerating relative
to each other, then v is not a constant and the Lorentz factor is a variable. In
such a case, equation (4) can only be applied for an instant.

The model presented uses the coordinate systems, reference frames, and ap-
plication of Lorentz foreshortening in a rotating system as described by Einstein,
in the following quote:

In a space which is free of gravitational fields we introduce a Galilean
system of reference K(x, y, z, t), and also a system of co-ordinates
K ′(x′, y′, z′, t′) in uniform rotation relatively to K. Let the origins
of both systems, as well as their axes of Z permanently coincide. For
reasons of symmetry it is clear that a circle around the origin in the
X , Y plane of K may at the same time be regarded as a circle in the
X ′, Y ′ plane ofK ′. We suppose that the circumference and diameter
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of this circle have been measured with a unit measure infinitely small
compared with the radius, and that we have the quotient of the two
results. If this experiment were performed with a measuring-rod at
rest relatively to the Galilean system K then the quotient would
be π. With a measuring rod at rest relatively to K ′, the quotient
would be greater than π. This is readily understood if we envisage
the whole process of measuring from the “stationary” system K,
and take into consideration that the measuring-rod applied to the
periphery undergoes a Lorentzian contraction, while the one applied
along the radius does not. Einstein et al. (1923)

Let us denote two spaces, K and K ′, where K is a space in Cartesian coor-
dinates and K ′ is a space in curvilinear Fermi coordinates defined such that any
curve of K ′ can be translated to orthogonal Cartesian coordinates of K. The
K system is a non-rotating system and K ′ is a rotating system.

For some small space Q at any local point in K ′, both the influence of
gravitational fields and the path of light are observed to follow straight lines
defined in K ′. Thus, the shape of such a system as observed by an observer in
Q would be that of the Cartesian coordinates of K. By translating from K ′ to
K, the shape of the system as observed by a local observer can be determined.

Therefore we consider the consequences of this phenomenon. Suppose there
are two observers, one stationary relative to K, which we denote as a non-
revolving observer, and the other stationary relative to K ′, which we denote as
a revolving observer.

Since the Lorentz factor is not a constant, General Relativistic effects, rather
than Special Relativistic effects, need to be applied.

For simplification, we shall use polar coordinates rather than rectilinear
Cartesian coordinates. Note that the measure of arc length in K ′ is effected
by rotation due to Lorentz foreshortening in the tangential direction, and the
measure of radial distance is not.

We shall now show the Lorentz factor is a function depending on the radial
distance from the center of rotation.

It follows that,

ω =
ω0

γω
(5)

where γω is the Lorentz factor.
For rotating bodies and coordinate systems:

v = ωr. (6)

We substitute back into equation (4) to obtain for some radial distance r;

γω =
1

√

1− ω2r2/c2
(7)

and substituting for the Lorentz factor we have:

γω =
1

√

1− ω2
0
r2/(γ2

ωc
2)
. (8)
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Solving for γω we have:

γω =

√

1 +
ω2
0
r2

c2
. (9)

Substitution into polar coordinates, (ict, r, θ, φ), where the radial distance is
conserved, (φ is set to π), yields the spatially two-dimensional time dependent
metric in K ′,

ds2 =
c2

γ2
ω

dt2 − dr2 − γ2

ωr
2dθ2. (10)

We have used

gtt
−1 = gθθ =

(

1 +
ω2
0r

2

c2

)

(11)

where gµν is the metric tensor which was used to derive equation (10).

2.4 Equation of a Spiral Geodesic

The path of a photon traveling radially outward from the origin would travel in a
straight line according to coordinates in K but would trace out an Archimedes’
Spiral within K ′. Furthermore, as the photon travels outwardly it passes over
sections of K ′ whose local clocks and tangential distance measures deviate from
those measured within K, according to the Lorentz factor as described in equa-
tion (4).

We see from equation (9) that a linear relationship between γω and r begins
to be established asymptotically at distances r > c

ω0

from the center of the ro-
tating system. As a result, the tangential velocity would approach an asymptote
which we denote as vmax.

In examining the metric of equation (10), and the equation for the Lorentz
factor in equation (4), we see an interchangeability between time and space
coordinates by either multiplying the time coordinate by the speed of light or
by dividing spatial coordinates by the same value. Coordinates in a Cartesian
Minkowski space are (ict, x, y, z). Converting from a Minkowski space in MKS
units to completely unit-less dimensions such as R̃ for radial distance, ṽmax for
the asymptote of tangential velocity and ω̃0 for angular velocity we have:

ṽmax =
vmax

c
, (12)

R̃ =
R

cτ
, (13)

and
ω̃0 = ω0τ (14)

where τ is the number of seconds in a year, assuming the original measurements
are in MKS units.

Although unit-less, R̃ is the value of a spacial measurement in ly and ω̃0,
equates to a measure of radians per year.
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The law of rigid bodies predicts a constant angular velocity throughout the
entire rotating body. However, taking relativity into account, the measure of
angular velocity varies with radial distance and yet the entire body appears
rigid, or has a stable shape over time. The value of ω̃0 is constant throughout
the rotating coordinate system: however, the value of angular velocity, ω, is
not. As a result, the rotating coordinate system, although appearing as a set
of rigid rotating spirals, would have different measures of ω at various radial
distances. This is contrary to the laws of a rigid body according to Newton’s
laws of motion or to Lagrangian mechanics which are based on non-relativistic
considerations.

The constant of proportionality between the radial dimension and the or-
thogonal angular dimension is 2π. Therefore:

2πω̃0 = ṽmax (15)

and

ω̃0 =
ṽmax

2π
. (16)

Further than a distance of 1/ω̃0 from the center, the tangential velocity ap-
proaches a constant velocity, ṽmax. From this distance outward, on the plane
of a revolving coordinate system, the equation of a radial spiral geodesic traced
ontoK ′ and transformed onto the coordinate system of a non-revolving observer
is:

R̃ =
θ

ω̃0

. (17)

2.5 Equation Describing the Flat Velocity Profile

Applying equation (9) to the measured tangential velocity, vtan, by a non-
revolving observer, we now have:

vtan = vmax ·
ω̃0R̃

√

1 + ω̃2
0
R̃2

. (18)

As R̃ increases, vtan approaches an asymptote for the maximum tangential
velocity as determined by the restrictions of the Lorentz transformation, which
we denoted as vmax. This completes the derivation of two important functions.
One is equation (17), which is the equation of a spiral describing a geodesic
in K ′, and the other is equation (18), which describes the apparent tangential
velocity of coordinates in K ′. We now apply these equations to observations of
galaxies.

3 Flat Velocity Rotation Profiles

The flat velocity rotation curve of galaxies indicates that nearly all the stars
within a galaxy appear to have the same tangential velocity. The model pre-
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sented here shows this is caused by a discrepancy between the measure of tan-
gential velocity using shifting of spectral lines and actual tangential velocity:
that is, distance traveled divided by elapsed time. As a result, the measure of
tangential velocities are well below relativistic speeds. In effect, the shifting of
spectral lines does not measure the actual tangential velocity of stars within the
galaxy.

3.1 An Examination of the Rotation Curve of NGC 3198

The rotation curve of NGC 3198 is shown in Figure 8. We have curve-fitted
equation (18) to the observations of Begeman and overlaid the result atop the
observed values. The data points provided by Begeman have a reported error
in rotational velocity of 5 km/s and an error in angular measure of 15′′ of arc.
The calculated fit, shown as a continuous line, has a normalized sigma of 0.04
from the data points provided and yields a fitted vmax of 152.9 km/s ± 3.78
km/s. We see that there is a significant correlation between observed values of
the rotation curve and the presented model.
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Figure 8: Begeman’s rotational data overlaid with a curve fit of equation
(18). The fit yields a normalized sigma of 0.04 and a vmax of 152.9 km/s.

There are two parameters involved in obtaining the calculated fit. One
is vmax and the other is an angular-distance ratio to couple the values given
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Figure 9: Six velocity rotation profiles with Equation (18) overlaid. Rota-
tion profiles courtesy of Salucci

by Begeman in arcmin and the values used in equation (18) in ly. A linear
regression was used where v2/R2

arcmin was the ordinate and v2 the abscissa. v
is the measured tangential velocity in km/s and Rarcmin is the angular distance
from the center of the galaxy in arcmin.

This ratio can also be used to estimate the distance to the galaxy although
there is a fairly significant degree of allowable error. Fitting the data presented
by Begeman, a distance of 19.2 MPc was found. However, there are discrep-
ancies and difficulties in accurate measurements near the center of the galaxy.
Uncertainties in radial measures are at about 15 arcsec as reported by Bege-
man. The beam width is 30 seconds of arc and the CLEAN software can remove
about 1/3 of beam smearing. If the values of radial distance have a discrepancy
of 10 seconds of arc, there is a variation in the measure of distance from 12.7 to
48.4 MPc. While (18) can give some indication of distance, the problems with
finding the center of rotation, coupled with error allowances, near the center of
the galaxy, involves a high degree of error. However, future work on improving
methods of finding a more accurate distance modulus from rotation profiles may
prove very fruitful.

3.2 Rotation Curves of 878 Galaxies

We have also applied equation (18) to 878 velocity rotation profiles from Salucci
(Persic et al. , 1995) to obtain an average normalized standard error of 0.0756
with a standard deviation of .049. (Some examples are shown in Figure 9).
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Table 2, at the end of this paper, lists these galaxies with the fitted vmax

for each galaxy and the normalized σ of the fit of each galaxy’s rotation curve
to equation (18).

4 Spiral Morphology

The analytical model presented is simply a mathematical spiral as per Equation
(17) with ω0 being the constant angular velocity of the galaxy rather than
ω. Digital photographs from the MAST Digital Sky Survey with maximum
response wavelengths between 6400 and 6700 ÅSTSI (2006) are used in further
analysis. Note that the ratio of pixels to arcmin in photographs used is 1.008.

(a) A spiral generated from tracing the
outward path of a geodesic upon a ro-
tating polar coordinate system having a
vmax of 151 km/s as per Begeman. The
scale is in thousands of light years.

(b) NGC 3198 in Ursa Major. NGC 3198
is classified SBc(R)Youman (2005).

Figure 10: A double-arm Archimedes’ Spiral is shown in Figure 10(a) and
a photograph of NGC 3198 is in Figure 10(b). There appears to be a
morphological similarity between the two structures which suggests that an
analytical model based on a spiral shape is possible in order to describe
galactic morphology and parameters.

4.1 Spiral Morphology of NGC 3198

A vmax of 151 km/s for NGC 3198, as given by Begeman, was substituted into
Equations (15) - (17). The resultant curve as described by a geodesic traced out
on an equivalent rotating coordinate system to a photograph of the galaxy as
in Figure 10 (b) was then drawn. This curve is shown in Figure 10 (a). It is a
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graph of a double Archimedes’ spiral which closely resembles the photo of NGC
3198. Note the scale of the graph is in ly as per equation (17). There appears
to be a remarkable morphological similarity and a possibility of determining the
intrinsic size of the galaxy itself.

4.2 Measuring the Spiral Pitch of NGC 4321

Figure 11: NGC 4321 with spiral overlays according to Equation (17) with
a pitch of -32 arcsec per radian. Note the outer portions of the spiral fall
along the path of greater luminosity in the photo of the galaxy.

In the above description of a spiral transformation it can be seen that the
resultant spiral shapes of material adhering to GR in rotating coordinate systems
is a result of the transformation from one reference frame to another while
conserving the metric. The spiral described by Equation (17) is valid for the
region where the tangential velocity of material appears as a constant with
respect to radial distance from the center of a rotating coordinate system. This
becomes valid when r >> 1/ω0. (Note, r is in units of ly and ω0 is in units of
radians per year). Thus the outer regions of a galaxy, where a constant rotation
profile is well established, can be expected to manifest a constant pitch.

Figure 11 is a photo of NGC 4321 with a spiral overlaid according to Equation
(17) using a value of -32.15 arcsec per radian as a value of κ. This approximates
the well-defined spiral portion of NGC 4321. The resultant spiral of this pitch
would have an arm spacing close to π×32, or about 100 pixels. Let us define arm
spacing as the radial distance between distinct local maxima in the luminosity
profile on a line taken through the center of the galaxy, viewing the galaxy
as from above. This can be very accurately measured using an FFT of the
luminosity along this line. If a galaxy is inclined on the celestial sphere, then
this line would be oriented along the major axis of the galaxy for the measure
of arm spacing to be valid. However, NGC 4321 is seen as a spiral galaxy from
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almost directly above and the arm spacing, as defined, would be very close to a
constant for all cross-sections.

This was investigated by taking 360 luminosity cross sections through the
center of the galaxy at half-degree intervals, applying an FFT along these cross
sections, and examining the results to see if a value very close to 100 arcsec
would appear. A consistent value of 100.99 arcsec presents itself with values of
134.42 and 80.81 arcsec above and below. This analysis is graphically shown in
Figures 12 to 15.

Figure 12: A histogram showing FFT values with different cross section
orientations of NGC 4321. A distinct value of 100.99 arcsec can be seen.
There are also distinct peaks at 80.81 and 134.42 arcsec.
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Figure 13: Digital photograph of NGC 4321 with circles overlaid at 80.81
arcsec intervals. The intervals indicate a spacing somewhat smaller than
the pitch of the galaxy. A spiral overlay having a corresponding pitch is
also overlaid. It can be seen that the overlaid spiral is significantly more
“wound up” than the spiral shown by the brighter regions of the galaxy
itself.

Figure 14: Digital photograph of NGC 4321 with circles overlaid at 100.99
arcsec intervals. The intervals indicate a spacing which matches the pitch
of the galaxy. A spiral overlay having a corresponding pitch is also overlaid.
It can be seen that the overlaid spiral is as “wound up” as the spiral shown
by the brighter regions of the galaxy itself.
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Figure 15: Digital photograph of NGC 4321 with circles overlaid at 134.42
arcsec intervals. The intervals indicate a spacing somewhat larger than the
pitch of the galaxy. A spiral overlay having a corresponding pitch is also
overlaid. It can be seen that the overlaid spiral is significantly less ”wound
up” than the spiral shown by the brighter regions of the galaxy itself.

4.3 Measuring the Distance to NGC 3198 using Spiral

Pitch

In order to apply a model of spiral galaxies as derived in Equation (17), we only
require a measure of vmax. The resultant spiral would give us the absolute size
of any spiral galaxy. If the distance to the galaxy is known, we can determine the
scale. The scale then becomes a distance modulus for galaxies. This distance
modulus can be determined by the relationship between vmax and κ. The scale
can be determined, independently of distance, by comparing a derived value
of κ in units of ly per radian from vmax, and the observed value of κ from
digital photographs. This makes the measure of κ the critical parameter in the
application of the model to determine the galaxy’s distance.

Figure 16 is a photo of NGC 3198 in which the pixels have been transformed
to display the galaxy as seen from directly above. The figure was overlaid with
a spiral according to Equation (17) using a value of -26 arcsec per radian as a
value of κ. This approximates the well-defined spiral portion of NGC 3198. The
resultant spiral of this pitch would have an arm spacing of π × 26, or about 82
arcsec.
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Figure 16: NGC 3198 with spiral overlays according to Equation (17) with
a pitch of -26 arcsec per radian.

This property was again investigated by taking 360 luminosity cross sections
through the center of the galaxy at half-degree intervals, applying an FFT along
these cross sections, and examining the results to see if a value very close to
82 arcsec would appear. A consistent value of 80.83 arcsec presents itself with
values of 100.77 and 67.12 arcsec above and below. This analysis is graphically
shown in Figures 17 to 20.

Figure 17: A histogram showing FFT values with different cross section
orientations of NGC 3198. A distinct value of 80.83 arcsec can be seen.
There are also distinct peaks at 67.12 and 100.77 arcsec to either side.
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Figure 18: Digital photograph of NGC 3198 with circles overlaid at 67.12
arcsec intervals. The intervals indicate a spacing somewhat smaller than
the pitch of the galaxy. A spiral overlay having a corresponding pitch is
also overlaid. It can be seen that the overlaid spiral is significantly more
“wound up” than the spiral shown by the brighter regions of the galaxy
itself.

Figure 19: Digital photograph of NGC 3198 with circles overlaid at 80.83
arcsec intervals. The intervals indicate a spacing which matches the pitch
of the galaxy. A spiral overlay having a corresponding pitch is also overlaid.
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Figure 20: Digital photograph of NGC 3198 with circles overlaid at 100.77
arcsec intervals. The intervals indicate a spacing somewhat larger than the
pitch of the galaxy. A spiral overlay having a corresponding pitch is also
overlaid. It can be seen that the overlaid spiral is significantly less “wound
up” than the spiral shown by the brighter regions of the galaxy itself.

We can validate our model by comparing the predicted intrinsic size of the
spiral to the apparent size of a galaxy to estimate its distance. We then compare
the derived distance measure to other distance measures in order to determine
a degree of validation for the model. The derived distance modulus is given by
the equation:

D =
3.12× 109

vmax × αs

(19)

where 3.12× 109 is in pc arcmin km/s.
In the case of NGC 3198, vmax is taken as 152.9 km/s based on the above

described curve fit of the velocity profile and αs is an angular measure of spiral
pitch equal to 80.83 arcsec, or 1.347 arcmin. From equation 19 we determine
NGC 3198 to be 15.15 (±2.5) Mpc distant. The allowable error in vmax is
calculated as 7.5 km/s and in αs as 0.14 arcmin.

These measurements compare to 13.8 Mpc by Freedman (2001), 12 Mpc
using Cepheid variables and 13.8 Mpc using Tully-Fisher by Tully et al. (2008),
10.92 Mpc using redshift by Crook et al. (2007), 14.5 using Cepheid variables
by Ferrarese et al. (2000) and 17 Mpc by Gil de Pas et al. (2007).

These measures have a mean of 13.9 Mpc with a standard deviation of 2.0
Mpc of the seven measurements presented here.
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5 Using Distance Measures to Validate the Model

Distance measures to galaxies can be used to determine a degree of validation
for the presented model. There are three different distance measures that will
be presented here and compared to predictions. We shall use distance measures
using Cepheid variables, the Tully-Fisher relationship and behavior of water
masers.

5.0.1 Comparing Distance Measures using Cepheid Variables

We have reviewed distance measurements to galaxies made by Ferrarese et al.
(2000) using Cepheid variables (Leavitt , 1908) and compared these measure-
ments to measurements made using equation (19) and the rotation curves cited
in Table 3 at the end of this paper. Figure 21 is a presentation of a comparison
between Cepheid measurements and equation (19) showing a discrepancy from
matching a one to one linear fit by 0.016. The confidence variable is 0.9104.
Table 3 lists the name of the galaxy in the first column. The second column
lists estimates of vmax from rotation curves given by the cited papers below
the table with an allowance of 10% as listed in the third column. The fourth
column lists the measure of αs from an FFT, as described, with the resultant
σ of the FFT listed in the fifth. The sixth column lists the distance calculated
by equation (19) and the normalized error in the distance measure is listed in
the seventh column. The eighth column lists the magnitude difference from
observing Cepheid variables within the galaxy and the σ of the measurement in
the ninth. The tenth column lists the distance measure calculated from using
Cepheid variables and the 11th column lists the normalized error in the distance
measure using Cepheids. The final column gives references.

From equation (19) the fractional margin of error is the sum of the fractional
error in measurement of αs, which is given by the FFT used and the fractional
error in determining vmax.
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Figure 21: Cepheid distance vs. equation (19) showing a discrepancy from
matching a one to one linear fit by 0.016. The confidence variable is 0.9104.

5.0.2 Comparing Distance Measures using Water Masers

Another method to measure the distance to galaxies can be found through
the behavior of water masers by Herrnstein et al. (1999). In this method,
the magnitudes of orbits of gases containing masers can be measured directly
and then compared to the angular measure of these orbits. Herrnstein has
measured a distance of 7.3 ± 0.3 Mpc to NGC 4258 using the behavior of water
masers within the galaxy while equation (19), yields a distance measure of 7.1
± 0.55 Mpc. Table 1 contains rotational velocity measurements by Burbidge
et al. (1963) which reports that NGC 4258 has dusty regions in which there
are no emission patches strong enough to be recorded: “The measures between
180′′ and 220′′ on the north west side come from the spiral arm crossed by the
spectrograph slit”. A spiral pitch of 1.81 ± 0.008 arcmin and vmax of 244.0 ±

17.86 km/s was used to determine this measure.

Table 1: Rotation velocities of NGC 4258 from Burbidge

Distance Tangential
from center velocity
of galaxy (km/s)
(arcsec)
185 225
(Continued...)
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Data from Burbidge on rotation velocities of NGC 4258. (Continued)
Distance Tangential
from center velocity
of galaxy (km/s)
(arcsec)
188.6 240
192 255
195 255
199.5 255
203.1 255
206.7 240
210.4 270
214 255
217.6 210
221.2 225

Data from Burbidge on rotation velocities of NGC 4258 taken from 185′′ to 220′′

from the center of the galaxy. The data comes from an area of the galaxy
where a galactic arm crosses with the major axis. The average is 244.09 km/s

with a standard deviation of 17.86 km/s.

Another distance measurement to a galaxy using water maser behavior was
conducted by Braatz et al. (2010). Braatz measured the distance to UGC 3789
as 49.9 ± 7.0 Mpc. Unfortunately, no rotation curve for UGC 3789 has been
reported for this galaxy. Nevertheless, an H-1 line width is available through
NED1 Theureau et al. (1998), (see Figure 22). Using the spectrum reported
for UGC 3789 and reported measurements of the angle of incline of the galaxy,
44.8◦, a vmax of 314.33 ± 50.7 km/s was calculated. An FFT across the galaxy’s
major axis gave a pitch for the galaxy of 11.99 ± 0.7 arcsec. The resultant
distance to UGC 3789 using equation (19) is 49.7 ± 8 Mpc.

1This research has made use of the NASA/IPAC Extragalactic Database (NED) which is
operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract
with the National Aeronautics and Space Administration.
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Figure 22: Spectral response of signals traversing the major axis of UGC
3789. The line width is not clear and an estimate of 221.145 km/s from
3063.54 km/s to 3505 km/s is submitted. With an angle of incline of 44.8◦

yields an estimated vmax of 314.33 km/s.

The measure using equation (19) was particularly difficult to make due to the
lack of distinguishing spiral shape of the galaxy. The galaxy is fairly distant and
it is tightly wound. Note that its large rotation velocity would result in a tightly
wound galaxy in accordance with the model presented here. Furthermore, the
spectral line width, as in Figure 22, is somewhat convoluted, and six different
measures of the b/a ratio are reported in NED. Therefore, the error allowance
is quite large. The average b/a ratio was calculated to be 0.71 ± 0.059.

5.0.3 Comparing Distance Measures using Tully-Fisher

Yet another method for measuring the distances to galaxies is the well known
Tully-Fisher (T-F) (Tully & Fisher , 1977). This method involves an observed
relationship between the width of spectral lines and luminosity of spiral galaxies.
The spectral line widths are caused by the rotation of the galaxy. This rotational
velocity is denoted as vrot and corresponds to vmax.

In Figure 23, we present a graph of equation (19) measurements vs. distance
measurements using T-F. The graph shows a linear fit through the origin with
a discrepancy from a one to one match of .0272 and a sigma of 1.38 Mpc. The
associated data can be found in Table 4, at the end of this paper. The first
column in this table is the name of the galaxy being measured. The second
column is the value of vmax. The third column is distance measure using T-F as
reported in the Simbad database (U. Strasbourg , 2013). The fourth column is
the reported error in the T-F measure in Mpc. The fifth column is the distance
measure using equation (19) and the sixth column is the allowable error of the
measure in Mpc. The error bars in Figure 23 reflect the reported errors in Table
4.
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Figure 23: Comparison graph between measures using equation (19) vs
Tully-Fisher. The fitted line passes through the origin and has a slope of
1.03 and the fit yields a sigma of 1.38 Mpc.

6 A Quasi-linear Physical Model

If we project an elongated cloud of stars onto a single dimension, we can map a
four dimensional Minkowski space into L-1 space (Minkowski , 1910).

6.1 Mass and Linear Density

In the model we are presenting, gravitationally self bound particles appear to
be oriented along the path of the spiral shaped geodesic as in equation (17). A
mapping of material in K ′ into L-1 space through rotation onto a linear axis
is straightforward. Using the Lebesgue (1902) measure of linear density in a
singular dimension, we have:

ρl =
v2max

2G
. (20)

Using previously described distance measures and the angular length of the
major axis, the intrinsic major axis length, L, can be determined. Using equa-
tion (20) we can determine the mass of the galaxy as:

Mg = Lρl. (21)
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From this we can calculate the angular momentum of a galaxy as:

l = vmaxρlL
2. (22)

We derive the overall linear density of a galaxy to be within an order of
magnitude of 1020 kg per meter using Equation (20). The resultant body of
particles, in a linear orientation, is highly viscous. Using this linear density, a
galaxy having a diameter of 300 million ly would have a mass within an order
of magnitude of 1011 solar masses.

7 CONCLUSIONS

Our calculations take into account Minkowski, Lorentz and Einstein’s principles
on time and space dilation. We have come to the following conclusions:

7.1 Masking Tangential Velocities

Considerations of curvature, relativity, effects of motion, etc. must be thought
of locally. Currently, the circular orbital speed of stars within distant galaxies is
determined by measuring the shifting of spectral lines of sections of the galaxy.
It is not determined by the distance traveled by stars divided by the time it
takes for them to get farther along in their orbit. The distances the stars are
traveling are vast and we have not observed galaxies for a long enough time to
detect circular motion directly. The shift in spectral lines is not restricted to
the result of the distance traveled divided by time measured using local clocks
and rulers.

In a star’s local reference frame, its clocks and rulers differ from the clocks
and rulers of other stars in the galaxy due to the variation of the Lorentz trans-
formations at different radial distances from the center. The clocks of each
Hydrogen atom in a distant galaxy vary from the clocks of local Hydrogen
atoms since the distant orbiting atoms are in a region of curved space and time.
Therefore, the shifting of spectral lines of Hydrogen atoms in a distant rotating
galaxy is affected by both the Lorentz transformation of Doppler effects and
from the Lorentz transformation as a result of the curvature of space-time in a
rotating system. Both Lorentz transformations, one varying directly with r and
the other varying inversely, cancel in outer regions of the galaxy and result in
the observed constant velocity rotation profile.

We furthermore conclude:

1. General relativity explains the flat velocity rotation profile and morphol-
ogy of spiral galaxies.

2. Spiral galaxies are gravitationally self bound.

3. Galaxies are gravitationally viscous.

4. Galaxies are morphologically stable.
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5. Einstein’s general theory of relativity and Newton’s principles of gravita-
tional attraction hold over very great distances.
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8 Tables of Data

Table 2: Table of galaxies from Persic & Salucci.
name vmax σ name vmax σ name vmax σ

(ks−1) (normalized) (ks−1) (normalized) (ks−1) (normalized)
101-g20 198.9 0.08 120-g16 145.5 0.09 1547-02 209.2 0.03
101-g5 200.4 0.07 123-g15 217.9 0.07 156-g36 151.5 0.36
102-g10 180.7 0.04 123-g16 245.9 0.08 157-g20 143.5 0.03
102-g15 180.3 0.05 123-g23 157.5 0.04 157-g38 91.0 0.12
102-g7 245.2 0.06 123-g9 146.3 0.08 160-g2 217.0 0.15
103-g13 223.2 0.07 124-g15 128.9 0.06 162-g15 86.7 0.11
103-g15 154.6 0.11 13-g16 131.9 0.03 162-g17 65.8 0.03
103-g39 73.6 0.13 13-g18 148.5 0.06 163-g11 168.8 0.04
104-g52 108.3 0.06 140-g24 225.4 0.06 163-g14 180.9 0.09
105-g20 230.6 0.07 140-g25 91.8 0.04 181-g2 296.7 0.12
105-g3 165.7 0.06 140-g28 111.8 0.16 183-g14 141.0 0.07
106-g12 139.0 0.07 140-g33 220.0 0.51 183-g5 97.7 0.06
106-g8 157.0 0.08 140-g34 136.0 0.15 184-g51 262.1 0.04
107-g24 178.6 0.08 140-g43 146.4 0.12 184-g54 186.0 0.09
107-g36 197.2 0.07 141-g20 254.5 0.04 184-g60 88.3 0.11
108-g13 131.6 0.05 141-g23 114.4 0.13 184-g63 178.7 0.07
108-g6 172.8 0.12 141-g34 287.0 0.04 184-g67 231.4 0.06
109-g32 124.6 0.07 141-g37 312.0 0.09 184-g74 206.6 0.20
10-g4 117.6 0.06 141-g9 236.1 0.09 184-g8 128.0 0.19
111-g9 147.0 0.05 142-g30 203.5 0.06 185-g11 230.5 0.08
112-g10 165.0 0.18 142-g35 261.7 0.06 185-g36 176.0 0.04
113-g21 112.1 0.06 143-g10 37.8 0.05 185-g68 114.1 0.06
113-g6 238.1 0.04 143-g6 124.4 0.34 185-g70 153.7 0.08
114-g21 174.6 0.11 143-g8 81.5 0.15 186-g26 77.6 0.07
116-g12 126.8 0.02 145-g18 174.9 0.13 186-g75 123.5 0.06
116-g14 155.6 0.05 145-g22 200.1 0.07 186-g8 134.3 0.07
117-g18 201.0 0.06 146-g6 143.6 0.04 187-g39 114.2 0.08
117-g19 206.6 0.05 151-g30 212.8 0.05 187-g8 138.0 0.04
189-g12 257.0 0.03 231-g6 99.7 0.06 251-g10 238.1 0.11
18-g13 256.2 0.07 233-g36 117.0 0.07 251-g6 170.6 0.06
18-g15 196.6 0.10 233-g41 286.2 0.10 25-g16 131.7 0.10
196-g11 127.9 0.07 233-g42 103.6 0.06 264-g43 260.7 0.08
197-g24 152.5 0.04 234-g13 146.7 0.08 264-g48 178.8 0.08
197-g2 166.0 0.06 234-g32 170.1 0.19 265-g16 158.2 0.05
1-g7 118.4 0.10 235-g16 251.8 0.05 265-g2 57.3 0.05
200-g3 102.4 0.03 235-g20 154.9 0.04 266-g8 106.4 0.03
202-g26 135.8 0.08 236-g37 180.6 0.07 267-g29 198.9 0.11
202-g35 114.1 0.06 237-g15 129.7 0.28 267-g38 223.7 0.09
(Continued...)
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Table of galaxies from Persic & Salucci. (Continued)
name vmax σ name vmax σ name vmax σ

(ks−1) (normalized) (ks−1) (normalized) (ks−1) (normalized)
204-g19 136.7 0.06 237-g49 101.2 0.07 268-g11 232.8 0.11
205-g2 85.1 0.08 238-g24 210.6 0.04 268-g33 230.3 0.05
206-g17 67.7 0.06 239-g17 106.6 0.12 269-g15 242.8 0.06
208-g31 195.7 0.05 240-g11 219.8 0.02 269-g19 177.3 0.02
215-g39 148.6 0.09 240-g13 189.0 0.07 269-g48 99.4 0.11
216-g21 180.4 0.06 241-g21 246.1 0.09 269-g49 140.2 0.11
216-g8 202.8 0.05 242-g18 115.0 0.11 269-g52 193.6 0.04
219-g14 312.6 0.08 243-g14 162.3 0.04 269-g61 369.9 0.07
21-g3 105.6 0.08 243-g34 349.2 0.33 269-g75 110.9 0.06
220-g8 169.0 0.06 243-g36 178.0 0.07 269-g82 125.5 0.15
221-g21 156.0 0.04 243-g8 209.7 0.08 26-g6 116.3 0.04
221-g22 133.5 0.12 244-g31 257.3 0.13 271-g22 180.8 0.05
22-g12 141.4 0.04 244-g43 158.8 0.12 273-g6 236.5 0.08
22-g3 114.7 0.09 245-g10 174.2 0.06 27-g17 215.1 0.06
231-g11 243.1 0.10 249-g16 186.9 0.02 27-g24 188.8 0.06
231-g23 242.9 0.07 249-g35 72.9 0.06 27-g8 176.4 0.06
231-g25 209.0 0.04 24-g19 217.5 0.11 280-g13 276.9 0.10
231-g29 125.4 0.07 250-g17 281.5 0.14 281-g38 212.4 0.08
282-g35 136.7 0.13 303-g14 288.8 0.11 322-g82 213.8 0.04
282-g3 189.0 0.05 304-g16 204.5 0.11 322-g85 111.4 0.10
284-g13 181.5 0.08 305-g14 141.0 0.08 322-g87 152.1 0.09
284-g21 131.2 0.07 305-g6 159.6 0.02 322-g93 108.9 0.11
284-g24 135.1 0.06 306-g2 106.7 0.05 323-g27 201.7 0.09
284-g29 149.5 0.04 306-g32 172.4 0.04 323-g33 146.0 0.07
284-g39 120.8 0.08 308-g23 161.9 0.11 323-g41 152.1 0.08
285-g27 279.3 0.18 309-g17 261.0 0.09 323-g42 129.5 0.10
285-g40 239.5 0.07 309-g5 87.8 0.11 325-g27 104.6 0.12
286-g16 189.5 0.03 30-g9 329.4 0.03 325-g50 89.5 0.06
286-g18 332.7 0.03 310-g2 234.6 0.07 327-g27 120.7 0.09
287-g13 177.5 0.03 317-g32 240.8 0.10 327-g31 129.4 0.04
289-g10 107.5 0.03 317-g52 191.3 0.06 328-g15 203.4 0.07
290-g22 151.1 0.05 319-g16 95.3 0.05 328-g3 227.7 0.05
290-g35 205.0 0.05 319-g26 117.5 0.09 328-g41 238.4 0.05
291-g10 211.4 0.03 31-g18 177.6 0.06 328-g43 107.8 0.05
291-g24 76.9 0.08 31-g5 203.2 0.04 328-g46 240.7 0.07
296-g26 477.4 0.09 320-g24 131.0 0.05 329-g7 270.7 0.05
297-g37 166.6 0.11 320-g26 230.0 0.05 32-g18 207.0 0.06
298-g16 323.2 0.09 320-g2 369.5 0.20 336-g13 194.0 0.05
298-g29 238.6 0.16 321-g10 136.9 0.08 336-g6 264.8 0.19
298-g36 128.8 0.07 321-g17 137.2 0.04 337-g22 145.4 0.07
298-g8 150.1 0.06 321-g1 179.1 0.10 337-g6 188.3 0.09
(Continued...)
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Table of galaxies from Persic & Salucci. (Continued)
name vmax σ name vmax σ name vmax σ

(ks−1) (normalized) (ks−1) (normalized) (ks−1) (normalized)
299-g18 172.7 0.07 322-g33 46.4 0.09 338-g22 119.0 0.05
299-g4 186.2 0.05 322-g36 152.5 0.10 339-g36 162.2 0.05
2-g12 193.9 0.06 322-g45 126.5 0.07 33-g22 185.9 0.07
302-g7 135.2 0.09 322-g48 126.5 0.07 33-g32 177.8 0.09
302-g9 73.6 0.03 322-g55 175.2 0.16 340-g26 169.3 0.04
342-g43 168.7 0.13 354-g47 232.5 0.08 374-g26 135.3 0.08
343-g18 146.5 0.07 355-g26 121.6 0.05 374-g27 253.2 0.04
343-g28 109.4 0.11 356-g15 229.6 0.07 374-g29 133.5 0.08
344-g20 471.6 0.13 356-g18 66.2 0.08 374-g3 145.2 0.04
346-g14 107.9 0.04 357-g16 79.6 0.05 374-g49 211.3 0.06
346-g1 118.0 0.09 357-g19 126.4 0.06 374-g8 71.3 0.06
346-g26 98.4 0.02 357-g3 147.2 0.05 375-g12 283.8 0.10
347-g28 96.0 0.02 358-g17 264.8 0.06 375-g26 171.9 0.03
347-g33 186.6 0.04 358-g58 165.8 0.07 375-g29 175.4 0.05
347-g34 116.9 0.02 358-g63 113.5 0.08 375-g2 182.3 0.11
349-g32 296.4 0.08 358-g9 101.9 0.08 375-g47 143.5 0.12
349-g33 204.7 0.07 359-g6 76.2 0.04 376-g2 233.8 0.09
34-g12 232.6 0.05 35-g18 129.2 0.06 377-g10 193.0 0.05
350-g23 230.5 0.01 35-g3 89.6 0.05 377-g11 341.3 0.10
351-g18 129.4 0.07 361-g12 136.2 0.06 377-g31 175.3 0.06
351-g1 108.2 0.09 362-g11 129.4 0.01 378-g11 131.7 0.06
351-g28 116.7 0.19 363-g23 174.1 0.05 379-g6 176.4 0.05
352-g14 200.9 0.12 363-g7 84.7 0.06 380-g14 185.3 0.11
352-g15 137.6 0.11 365-g28 187.7 0.06 380-g19 239.0 0.04
352-g24 166.2 0.11 365-g31 199.3 0.18 380-g23 113.1 0.05
352-g27 219.1 0.06 366-g4 142.9 0.13 380-g24 154.3 0.08
352-g50 148.7 0.08 366-g9 107.9 0.14 380-g25 66.0 0.17
352-g53 251.4 0.05 36-g19 209.0 0.03 380-g29 87.5 0.37
353-g14 153.9 0.05 373-g12 82.7 0.09 380-g2 54.6 0.07
353-g26 218.2 0.19 373-g21 105.9 0.07 381-g51 249.6 0.06
353-g2 110.7 0.11 373-g29 140.9 0.06 382-g32 225.6 0.12
354-g17 182.8 0.06 374-g10 140.8 0.04 382-g41 95.1 0.10
354-g46 208.1 0.10 374-g11 201.3 0.05 382-g4 170.5 0.09
382-g58 306.7 0.13 406-g26 116.1 0.03 422-g12 340.2 0.10
383-g2 209.3 0.11 406-g33 133.0 0.03 422-g23 248.5 0.19
383-g55 269.1 0.10 40-g12 199.0 0.04 426-g8 176.3 0.04
383-g67 119.4 0.05 410-g19 187.8 0.04 427-g14 97.7 0.09
383-g88 191.0 0.12 410-g27 164.9 0.10 427-g2 210.9 0.03
385-g12 187.5 0.15 411-g3 215.3 0.10 42-g10 173.7 0.05
385-g8 149.8 0.04 412-g15 150.1 0.06 42-g3 239.4 0.04
386-g43 308.8 0.07 412-g21 201.3 0.06 433-g10 163.1 0.09
(Continued...)
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Table of galaxies from Persic & Salucci. (Continued)
name vmax σ name vmax σ name vmax σ

(ks−1) (normalized) (ks−1) (normalized) (ks−1) (normalized)
386-g44 176.3 0.13 413-g14 262.9 0.12 433-g15 126.7 0.05
386-g6 160.4 0.08 413-g23 143.3 0.07 433-g17 365.0 0.11
387-g20 179.2 0.09 414-g25 190.3 0.06 434-g23 145.6 0.07
387-g26 229.4 0.05 414-g8 96.6 0.16 435-g10 138.0 0.05
387-g4 246.6 0.07 415-g10 112.4 0.06 435-g14 170.4 0.08
38-g12 152.9 0.06 415-g15 210.1 0.07 435-g19 101.6 0.09
398-g20 210.0 0.09 415-g28 130.3 0.10 435-g24 183.1 0.07
399-g23 220.4 0.07 416-g37 208.3 0.06 435-g34 135.0 0.05
3-g3 248.7 0.08 416-g41 202.2 0.12 435-g50 124.7 0.06
3-g4 192.2 0.09 417-g18 166.5 0.07 435-g51 130.5 0.09
400-g21 128.8 0.04 418-g15 139.3 0.12 435-g5 326.2 0.08
400-g37 122.5 0.06 418-g1 115.8 0.04 436-g34 271.8 0.07
400-g5 182.8 0.06 418-g8 77.7 0.06 436-g39 215.8 0.06
401-g3 241.5 0.09 418-g9 90.7 0.07 436-g3 162.8 0.03
403-g16 200.4 0.12 419-g3 144.7 0.05 437-g18 126.1 0.12
403-g31 95.7 0.09 419-g4 180.7 0.03 437-g22 149.6 0.07
404-g18 66.7 0.09 41-g6 92.9 0.16 437-g25 159.4 0.06
404-g31 130.3 0.08 41-g9 193.5 0.03 437-g31 136.8 0.14
404-g45 141.2 0.05 420-g3 168.4 0.05 437-g35 103.1 0.10
405-g5 224.1 0.20 422-g10 284.4 0.09 437-g47 78.9 0.07
437-g54 150.0 0.05 444-g86 222.6 0.07 461-g3 243.9 0.08
437-g56 193.3 0.40 445-g19 226.8 0.07 461-g44 186.1 0.09
437-g69 87.8 0.17 445-g26 202.2 0.22 462-g16 118.3 0.06
437-g71 54.8 0.13 445-g39 297.3 0.11 463-g25 243.8 0.04
437-g72 225.9 0.10 446-g18 241.9 0.04 466-g13 204.0 0.09
438-g15 158.5 0.06 446-g1 196.1 0.09 466-g27 229.7 0.13
438-g18 179.3 0.06 446-g23 273.5 0.04 466-g28 165.5 0.07
439-g11 72.3 0.06 446-g2 217.3 0.09 466-g5 133.6 0.07
439-g18 446.8 0.07 446-g44 134.8 0.03 467-g11 302.7 0.06
439-g20 225.7 0.09 446-g51 148.9 0.05 467-g23 223.0 0.07
439-g9 301.5 0.08 446-g53 50.8 0.05 467-g27 196.1 0.06
43-g8 315.1 0.08 446-g58 223.3 0.12 467-g36 200.6 0.08
440-g51 101.8 0.10 447-g19 252.4 0.15 467-g51 92.2 0.04
441-g11 61.5 0.06 447-g21 211.1 0.08 468-g11 178.1 0.05
441-g24 111.4 0.06 447-g23 163.5 0.06 468-g23 95.0 0.02
441-g2 123.5 0.03 448-g13 276.8 0.04 469-g22 186.0 0.22
442-g24 129.4 0.06 44-g13 365.5 0.07 46-g8 99.9 0.08
442-g2 74.0 0.06 44-g1 151.3 0.08 471-g2 240.5 0.14
443-g38 253.2 0.10 450-g18 108.8 0.08 472-g10 146.6 0.08
443-g42 282.4 0.06 452-g8 133.8 0.05 474-g19 126.2 0.17
443-g59 100.7 0.06 459-g14 129.2 0.05 474-g39 179.2 0.06
(Continued...)
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Table of galaxies from Persic & Salucci. (Continued)
name vmax σ name vmax σ name vmax σ

(ks−1) (normalized) (ks−1) (normalized) (ks−1) (normalized)
443-g80 130.2 0.08 459-g6 242.4 0.07 474-g5 133.7 0.04
444-g10 176.4 0.05 460-g25 265.5 0.15 476-g15 150.6 0.02
444-g14 132.1 0.08 460-g29 391.7 0.07 476-g16 211.8 0.08
444-g1 251.3 0.10 460-g31 237.0 0.05 476-g25 188.5 0.09
444-g21 101.9 0.06 460-g8 172.8 0.06 476-g5 266.1 0.08
444-g33 61.0 0.09 461-g10 156.5 0.07 477-g16 108.7 0.05
444-g47 162.1 0.07 461-g25 162.7 0.06 477-g18 196.8 0.06
478-g11 120.9 0.04 490-g36 115.8 0.06 507-g2 159.9 0.09
479-g1 121.9 0.07 490-g45 100.2 0.04 507-g56 210.0 0.06
47-g10 211.3 0.05 496-g19 131.2 0.09 507-g62 164.6 0.07
481-g11 150.4 0.07 497-g14 295.1 0.15 507-g7 299.0 0.04
481-g13 176.1 0.02 497-g18 242.0 0.05 508-g11 112.4 0.03
481-g2 148.7 0.02 497-g34 205.2 0.06 508-g60 152.0 0.06
482-g1 158.5 0.08 498-g3 165.5 0.04 509-g35 211.1 0.09
482-g2 184.8 0.15 499-g22 114.7 0.05 509-g44 258.1 0.10
482-g35 132.0 0.05 499-g26 135.0 0.05 509-g45 130.3 0.04
482-g41 189.6 0.06 499-g39 187.3 0.04 509-g74 158.3 0.04
482-g43 161.8 0.09 499-g4 144.4 0.12 509-g80 260.2 0.21
482-g46 92.2 0.03 499-g5 158.9 0.04 509-g91 136.3 0.04
483-g12 167.6 0.11 4-g19 139.0 0.08 510-g40 134.1 0.05
483-g2 112.8 0.07 501-g11 129.5 0.05 511-g46 120.6 0.07
483-g6 175.4 0.04 501-g1 156.5 0.09 512-g12 186.7 0.07
484-g25 157.7 0.17 501-g68 154.5 0.10 514-g10 161.8 0.07
485-g12 152.7 0.05 501-g69 92.1 0.05 51-g18 96.5 0.05
485-g4 145.2 0.04 501-g75 167.5 0.04 526-g11 134.5 0.08
487-g19 99.1 0.06 501-g80 71.8 0.04 527-g11 220.7 0.09
487-g2 177.8 0.04 501-g86 172.9 0.15 527-g19 219.5 0.09
488-g44 117.6 0.08 501-g97 267.9 0.08 527-g21 132.5 0.10
488-g54 180.8 0.04 502-g12 151.0 0.07 528-g17 140.3 0.09
489-g11 140.1 0.06 502-g13 132.7 0.01 528-g34 165.3 0.10
489-g6 117.1 0.05 502-g2 206.0 0.07 530-g34 223.8 0.08
48-g8 224.4 0.03 505-g8 81.1 0.16 531-g22 182.2 0.03
490-g10 135.7 0.06 506-g2 234.6 0.04 531-g25 177.2 0.05
490-g14 116.6 0.05 506-g4 355.0 0.07 532-g14 62.5 0.06
490-g28 55.2 0.07 507-g11 213.6 0.09 533-g48 151.3 0.05
533-g4 170.1 0.04 547-g14 243.4 0.05 554-g28 118.2 0.09
533-g53 163.6 0.01 547-g1 96.2 0.07 554-g29 129.8 0.05
533-g8 175.8 0.08 547-g24 120.0 0.05 554-g34 177.3 0.04
534-g24 157.3 0.08 547-g31 160.0 0.06 555-g16 258.1 0.04
534-g31 282.6 0.07 547-g32 195.4 0.08 555-g22 100.2 0.03
534-g3 167.3 0.15 547-g4 124.9 0.13 555-g29 132.9 0.07
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Table of galaxies from Persic & Salucci. (Continued)
name vmax σ name vmax σ name vmax σ

(ks−1) (normalized) (ks−1) (normalized) (ks−1) (normalized)
534-g9 226.4 0.06 548-g21 66.3 0.07 555-g2 143.9 0.07
535-g15 212.9 0.08 548-g31 190.9 0.05 555-g8 138.9 0.08
536-g17 175.9 0.16 548-g32 63.9 0.04 556-g12 106.4 0.17
539-g14 155.7 0.07 548-g50 77.5 0.07 556-g23 148.7 0.05
539-g5 156.0 0.06 548-g63 104.5 0.09 556-g5 166.0 0.07
53-g2 159.9 0.08 548-g71 80.6 0.09 55-g29 169.4 0.12
540-g10 120.7 0.13 548-g77 87.1 0.08 55-g4 245.6 0.03
540-g16 80.0 0.04 549-g18 168.6 0.06 55-g5 78.4 0.19
541-g1 247.0 0.07 549-g22 134.2 0.08 562-g14 199.9 0.04
541-g4 147.8 0.04 549-g40 273.2 0.06 563-g11 269.5 0.08
543-g12 162.2 0.04 54-g21 109.3 0.07 563-g13 182.6 0.05
544-g27 159.2 0.07 550-g7 67.8 0.02 563-g14 148.3 0.02
544-g32 145.1 0.07 550-g9 186.3 0.06 563-g17 244.5 0.07
545-g11 191.3 0.02 551-g13 161.9 0.12 563-g21 356.0 0.03
545-g21 184.0 0.05 551-g16 49.1 0.07 563-g28 193.8 0.09
545-g3 40.6 0.07 551-g31 72.1 0.07 564-g20 81.6 0.04
545-g5 96.6 0.03 552-g43 181.7 0.13 564-g23 175.9 0.05
546-g15 310.4 0.09 553-g26 205.0 0.06 564-g31 171.0 0.06
546-g29 157.3 0.03 553-g3 260.8 0.08 564-g35 109.8 0.04
546-g31 207.4 0.05 554-g10 268.0 0.03 566-g14 179.2 0.07
546-g36 188.1 0.09 554-g19 145.9 0.07 566-g22 136.5 0.03
546-g37 119.1 0.09 554-g24 129.5 0.05 566-g26 188.9 0.04
566-g30 156.4 0.06 576-g51 167.0 0.04 58-g3 148.8 0.13
566-g9 156.0 0.10 577-g1 176.4 0.11 593-g3 186.1 0.05
567-g26 202.7 0.04 579-g25 165.5 0.17 594-g8 186.4 0.07
567-g45 292.9 0.12 579-g9 114.7 0.07 595-g10 132.0 0.05
567-g6 98.2 0.07 57-g80 159.1 0.05 596-g9 126.0 0.11
568-g19 189.7 0.22 580-g29 159.3 0.05 59-g23 169.5 0.05
569-g22 220.4 0.05 580-g37 199.7 0.12 59-g24 252.5 0.04
570-g2 154.2 0.06 580-g41 104.1 0.05 601-g19 193.4 0.09
571-g12 175.8 0.18 580-g45 130.5 0.06 601-g25 74.9 0.07
571-g15 235.4 0.07 580-g49 134.9 0.06 601-g4 160.1 0.06
571-g16 152.1 0.08 580-g6 160.8 0.05 601-g5 157.2 0.09
572-g18 139.4 0.06 581-g10 126.6 0.12 601-g7 105.0 0.13
572-g22 81.9 0.08 581-g11 188.0 0.11 601-g9 291.0 0.02
572-g49 87.0 0.05 581-g15 173.5 0.11 602-g15 79.7 0.07
573-g14 144.2 0.08 581-g4 120.4 0.07 602-g25 202.6 0.10
573-g6 135.7 0.08 581-g6 118.6 0.09 603-g12 101.0 0.04
574-g28 129.3 0.07 582-g12 166.8 0.06 603-g20 110.3 0.06
574-g32 163.4 0.09 582-g13 245.6 0.11 603-g22 268.8 0.05
574-g33 184.7 0.08 582-g1 230.3 0.32 604-g1 75.6 0.06
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Table of galaxies from Persic & Salucci. (Continued)
name vmax σ name vmax σ name vmax σ

(ks−1) (normalized) (ks−1) (normalized) (ks−1) (normalized)
575-g53 135.3 0.06 582-g21 214.6 0.07 605-g7 106.7 0.05
576-g11 146.6 0.04 582-g4 99.6 0.10 606-g11 174.1 0.09
576-g12 158.1 0.10 583-g2 208.3 0.06 60-g15 98.5 0.05
576-g14 194.8 0.04 583-g7 398.2 0.07 60-g24 286.0 0.47
576-g26 76.0 0.05 584-g4 211.2 0.07 60-g25 41.2 0.10
576-g32 172.5 0.08 586-g2 119.8 0.07 61-g8 146.5 0.05
576-g39 156.9 0.07 58-g25 198.8 0.06 62-g3 145.1 0.06
576-g3 92.6 0.05 58-g28 76.3 0.08 69-g11 164.0 0.05
576-g48 231.0 0.07 58-g30 177.8 0.04 6-g3 163.0 0.05
71-g14 219.8 0.04 8-g7 152.9 0.05 m-2-2502 167.3 0.04
71-g4 116.9 0.07 90-g9 173.5 0.06 m-2-2-51 278.8 0.10
71-g5 235.8 0.06 9-g10 179.2 0.04 m-2-7-10 130.1 0.05
72-g5 140.4 0.08 holm370 186.9 0.04 m-2-7-33 188.3 0.04
73-g11 218.6 0.07 i1330 225.2 0.07 m-2-8-12 187.6 0.06
73-g22 202.1 0.05 i1474 147.2 0.06 m-3-1042 149.8 0.03
73-g25 145.4 0.07 i2974 238.0 0.03 m-3-1364 165.4 0.04
73-g42 135.5 0.24 i382 201.2 0.05 m-3-1623 196.1 0.05
74-g19 186.9 0.09 i387 248.1 0.12 m-338025 163.0 0.04
75-g37 130.9 0.03 i407 189.2 0.04 n1090 180.8 0.03
79-g14 154.7 0.02 i416 117.9 0.03 n1114 195.3 0.04
79-g3 252.4 0.02 i5078 119.4 0.03 n1163 160.5 0.06
7-g2 152.6 0.15 i5282 207.8 0.08 n1241 282.6 0.07
80-g1 110.8 0.10 i784 191.5 0.05 n1247 268.8 0.03
82-g8 263.0 0.06 i96099 176.1 0.02 n1337 112.9 0.03
84-g10 198.8 0.02 m-1-1035 191.4 0.03 n1417 235.1 0.10
84-g33 288.8 0.04 m-1-2313 158.1 0.04 n1421 170.0 0.19
84-g34 235.2 0.35 m-1-2321 180.5 0.05 n151 325.5 0.05
85-g27 179.2 0.07 m-1-2522 170.1 0.05 n1620 214.0 0.05
85-g2 197.5 0.04 m-1-2524 77.5 0.04 n1752 224.3 0.04
85-g38 178.3 0.06 m-1-5-47 226.0 0.03 n1832 198.7 0.03
85-g61 94.5 0.06 m-2-1009 258.0 0.04 n2584 187.3 0.06
87-g3 283.8 0.16 m-213019 166.5 0.06 n2721 242.7 0.05
87-g50 97.9 0.07 m-214003 150.6 0.04 n2722 134.9 0.05
88-g16 201.4 0.04 m-215006 129.9 0.06 n2763 145.9 0.03
88-g17 350.1 0.15 m-222023 299.8 0.06 n280 319.8 0.05
88-g8 203.9 0.13 m-222025 159.8 0.15 n2980 234.4 0.04
8-g1 113.3 0.08 m-2-2-40 166.1 0.06 n3029 170.4 0.13
n3138 183.0 0.05 n755 133.3 0.03 u12571 184.4 0.05
n3321 144.0 0.07 n7568 224.0 0.05 u12583 105.4 0.05
n3361 136.2 0.04 n7593 141.5 0.06 u14 198.0 0.05
n3456 168.0 0.05 n7606 273.5 0.30 u1938 188.2 0.05
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Table of galaxies from Persic & Salucci. (Continued)
name vmax σ name vmax σ name vmax σ

(ks−1) (normalized) (ks−1) (normalized) (ks−1) (normalized)
n3715 193.2 0.06 n7631 205.2 0.06 u2020 90.0 0.06
n4348 182.2 0.03 n7677 181.7 0.11 u2079 125.5 0.05
n4705 195.7 0.02 u12123 118.9 0.06 u210 111.3 0.06
n697 197.2 0.02 u12290 240.0 0.05 u321 79.8 0.07
n699 200.9 0.04 u12370 116.8 0.09 u541 118.2 0.07
n701 125.3 0.11 u12382 124.0 0.10 ua17 109.9 0.02
n7218 128.4 0.02 u12423 262.6 0.07
n7300 244.7 0.03 u12533 253.8 0.04
n7339 156.3 0.02 u12555 114.8 0.07
n7536 183.6 0.04 u12565 186.3 0.09

This table lists fitted vmax and normalized σ of fit.
Index to names are n: NGC, m: Messier, i: IC, u:UGC, holme: Holmberg, others are ESO numbers.
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Table 3: Comparisons of distance measures using equation (19) and Cepheid
Variables.

Name vmax Error α σ Equ (19) Norm. m-M σ Cepheid Norm. Ref
km/s km/s (arcmin) distance Error distance Error

(Mpc) (Mpc)
NGC 7331 225 22.5 1.15 0.096 12.1 0.20 30.89 0.1 15.1 0.15 1
NGC 3319 130 13 1.94 0.017 12.4 0.12 30.78 0.1 14.3 0.15 2
NGC 4321 130 13 1.68 0.056 14.26 0.16 31.04 0.09 16.2 0.14 3
NGC 4414 230 23 0.66 0.227 20.7 0.33 31.41 0.1 19.2 0.15 4,5
NGC 224 241 24.1 18.94 0.090 .7 0.19 24.44 0.1 .8 0.15 6
NGC 3627 190 19 1.55 0.181 10.6 0.28 30.06 0.17 10.3 0.26 7
NGC 4536 125 12.5 1.41 0.031 17.7 0.13 30.95 0.07 15.5 0.11 8
NGC 3031 140 14 5.77 0.005 3.9 0.11 27.8 0.08 3.6 0.12 9
NGC 3351 220 22 1.53 0.130 9.3 0.23 30.01 0.08 10.1 0.12 10
NGC 2090 150 15 1.96 0.043 10.6 0.14 30.45 0.08 12.3 0.12 11
NGC 4548 157 15.7 1.59 0.132 12.5 0.23 31.04 0.08 16.2 0.12 12
NGC 925 120 12 2.18 0.024 11.9 0.12 29.84 0.08 9.3 0.12 13
NGC 3198 153 15.1 1.35 0.046 15.15 0.15 30.8 0.06 14.5 0.09 14
NGC 4639 200 20 0.73 0.075 21.2 0.17 31.8 0.09 22.9 0.14 15
NGC 4725 210 21 1.2 0.028 12.4 0.13 30.57 0.08 13.0 0.12 16
NGC 3368 220 22 1.44 0.410 9.9 0.51 30.2 0.1 11.0 0.15 16
NGC 5457 190 19 2.29 0.009 7.2 0.11 29.34 0.1 7.4 0.15 16
NGC 598 130 13 33.8 0.001 .7 0.10 24.64 0.09 .8 0.14 16,17
NGC 4535 140 14 1.24 0.022 18.0 0.12 31.1 0.07 16.6 0.11 17
NGC 1365 50 5 3.4 0.012 18.4 0.11 31.39 0.1 19.0 0.15 18
NGC 2541 95 9.5 2.39 0.052 13.8 0.15 30.47 0.08 12.4 0.12 19

References. (1) Rubin & Ford (1970); (2) Moore & Gottesman (1998);
(3) Knapen et al. (2000); (4) Braine & van Driel (1993);

(5) Vallejo et al. (2002); (6) Abell (1975);
(7) Chemin et al. (2003); (8) Afanasev et al. (1991);

(9) Rohlfs & Kreitschmann (1980); (10) Devereaux et al. (1992);
(11) Kassin et al. (2006); (12) Vollmer et al. (1999);

(13) Pisano et al. (1998); (14) Begeman (1989);
(15) Rubin et al. (1999); (16) Brownstein & Moffat (2006);

(17) Woods et al. (1990); (18) Lindblad et al. (1996);
(19) Józsa (2007)
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Table 4: Table of Tully-Fisher Distances

Name vmax T-F Distance Error Equation (19) Distance Error
(km/s) (Mpc) (Mpc) (Mpc) (Mpc)

ESO 284-24 135.073 29 6 25 1.93
ESO 378-11 131.681 50 9 52 5.16
ESO 576-11 146.63 31 6 24 1.40
IC 5078 119.393 19 4 21 0.88
UGCA 17 109.892 23 5 18 1.12
NGC 1090 180.845 27 5 29 0.95
NGC 1163 160.503 39 7 37 2.30
NGC 1337 112.9 11 2 16 0.92
NGC 1832 198.743 25 5 27 1.54
NGC 2763 145.929 24 5 23 1.39
NGC 3321 144.019 33 7 33 4.05
NGC 4348 182.247 30 6 29 2.15
NGC 701 125.347 19 4 30 4.33
NGC 7218 128.406 21 4 25 1.55
NGC 7339 156.265 22 4 22 0.95
NGC 755 133.339 19 4 36 2.37
NGC 7606 273.5 32 6 33 13.45

Comparisons of distance measures using equation (19) and Tully-Fisher.
Data taken from SIMBAD database operated at CDS, Strasbourg, France
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