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INTRODUCTION 
 

 

  

 About the works of Florentin Smarandache have been written a lot of books (he 

himself wrote dozens of books and articles regarding math, physics, literature, philosophy). 

Being a globally recognized personality in both mathematics (there are countless functions 

and concepts that bear his name), it is natural that the volume of writings about his research 

is huge. 

 What we try to do with this encyclopedia is to gather together as much as we can both 

from Smarandache’s mathematical work and the works of many mathematicians around the 

world inspired by the Smarandache notions. Because this is too vast to be covered in one 

book, we divide encyclopedia in more volumes. 

 In this first volume of encyclopedia we try to synthesize his work in the field of 

number theory, one of the great Smarandache’s passions, a surfer on the ocean of numbers, 

to paraphrase the title of the book Surfing on the ocean of numbers – a few Smarandache 

notions and similar topics, by Henry Ibstedt. 

We quote from the introduction to the Smarandache’work “On new functions in 

number theory”, Moldova State University, Kishinev, 1999: “The performances in current 

mathematics, as the future discoveries, have, of course, their beginning in the oldest and the 

closest of philosophy branch of nathematics, the number theory. Mathematicians of all times 

have been, they still are, and they will be drawn to the beaty and variety of specific problems 

of this branch of mathematics. Queen of mathematics, which is the queen of sciences, as 

Gauss said, the number theory is shining with its light and attractions, fascinating and 

facilitating for us the knowledge of the laws that govern the macrocosm and the microcosm”. 

We are going to structure this volume of encyclopedia in six parts: the first will cover 

the Smarandache type sequences and series (obviously, among them there are the well-

known sequences of numbers obtained through concatenation but also numerous other 

sequences), the second part will cover the Smarandache type functions and constants, the 

third part will cover the conjectures on Smarandache notions and the conjectures on number 

theory due to Florentin Smarandache, the fourth part will cover the theorems on 

Smarandache notions and the theorems on number theory due to Florentin Smarandache, the 

fifth part will cover the criteria, formulas and algorithms for computing due to Florentin 

Smarandache and the sixth part will cover the unsolved problems regarding Smarandache 

notions and the open problems on number theory due to Florentin Smarandache. 

Obviously, the division into these chapters has mostly the role to organise the matters 

treated, not to delineate them one from another, because all are related; for instance, a 

function treated in chapter about functions may create a sequence treated in chapter about 

sequences or a conjecture about primes treated in the chapter about primes may involve a 

diophantine equation, though these ones have their own chapter. Similarly, we presented 

some conjectures, theorems and problems on sequences or functions in the chapters 

dedicated to definition of the latter, while we presented other conjectures, theorems and 

problems on the same sequences or functions in separate chapters; we could say we had a 

certain vision doing so (for instance that we wanted to keep a proportion between the sizes of 

the sections treating different sequences or functions and not to interrupt the definitions 

between two related sequences or functions by a too large suite of problems) but it would not 

be entirely true: the truth is that a work, once started, gets its own life and one could say that 

almost it dictates you to obey its internal order. 
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 In the book Smarandache Notions (editors Seleacu and Bălăcenoiu), Henry Ibstedt 

made a very interesting classification of  Smarandache sequences in: recursive; non-

recursive; obtained through concatenation of terms, elimination of terms, arrangement of 

terms, permutation of terms or mixed operations. Many other classifications are possible (for 

instance Amarnath Murthy and Charles Ashbacher classified them, in the book Generalized 

partitions and new ideas on number theory and Smarandache sequences, in accomodative 

sequences (if all natural numbers can be expressed as the sum of distinct elements of the 

sequence) or semi-accomodative sequences (if all natural numbers can be expressed as the 

sum or difference  of distinct elements of the sequence). That’s why, as it can be seen above, 

we simply classified them into two groups: concatenated or non-concatenated. We have 

listed for the each studied sequence the first few terms and also we have mentioned the 

article from OEIS (On-Line Encyclopedia of Integer Sequences) where can be found more of 

these terms. 

 We emphasize that the work is not exhaustive (though is called “encyclopedia”) 

because, as we said before, the volume of works about Smarandache type notions is huge and 

the study of all these thousand of sources is a task virtually insurmontable; moreover, the 

number of Smarandache type sequences and functions continues to grow, while the study of 

those already known continues to be deepened. But, of course, each new edition of this 

encyclopedia will be more complete (if the phrase “more complete” is not a pleonasm).  

We let aside many Smarandache type notions (which are constructed using concepts 

like rings, groups, groupoids) to be treated in a further volume of this encyclopedia regarding 

Algebra; we also didn’t include many proofs of the theorems and just made reference to the 

articles or books where these can be found. 

All the comments of substance (on number theory) from this book (beside the ones 

from the Annex B: A proposal for a new Smarandache type notion, which is our unique and 

exclusive contribution of substance to this work) belong to Florentin Smarandache (they are 

extracted from his works), unless is expressly indicated by footnote another source; our 

comments are only explanatory or descriptive. Sometimes, if the meaning of the sentence is 

clear, we will refer to Florentin Smarandache using the initials F.S.  

We structured the work using numbered Definitions, Theorems, Conjectures, Notes 

and Comments, in order to facilitate an easier reading but also to facilitate references to a 

specific paragraph. We divided the Bibliography in two parts, Writings by Florentin 

Smarandache (indexed by the name of books and articles) and Writings on Smarandache 

notions (indexed by the name of authors). For some papers that appear in bibliography we 

just made reference to Arxiv, an well-known archive for scientific articles, though they were 

published in other math journals too (for instance, to refer to the article that presented for the 

first time the Smarandache function, we simply mentioned ”A function in the number theory, 

Arxiv”, though this research paper was for the first time published in 1980 in a review 

published by University of Timisoara from Romania). 

We also have, at the end of this book, an Afterword about an infinity of problems 

concerning the Smarandache function and two annexes, Annex A which contains a list of few 

types of numbers named after Florentin Smarandache, where we present few types of such 

numbers which are largely known as Smarandache numbers, Smarandache consecutive 

numbers, Smarandache-Wellin numbers, Smarandache-Radu duplets, Smarandache-

Fibonacci triplets etc. and Annex B which contains a proposal for a new Smarandache type 

notion. 

Because any work of proportions contains errors, especially one dedicated to number 

theory, a very refined field of mathematics, this encyclopedia will probably not be an 
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exception to the rule; the possible mistakes due to our misunderstanding of concepts treated 

will be removed in a later edition of the book.  

We hope that mathematicians who wrote about Smarandache notions will not be 

offended if we mistakely attributed a proof of a theorem to another mathematician than the 

one that has the precedence (our references refers to the works were we found these proofs 

and generally this work intends to give an overview on Smarandache type notions, not to 

establish the paternity on these), also will not be offended if we omitted to mention an 

important sequence, function, theorem, conjecture. All these more than possible but probable 

errors will be straighten, at request, in a future edition (as we said above, the volume of 

works on Smarandache type notions is huge, and “we” are only one, id est me). Finally, we 

hope that we have not treated the same problem in same way in different chapters (and we 

stop here with concerns because ultimately this is a book not a contract to cover all possible 

clauses). 

At the risk to appear redundant, we wrote in footnotes the complete reference every 

time, without resorting to references like op. cit., idem, ibidem: a book, like for instance Only 

problems, not solutions!, is structured differently in an edition from 1993 than in an edition 

from 2000. 

Because the most of Smarandache sequences are sequences of integers we will 

consider this implicitly and we will mention expressly only if it is the case of other type of 

sequence (for instance of rational numbers). 

To not remove readers by a large variety of mathematical simbols, we replaced them, 

when this was possible, with verbal expressions; also, to accustom the readers with the 

symbols of operations accepted as input by the major math programs as Wolfram Alpha or 

commonly used by the major sites of number theory like OEIS, we use for multiplication the 

symbol “*” and for the rise to a power the symbol “^”. Therefore, we understand, in this 

paper, the numbers denoted by “abc” as the numbers obtained by the method of 

concatenation, where a, b, c are digits, and the numbers denoted by “a*b*c” as the products 

of the numbers a, b, c.  

We also used the term deconcatenation to refer to the inverse operation than 

concatenation (for instance, the number 561 admits to be deconcatenated in three ways, into 

the sets of numbers {5, 6, 1}, {5, 61} and {56, 1}, but not, for example, into the set of 

numbers {5, 16}); therefore, instead to define an operation like “partition of a number into 

groups of digits that are (or that form) primes” (e.g. the partition of the number 1729 into 17 

and 29) we define it like “deconcatenation of a number into  a set of primes”. 

We mention that, beside the universal known basic operations, we use in this book the 

following functions and operations: the factorial: the factorial of n (or n factorial) is the 

product of all positive integers smaller or equal to n, written as n! = 1*2*3* … *n, for 

instance 6! = 1*2*3*4*5*6 = 720; the double factorial function, written as n!!, which has the 

following values: n!! = 1*3*5*…*(n – 2)*n if n is odd respectively n!! = 2*4*6*…*(n – 

2)*n if m is even (respectively, by convention, n!! = 1 if n = 0); the congruence modulo: m is 

congruent modulo x with n and it is noted m ≡ n (mod x) if the remainder of the division of 

m by x is equal to the remainder of the division of n by x, for instance 17 ≡ 5 (mod 3); the 

primorial: this function is usually (and in this book too) met with two different definitions: 

the n-th primorial number is the product of the first n primes (it is noted pn#) and the 

primorial of the positive integer n (it is noted n#) is the product of all primes less than or 

equal to n.  

We also mention that we used both syntagms “non-null natural numbers” and 

“positive integers” to designate the same thing, i.e. the set of natural numbers without zero, 



 5 

and both the sintagms “natural numbers” and “non-negative integers” to designate the same 

thing, i.e. the set of positive integers plus zero.  

We noted gcd (m, n) the greatest common divisor of m and n; we noted max{m, n} 

the maximum value from the values of m and n and max{p: p prime, p divides n} the  

maximum value of p, under certain conditions (in this case, the condition that p is prime and 

p divides n); we also used the notation min{f(x)} for the minimum value the function f(x) 

can have etc. We noted, exempli gratia,  with abs{m – n} the absolute value of the 

subtraction of integers m, n and with [x – y] the integer value of the subtraction of real 

numbers x, y.  

We also mention that we understand through “proper divisors of n” all the positive 

divisors of n other than n itself (but including the number 1). Also, because not all the 

sources understand the same thing through the syntagms “inferior part of x” or “superior part 

of x”, implicitly through the arithmetic symbols assigned to them, to avoid any possible 

confusion, we didn’t use symbols (the specific brackets “open” up or down), but wrote, when 

was the case, in formulas or definitions, “in words”: “the inferior part of x, i.e. the largest 

integer n less than or equal to x” respectively “the superior part of x, i.e. the smallest integer 

n greater than or equal to x”. 

We noted with σ(n) or sigma(n) the divisor function (the sum of the positive divisors 

of n, including 1 and n), with τ(n) or tau(n) the (Dirichlet) divisor function, i.e. the number of 

all positive divisors of n (including 1 and n), with π(n) sau pi(n) the prime counting function 

(the number of primes smaller than or equal to n), with ω(n) or omega(n) the number of 

distinct prime factors of n and with φ(n) or phi(n) the Euler’s totient, i.e. the number of 

positive integers smaller than or equal to n which are coprime with n (we used the notations 

customary in many math programs like Wolfram Alpha); we also noted with R(n) the 

reversal of the positive integer n, i.e. the number formed by the same digits, in reverse order. 

We hope that professional mathematicians who know of course these symbols, 

functions and operations will not be offended by these explanations, as this book is not 

addressed only to them but also to young aspirants. This encyclopedia is both for researchers 

that will have on hand a tool that will help them “navigate” in the universe of Smarandache 

type notions and for young math enthusiasts: many of them will be attached by this 

wonderful branch of mathematics, number theory, reading the works of Florentin 

Smarandache.  
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SUMMARY 
 

 

Part one. Smarandache type sequences and series  
 

Chapter I.  Sequences and series of numbers obtained through concatenation  

 

(1)  The Smarandache consecutive numbers sequence 

(2)   The reverse sequence 

(3)   The concatenated odd sequence 

(4)   The concatenated even sequence 

(5)   The concatenated prime sequence 

(6)   The back concatenated prime sequence 

(7)   The concatenated square sequence 

(8)   The concatenated cubic sequence 

(9)   The sequence of triangular numbers 

(10) The symmetric numbers sequence 

(11) The antisymmetric numbers sequence 

(12) The mirror sequence 

(13) The “n concatenated n times”  sequence 

(14) The permutation sequence 

(15) The constructive set of digits 1 and 2 sequence 

(16) The generalized constructive set sequence 

(17) The pierced chain sequence 

(18) The concatenated Fibonacci sequence 

(19) The circular sequence 

(20) The back concatenated sequences 

(21) The concatenated S-Sequence 

(22) The generalized palindrome sequence 

(23) The Smarandache n2*n sequence 

(24) The Smarandache nn^2 sequence 

(25) The Smarandache nk*n generalized sequence 

(26) The Smarandache breakup perfect power sequences 

(27) The Smarandache breakup prime sequence 

(28) The Smarandache power stack sequences 

(29) The Smarandache left-right and right-left sequences 

(30) The Smarandache sequences of happy numbers 

 

Chapter II. Other sequences and series  
 

(1) The Smarandache Quotient sequence 

(2) The (non-concatenated) permutation sequence 

(3) The deconstructive sequence 

(4) The generic digital sequence 

(5) The generic construction sequence 

(6) The digital sum sequence 

(7) The digital product sequence 

(8) The divisor products sequence 
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(9) The proper divisor products sequence 

(10) The square complements sequence 

(11) The cube complements sequence 

(12) The m-power complements sequence 

(13) The double factorial complements sequence 

(14) The prime additive complements sequence 

(15) The double factorial sequence 

(16) The “primitive numbers of power 2” sequence 

(17) The “primitive numbers of power 3” sequence 

(18) The generalized “primitive numbers” sequence 

(19) The cube free sieve sequence 

(20) The m-power free sieve sequence 

(21) The Inferior prime part sequence 

(22) The Superior prime part sequence 

(23) The Inferior square part sequence 

(24) The Superior square part sequence 

(25) The Inferior factorial part sequence 

(26) The Superior factorial part sequence 

(27) The irrational root sieve sequence 

(28) The odd sieve sequence 

(29) The binary sieve sequence 

(30) The consecutive sieve sequence 

(31) The Smarandache-Fibonacci triplets sequence 

(32) The Smarandache-Radu duplets sequence 

(33) The Smarandache prime product sequence 

(34) The Smarandache friendly pairs set 

(35) The Smarandache friendly prime pairs set 

(36) The 3n-digital subsequence 

(37) The 4n-digital subsequence 

(38) The 5n-digital subsequence 

(39) The crescendo and decrescendo subsequences 

(40) The crescendo and descrescendo pyramidal subsequences 

(41) The crescendo and descrescendo symmetric subsequences 

(42) The permutation subsequences 

(43) The Smarandache bases of numeration sequences 

(44) The multiplicative sequence 

(45) The non-multiplicative general sequence 

(46) The non-arithmetic progression sequence 

(47) The non-geometric progression sequence 

(48) The “wrong numbers” sequence 

(49) The “impotent numbers” sequence 

(50) The “simple numbers” sequence 

(51) The square product sequence 

(52) The cubic product sequence 

(53) The factorial product sequence 

(54) The Smarandache recurrence type sequences 

(55) The Smarandache partition type sequences 

(56) The square residues sequence 
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(57) The cubical residues sequence 

(58) The exponents of power 2 sequence 

(59) The exponents of power 3 sequence 

(60) The unary sequence 

(61) The Smarandache periodic sequences 

(62) The Smarandache pseudo-primes sequences 

(63) The Smarandache pseudo-squares sequences 

(64) The Smarandache pseudo-factorials sequences 

(65) The Smarandache pseudo-divisors sequences 

(66) The Smarandache almost primes sequences 

(67) The square roots sequence 

(68) The cubical roots sequence 

(69) The m-power roots sequence 

(70) The no-prime-digit sequence 

(71) The no-square-digit sequence 

(72) The Smarandache prime-digital subsequence 

(73) The Smarandache prime-partial-digital sequence 

(74) The Smarandache square-partial-digital sequence 

(75) The Erdős-Smarandache numbers sequence 

(76) The Goldbach-Smarandache table sequence 

(77) The Smarandache-Vinogradov table sequence 

(78) The Smarandache-Vinogradov sequence 

(79) The Smarandache paradoxist numbers sequence 

(80) Sequences involving the Smarandache function 

(81) The Smarandache perfect sequence 

(82) The partial perfect additive sequence 

(83) The Smarandache A-sequence 

(84) The Smarandache B-2 sequence 

(85) The Smarandache C-sequence 

(86) The Smarandache uniform sequences 

(87) The Smarandache operation sequences 

(88) The repeatable reciprocal partition of unity sequence 

(89) The distinct reciprocal partition of unity sequence 

(90) The Smarandache Pascal derived sequences 

(91) The Smarandache sigma divisor prime sequence 

(92) The Smarandache smallest number with n divisors sequence 

(93) The Smarandache summable divisor pairs set 

(94) The Smarandache integer part of x^n sequences 

(95) The Smarandache sigma product of digits natural sequence 

(96) The Smarandache least common multiple sequence 

(97) The Smarandache reverse auto correlated sequences 

(98) The Smarandache forward reverse sum sequence 

(99) The Smarandache reverse multiple sequence 

(100) The Smarandache symmetric perfect power sequences 

(101) The Smarandache Fermat additive cubic sequence 

(102) The Smarandache patterned sequences 

(103) The Smarandache prime generator sequence 

(104) The Smarandache LCM ratio sequences 
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Part two. Smarandache type functions and constants 

 

Chapter I.  Smarandache type functions 

 
 (1) The Smarandache function 

(2) The Smarandache double factorial function 

(3) The Smarandache near-to-primorial function 

(4) The Smarandache-Kurepa function 

(5) The Smarandache-Wagstaff function 

(6) The Smarandache ceil functions of n-th order 

(7) The Smarandache primitive functions 

(8) The Smarandache functions of the first kind 

(9) The Smarandache functions of the second kind 

(10) The Smarandache functions of the third kind 

(11) The pseudoSmarandache function 

(12) The pseudoSmarandache function of the first kind 

(13) The pseudoSmarandache function of second kind 

(14) The Smarandache multiplicative one function  

(15) The inferior and the superior f–part of x  

(16) The inferior and the superior fractional f–part of x  

(17) The Smarandache complementary functions 

(18) The functional Smarandache iteration of first kind 

(19) The functional Smarandache iteration of second kind 

(20) The functional Smarandache iteration of third kind 

(21) The Smarandache prime function 

(22) The Smarandache coprime function 

(23) The smallest power function 

(24) The residual function 

(25) The Smarandacheian complements 

(26) The increasing repetead compositions 

(27) The decreasing repetead compositions 

(28) The back and forth factorials (the Smarandacheials) 

(29) The Smarandache infinite products 

(30) The Smarandache-simple function 

(31) The duals of few Smarandache type functions 

(32) Generalizations of Smarandache function 

(33) The Smarandache counter 

(34) The pseudoSmarandache totient function 

(35) The pseudoSmarandache squarefree function 

(36) The Smarandache Zeta function 

(37) The Smarandache sequence density 

(38) The Smarandache generating function 

(39) The Smarandache totient function 

(40) The Smarandache divisor function 

(41) The additive analoque of the Smarandache function 

(42) The Smarandache P and S persistence of a prime 

(43) Smarandache type multiplicative functions 

(44) The Smarandache factor partition function 
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(45) Smarandache fitorial and supplementary fitorial functions 

(46) The Smarandache reciprocal function 

(47) The sumatory function associated to Smarandache function 

 

Chapter II.  Constants involving the Smarandache function  

 

 (1) The first constant of Smarandache 

(2) The second constant of Smarandache  

(3) The third constant of Smarandache 

(4) The fourth constant of Smarandache 

(5) Other Smarandache constants 

 

Part three. Conjectures on Smarandache notions and conjectures on number 

theory due to Florentin Smarandache 
 
Chapter I.  Conjectures on Smarandache type notions  

 

(1) Conjectures on Smarandache function 

(2) Conjectures on pseudo-Smarandache function 

(3) Conjectures on Smarandache double factorial function 

(4) Conjecture involving irrational and transcendental numbers 

(5) Conjecture on Smarandache function average 

(6) Conjecture on pseudo-Smarandache function and palindromes 

(7) Conjecture on Smarandache deconstructive sequence 

(8) Conjectures on Smarandache odd sequence 

(9) Conjectures on Smarandache even sequence 

 

Chapter II.  Conjectures on primes due to Smarandache 

 

(1) Generalizations of Andrica’s Conjecture 

(2) Generalizations of Goldbach’s and de Polignac’s Conjectures 

(3) Conjecture on Gaussian primes 

(4) Conjecture on the difference between two primes 

(5) Conjecture on a Silverman problem 

(6) Conjecture on twin primes involving the pseudo-twin primes 

 

Chapter III.  Conjectures on Diophantine equations due to Smarandache 

 

(1) Generalizations of Catalan’s Conjecture 

(2) Conjecture proved by Florian Luca 

(3) Conjecture on diophantine equation y = 2*x1*x2*…*xn + 1 

  

Chapter IV.  Other conjectures due to Smarandache 

 

(1) Conjecture on an Erdős’ open problem 

(2) Conjecture on the difference between a cube and a square 
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Part four. Theorems on Smarandache notions and theorems on number 

theory due to Florentin Smarandache 
 

Chapter I.  Theorems on Smarandache type notions  

 

(1) Theorems on Smarandache function 

(2) Theorems on Smarandache function of a set 

(3) Theorems on pseudo-Smarandache function 

(4) Theorems on Smarandache double factorial function 

(5) Theorems on Smarandache type function P(n) 

(6) Theorem on Smarandache type function C(n) 

(7) Theorems on a dual of Smarandache function 

(8) Theorems on a dual of pseudo-Smarandache function 

(9) Theorems on Smarandache ceil function 

(10) Theorems on Smarandache sequences 

(11) Theorem on the Smarandache concatenated power decimals 

(12) Theorem on Smarandache function and perfect numbers 

(13) Theorem on Smarandache function and the Dirichlet divisor function 

(14) Theorems on Smarandache primitive numbers of power p 

 

Chapter II.  Theorems due to Smarandache 

 

(1) A generalization of Euler’s Theorem on congruences 

(2) Theorem on an inequality involving factorials 

(3) Theorem on divisibility involving factorials 

(4) Theorem on an infinity of a set of primes 

(5) General theorem of characterization of n primes simultaneously 

(6) Theorems on Carmichael’s totient functions Conjecture 

(7) Theorem inspired by Crittenden and Vanden Eynden’s Conjecture 

(8) Theorem which generalizes Wilson’s Theorem 

(9) Theorems on arithmetic and geometric progressions 

(10) Theorem on the number of natural solutions of a linear equation 

(11) Theorems on the solutions of diophantine quadratic equations 

(12) Theorems on linear congruences 

(13) Theorem on very perfect numbers 

(14) Theorems on inequalities for the integer part function 

 

Part five. Criteria, formulas and algorithms for computing due to Florentin 

Smarandache 
 

(1) Criterion for coprimes involving Euler’s totient 

(2) Criteria for simultaneous primality 

(3) Criteria for primality derived from Wilson’s Theorem 

(4) A formula to calculate the number of primes 

(5) A closed expression for the generalized Pells’s equation 

(6) The Romanian multiplication 

(7) Algorithm for division by k^n 
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Part six. Unsolved problems regarding Smarandache notions and open 

problems on number theory due to Florentin Smarandache 
 

Chapter I.  Problems regarding sequences  

 
Chapter II.  Problems regarding Smarandache function  

 

Chapter III.  Problems regarding pseudoSmarandache function  

 

Chapter IV.  Problems regarding Smarandache double factorial function  

 

Chapter V.  Problems regarding other functions  

 

Chapter VI.  Problems regarding equations  

 

Chapter VII. Problems regarding prime numbers  

 

Chapter VIII. Other unsolved problems  

 

Afterword.  An infinity of problems concerning the Smarandache function 

 

Annex A.  List of twenty types of numbers named after Florentin 

Smarandache 

 

Annex B.  A proposal for a new Smarandache type notion 
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PART ONE 
Smarandache type sequences, series and functions 

 

 

Chapter I. Sequences and series of numbers obtained through concatenation  

 

(1)  The Smarandache consecutive numbers sequence
1
 

 

Definition: 

Sn is defined as the sequence obtained through the concatenation of the first n positive 

integers.  

The first ten terms of the sequence (A007908 in OEIS):  

1, 12, 123, 1234, 12345, 123456, 1234567, 12345678, 123456789, 12345678910. 

Notes: 

1. The Smarandache consecutive number sequence has the following special property: 

thus far there is no prime number known in this sequence, though there have been 

checked the first about 40 thousand terms
2
. 

2. The problem of the number of primes contained by this sequence was raised by 

Florentin Smarandache since 1979.
3
  

3. Generalizing the problem, F.S. asked how many primes are among the terms of the 

consecutive sequence if this is considered in an arbitrary numeration base B; in base 

3, for instance, the terms of the sequence are 1, 12, 1210, 121011, 12101112 (…), 

which are equivalent to the following decimal numbers: 1, 5, 48, 436, 3929 (…)
4
. The 

computer programs used for finding these numbers, for numeration bases until 10, 

showed that these numbers are very rare. For instance, no prime was found among the 

first thousand of these terms for the numeration base 4. 

Comment
5
: 

From the Smarandache consecutive number sequence it can be formed the series defined 

as the sum from n = 1 to n = ∞ of the numbers 1/Sn. The series 1 + 1/12 + 1/123 + 1/1234 

+ … is convergent to a value greater than one and smaller than or equal to 10/9. 

 

(2)  The reverse sequence 
 

Definition: 

Sn is defined as the sequence obtained through the concatenation of the first n positive 

integers, in reverse order.  

                                                 
1
 The name of this sequence was generalized (Smarandache consecutive numbers sequences) for all the 

sequences obtained through concatenation of consecutive numbers of a certain type: the sequence Sn of the 

numbers obtained through concatenation of first n primes (named Smarandache-Wellin sequence); the 

sequence Sn of the numbers obtained through concatenation of first n squares etc. Many sequences of this type 

were studied by F.S., hwo revealed an important feature common to all of them: they all contain a small 

number of primes. See the article Consecutive number sequences from Weisstein, Eric W., CRC Concise 
Encyclopedia of Mathematics, CRC Press, 1999, p. 310. 
2
 According to article Consecutive number sequences from the on-line math encyclopedia Wolfram Math 

World. 
3
 Student Conference, University of Craiova, Department of Mathematics, April 1979, "Some problems in 

number theory" by Florentin Smarandache, cited by F.S. in Only problems, not solutions!, Xiquan Publishing 

House, fourth edition, 1993, p. 18. 
4
 The sequence A048435 in OEIS. 

5
 Majumdar, A.A.K., Wandering in the world of Smarandache numbers, InProQuest, 2010, Chapter 1: Some 

Smarandache sequences, Section 1.12: Series involving Smarandache sequences. 
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The first ten terms of the sequence (A000422 in OEIS):  

1, 21, 321, 4321, 54321, 654321, 7654321, 87654321, 987654321, 10987654321. 

Note: The primes appear very rare among the terms of this sequence too: until now there are 

only two known, corresponding to n = 82 (a number having 155 digits) şi n = 37765 (a 

number having 177719 digits). 

Theorem
6
:  

Element number n of the base 10 reverse sequence is not square-free if n is congruent to 

0  or 8 modulo 9. 

 

(3)  The concatenated odd sequence 

 

Definition: 

Sn is defined as the sequence obtained through the concatenation of the first n odd 

numbers (the n-th term of the sequence is formed through the concatenation of the odd 

numbers from 1 to 2*n – 1). 

The first ten terms of the sequence (A019519 in OEIS):  

1, 13, 135, 1357, 13579, 1357911, 135791113, 13579111315, 1357911131517, 

135791113151719. 

Notes:  

1. F.S. conjectured that there exist an infinity of prime terms of this sequence. 

2. The terms of this sequence are primes for the following values of n: 2, 10, 16, 34, 49, 

2570 (the term corresponding to n = 2570 is a number with 9725 digits); there is no 

other prime term known though where checked the first about 26 thousand terms of 

this sequence.
7
 

Theorem
8
:  

 Let n be the number of the element in the concatenated odd sequence. 

a) If n is congruent to 3 modulo 5, then element number n is evenly divisible by 5. 

b) If n is congruent to 0 modulo 3, then element number n is evenly divisible by 3 and if 

n is congruent to 1 or 2 modulo 3, then element number n is congruent to 1 modulo 3. 

 

(4)  The concatenated even sequence 

 

Definition: 

Sn is defined as the sequence obtained through the concatenation of the first n even 

numbers (the n-th term of the sequence is formed through the concatenation of the even 

numbers from 1 to 2*n). 

The first ten terms of the sequence (A019520 in OEIS):  

2, 24, 246, 2468, 246810, 24681012, 2468101214, 246810121416, 24681012141618, 

2468101214161820. 

Notes:  

1. Any term of this sequence can’t be, obviously, prime. In the case of this sequence is 

studied the primality of the numbers obtained through the division of its terms by 2: 

1, 12, 123, 1234, 123405, 1240506, 1234050607 (…). 

2. F.S. conjectured that there is no any term of this sequence which is a perfect square. 

                                                 
6
 For the proof of this theorem, see Ashbacher, Charles, Smarandache Sequences, stereograms and series, 

Hexis, Phoenix, 2005, p. 38-39. 
7
 According to article Consecutive number sequences from the on-line math encyclopedia Wolfram Math 

World. 
8
 For the proof of this theorem, see Ashbacher, C., Smarandache Sequences, stereograms and series, Hexis, 

Phoenix, p. 44-46. 
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3. H. Ibsted has not found any perfect square among the first 200 terms of this 

sequence.
9
 

4. A.A.K. Majumdar proved that none of the terms of the subsequence ES(2*n – 1) is a 

perfect square or higher power of an integer greater than one.
10

 

 

(5)  The concatenated prime sequence 

 

Definition: 

Sn is defined as the sequence obtained through the concatenation of the first n primes. 

The first ten terms of the sequence (A019518 in OEIS):  

2, 23, 235, 2357, 235711, 23571113, 2357111317, 235711131719, 23571113171923, 

2357111317192329. 

Notes:  

1. The terms of this sequence are known as Smarandache-Wellin numbers
11

. Also, the 

Smarandache-Wellin numbers which are primes are named Smarandache-Wellin 

primes. The first three such numbers are 2, 23 şi 2357; the fourth is a number with 

355 digits and there are known only 8 such primes. The 8 known values of n for 

which through the concatenation of the first n primes we obtain a prime number are 1, 

2, 4, 128, 174, 342, 435, 1429. The computer programs not yet found, until n = 10^4, 

another such a prime.
12

  

2. F.S. conjectured that there exist an infinity of prime terms of this sequence.
13

 

Comment
14

:  

 The concatenated odd, even and prime sequences are particular cases of so-called “G 

add-on sequence” defined in the following way: let G = {g1, g2, …, gk, …} be an ordered 

set of positive integers with a given property G; then the corresponding G add-on 

sequence is defined through formula SG = {ai: a1 = g1, ak = ak-1*10^(1 + log10(gk)) + gk, k 

≥ 1}. 

 

(6)  The back concatenated prime sequence  
 

Definition: 

Sn is defined as the sequence obtained through the concatenation of the first n primes, in 

reverse order. 

The first ten terms of the sequence (A038394 in OEIS):  

2, 32, 532, 7532, 117532, 13117532, 1713117532, 191713117532, 23191713117532, 

2923191713117532. 

 

(7)  The concatenated square sequence 
 

Definition: 

                                                 
9
 See Ibstedt, Henry, Computer analysis of number sequences, American Research Press, 1998, Chapter V: 

Smarandache concatenated sequences, Section 4: The Smarandache even sequence.  
10

 See Majumdar, A.A.K., Wandering in the world of Smarandache numbers, InProQuest, 2010, Chapter 1: 

Some Smarandache sequences, Section 1.3: Smarandache even sequence. The Smarandache odd sequence is 

sometimes named with the acronym OS while the even sequence is sometimes named ES. 
11

 After the names of F.S. and mathematician Paul R. Wellin. 
12

 According to article Smarandache-Wellin number from the on-line math encyclopedia Wolfram Math 

World. 
13

 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 

Xiquan Publishing House, 2000, Definition 17. 
14

 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequences 229-231. 
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Sn is defined as the sequence obtained through the concatenation of the first n squares: 

1(2^2)(3^2)…(n^2). 

The first ten terms of the sequence (A019521 in OEIS):  

1, 14, 149, 14916, 1491625, 149162536, 14916253649, 1491625364964, 

149162536496481, 149162536496481100. 

Notes: 

1. The third term, the number 149, it is the only prime from the first about 26 thousand 

terms of this sequence.
15

 

2. F.S. raised the problem of the number of the terms of this sequence which are perfect 

squares.
16

 

Conjecture:   

There is no term of the Smarandache concatenated square sequence which is perfect 

square.
17

 

  

(8)  The concatenated cubic sequence 

 

Definition: 

Sn is defined as the sequence obtained through the concatenation of the first n cubes: 

1(2^3)(3^3)…(n^3). 

The first ten terms of the sequence (A019521 in OEIS):  

1, 18, 1827, 182764, 182764125, 182764125216, 182764125216343, 

182764125216343512, 182764125216343512729, 1827641252163435127291000. 

Notes: 

1. There were not found prime terms of this sequence, though there were checked the 

first about 22 terms.
18

 

2. F.S. raised the problem of the number of the terms of this sequence which are perfect 

cubes.
19

 

Conjecture:   

There is no term of the Smarandache concatenated cubic sequence which is perfect 

cube.
20

 

   

(9)  The sequence of triangular numbers 

 

Definition: 

Sn is defined as the sequence obtained through the concatenation of the first n triangular 

numbers: 1(2^3)(3^3)…(n^3). 

The first ten terms of the sequence (A078795 in OEIS):  

1, 13, 136, 13610, 1361015, 136101521, 13610152128, 1361015212836, 

136101521283645, 13610152128364555. 

Notes: 

                                                 
15

 According to article Consecutive number sequences from the on-line math encyclopedia Wolfram Math 

World. 
16

 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 

Xiquan Publishing House, 2000, Definition 21. 
17

 Ashbacher, C., Smarandache Sequences, stereograms and series, Hexis, Phoenix, p. 63. 
18

 According to article Consecutive number sequences from the on-line math encyclopedia Wolfram Math 

World. 
19

 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 

Xiquan Publishing House, 2000, Definition 22. 
20

 Ashbacher, C., Smarandache Sequences, stereograms and series, Hexis, Phoenix, p. 65. 
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1. The triangular numbers are a subset of the polygonal numbers (which are a subset of 

figurate numbers) constructed with the formula T(n) = (n*(n + 1))/2 = 1 + 2 + 3 +… 

+ n. 

2. The only two known primes from this sequence (among the first about 5000 terms) 

are 13 and 136101521. 

 

(10)  The symmetric numbers sequence 

 

Definition: 

Sn is defined as the sequence obtained through the concatenation in the following way: if 

n is odd, the n-th term of the sequence is obtained through concatenation 123…(m-

1)m(m-1)…321, where m = (n + 1)/2; if n is even, the n-th term of the sequence is 

obtained through concatenation 123…(m-1)mm(m-1)…321, unde m = n/2. 

The first ten terms of the sequence (A007907 in OEIS):  

1, 11, 121, 1221, 12321, 123321, 1234321, 12344321, 123454321, 1234554321, 

12345654321. 

Notes: 

1. F.S. raised the problem of the numbers of the terms of this sequence which are 

primes. 

2. Generalizing the problem, F.S. asked how many primes are among the terms of the 

symmetric sequence if this is considered in an arbitrary numeration base B. 

Comment: 

The prime numbers among the terms of this sequence “may not be as rare as the primes 

in the consecutive sequence, for all the numbers in this sequence are odd.”
21

 

Theorem
22

:
 
 

If p is an odd prime in the base 3 symmetric sequence, then the index must be of the form 

4*k + 1. 

 

(11)  The antisymmetric numbers sequence  
 

Definition: 

Sn is defined as the sequence obtained through the concatenation in the following way: 

12…(n)12…(n). 

The first ten terms of the sequence (A019524 in OEIS):  

11, 1212, 123123, 12341234, 1234512345, 123456123456, 12345671234567, 

1234567812345678, 123456789123456789. 

Note: There is no term of this sequence which can be prime, no matter in what numeration base 

is this sequence considered. In the case of this sequence is studied the primality of the 

numbers of the form 12…(n)12…(n) ± 1. 

 

(12)  The mirror sequence 

 

Definition: 

Sn is defined as the sequence obtained through the concatenation in the following way: 

n(n – 1)…32123…(n – 1)n. 

The first ten terms of the sequence (A007942 in OEIS):  

                                                 
21

 Ashbacher, C., Smarandache Sequences, stereograms and series, Hexis, Phoenix, p. 14. 
22

 For the proof of this theorem, see Ashbacher, C., Smarandache Sequences, stereograms and series, Hexis, 

Phoenix, p. 18-19. 
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1, 212, 32123, 4321234, 543212345, 65432123456, 7654321234567, 876543212345678, 

98765432123456789, 109876543212345678910. 

Notes: 

1. F.S. raised the problem of the numbers of the terms of this sequence which are 

primes. 

2. Generalizing the problem, F.S. asked how many primes are among the terms of the 

symmetric sequence if this is considered in an arbitrary numeration base B. The 

computer programs used for finding these primes, for the numeration bases up to ten, 

not found any prime among the first 500 terms of the sequence for the numeration 

base 6. 

Theorems: 

1. If B > 2 is odd, then all of the elements in the base B mirror sequence are odd.
23

 

2. If the base B > 2 is even, then the parity of the elements in the base B Mirror 

Sequence alternate, with the elements of even index being even and the elements of 

odd index odd.
 24

 

 

(13)  The “n concatenated n times” sequence  

 

Definition: 

The sequence Sn defined as the sequence of the numbers obtained concatenating n times 

the number n. 

The first ten terms of the sequence (A000461 in OEIS):  

1, 22, 333, 4444, 55555, 666666, 7777777, 88888888, 999999999, 

10101010101010101010. 

Note:  There is no term of this sequence which can be prime, all terms of the sequence being 

repdigit numbers, therefore multiples of repunit numbers. 

 

(14)  The permutation sequence
25

 

 

Definition: 

The sequence Sn defined as the sequence of numbers obtained through concatenation and 

permutation in the following way: 13…(2n – 3)(2n – 1)(2n)(2n – 2)(2n – 4)…42. 

The first seven terms of the sequence (A007943 în OEIS):  

12, 1342, 135642, 13578642, 13579108642, 135791112108642, 1357911131412108642, 

13579111315161412108642. 

Notes:  

1. There is obviously no term of this sequence which can be prime. In the case of this 

sequence is studied the primality of the numbers obtained through the division of its 

terms by 2: 6, 671, 67821, 6789321 (…), or the primality of the numbers of the form 

13…(2n – 3)(2n – 1)(2n)(2n – 2)(2n – 4)…42 ± 1. 

                                                 
23

 For the proof of this theorem, see Ashbacher, C., Smarandache Sequences, stereograms and series, Hexis, 

Phoenix, p. 23-25. 
24

 For the proof of this theorem, see Ashbacher, C., Smarandache Sequences, stereograms and series, Hexis, 

Phoenix, p. 25. 
25

 The sequence is named Smarandache permutation sequence by Ashbacher, C., Smarandache Sequences, 

stereograms and series, Hexis, Phoenix, p. 28; Majumdar, A.A.K., Wandering in the world of Smarandache 
numbers, InProQuest, 2010, p. 23. Other sources (Wolfram Math World, OEIS) understand through the name 

Smarandache permutation sequence another sequence, i.e. the sequence obtained concatenating ascendent 

sequences of odd numbers with descending sequences of even numbers: 1, 2, 1, 3, 4, 2, 1, 3, 5, 6, 4, 2 (…). 
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2. There is no term of this sequence which can be perfect square, because every term of 

this sequence, beside the first one, is divisible by 2 but not by 2^2. 

 

(15)  The constructive set of digits 1 and 2 sequence
26

 

 

Definition: 

The sequence S of the numbers obtained through concatenation of the digits 1 and 2, 

defined in the following way: (i) the digits 1 and 2 belong to S; (ii) if a and b belong to S, 

then ab belong to S too; (iii) only elements obtained by rules (i) and (ii) applied a finite 

number of times belong to S. 

The first twenty-five terms of the sequence:  

1, 2, 11, 12, 21, 22, 111, 112, 121, 211, 212, 221, 222, 1111, 1112, 1121, 1122, 1211, 

1212, 1221, 1222, 2111, 2112, 2121, 2122. 

Comment:   

There are 2^k numbers of k digits in the sequence, for k = 1, 2, 3, … 

 

(16)  The generalized constructive set sequence
27

 

 

Definition: 

The sequence S obtained generalizing the previous sequence, so the sequence of the 

numbers obtained through concatenation of the distinct digits d1, d2, …, dm, where 1 ≤ m 

≤ 9, defined in the following way: (i) the digits d1, d2, …, dm belong to S; (ii) if a and b 

belong to S, then ab belongs to  S too; (iii) only elements obtained by rules (i) and (ii) 

applied a finite number of times belong to S. 

Comments: 

1. There are 2^k numbers of k digits in the sequence, for k = 1, 2, 3, … 

2. All digits di can be replaced by numbers as large as we wantm and also m can be as 

large as we want. 

Theorem
28

:    

The series defined as the sum from n = 1 to n = ∞ of the fractions 1/an^r, where {an} is a 

sequence constructed according to the definition (generalised constructive set) and r is a 

positive number, is convergent if r > log m and divergent if r ≤ log m. 
 

(17)  The pierced chain sequence 

 

Definition: 

The sequence obtained in the following way: the first term of the sequence is 101 and 

every next term is obtained through concatenation of the previous term with the group of 

digits 0101. 

The first seven terms of the sequence (A031982 in OEIS):  

                                                 
26

 F.S., Only problems, no solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 6. See also F.S., 

Sequences of numbers involved in unsolved problems, Hexis, 2006, where, in Sequence 115, is defined the 

constructive set of digits 1, 2 and 3. For a study of the constructive set of digits 1 and 2, see Atanassov, 

Krassimir T., On some of the Smarandache’s problems, American Research Press, 1999, p. 50-51; for a study 

of the constructive set of digits 1, 2 and 3, see the same book, p. 51. 
27

 F.S., Only problems, no solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 8. See also F.S., 

Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 116. See also Atanassov, 
Krassimir T., On some of the Smarandache’s problems, American Research Press, 1999, p. 51-56. 
28

 The theorem is enunciated and proved by Gou Su, see the article „On the generalised constructive set”, 

Research on  Smarandache problems in number theory (Collected papers), Hexis, 2004. 
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101, 1010101, 10101010101, 101010101010101, 1010101010101010101, 

10101010101010101010101, 101010101010101010101010101. 

Note: Because, of course, all terms of this sequence are divisible by 101, the problem raised by 

F.S. is how many from the numbers obtained through the division of the terms of the 

sequence by 101 are primes or squarefree numbers. 

Theorem
29

:  

There are no primes obtained through the division of the terms of the sequence by 101. 

 

(18)  The concatenated Fibonacci  sequence 

 

Definition: 

The sequence obtained through concatenation of the terms of Fibonacci sequence
30

. 

The first ten terms of the sequence (A019523 in OEIS):  

1, 11, 112, 1123, 11235, 112358, 11235813, 1123581321, 112358132134, 

11235813213455. 

Notes:  

1. From the first 800 terms of this sequence only two are primes, the second and the 

fourth (respectively the numbers 11 and 1123). 

2. Florentin Smarandache raised the problem if there exist any term of this sequence 

(beside 1) which is a Fibonacci number.
31

  

 

(19)  The circular sequence
32

 

 

Definition: 

The sequence Sn constructed through concatenation and permutation in the following 

way
33

: 

The first twenty terms of the sequence (A001292 in OEIS):  

1, 12, 21, 123, 231, 312, 1234, 2341, 3412, 4123, 12345, 23451, 34512, 45123, 51234, 

123456, 234561, 345612, 456123, 561234. 

Note: The problem raised by F.S. is how many from the terms of the sequence are primes or 

powers of integers.
34

 Another problem raised is to find the probability for which the 

trailing digit of a term is equal to c, where c belongs to the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 

9}.
35

 

                                                 
29

 The theorem is proved by Kenichiro Kashihara, Comments and topics on Smarandache notions and 

problems, Erhus University Press, 1996, p. 7-8. For other theorems concerning this sequence see Majumdar, 

A.A.K., Wandering in the world of Smarandache numbers, InProQuest, 2010, Chapter 1: Some Smarandache 
sequences, Section 1.11: Smarandache pierced chain sequence. 
30

 The Fibonacci numbers are the numbers defined by the recurrence relation F(n) = F(n – 1) + F(n – 2). 
31

 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 

Xiquan Publishing House, 2000, Definition 23. Charles Ashbacher conjectured that there is no such a term of 

the sequence: Smarandache Sequences, stereograms and series, Hexis, Phoenix, p. 66.  
32

 Named Smarandache circular sequence by F.S., Only problems, no solutions!, Xiquan Publishing House, 

fourth edition, 1993, Problem 4. Other sources (Majumdar, A.A.K., Wandering in the world of Smarandache 
numbers, InProQuest, 2010, p. 26) use the name Smarandache circular sequence refering to The Smarandache 

consecutive numbers sequence (1, 12, 123, 1234, …).  
33

 For a formula for the n-th term of the sequence, see Vassilev-Missana, Mladen and Atanassov, Krassimir, 

Some Smarandache problems, Hexis, 2004, Chapter 1: On some Smarandache’s problems, Section 1: On the 

2-nd Smarandache’s problem. 
34

 Kashihara  conjectured that the sequence contains no powers of integers. See Kashihara, K., Comments and 
topics on Smarandache notions and problems, Erhus University Press, 1996, p. 25. 
35

 For a deeper study of this sequence see Ripà, Marco, Patterns related to the Smarandache circular sequence 
primality problem, Unsolved Problems in Number Theory, Logic, and Criptography. 



 21 

 

(20)  The back concatenated sequences
36

 

 

The back concatenated odd sequence
37

: 

The first ten terms of the sequence (A038395 in OEIS): 

1, 31, 531, 7531, 97531, 1197531, 131197531, 15131197531, 1715131197531, 

1917151311975311. 

The back concatenated even sequence: 

The first ten terms of the sequence (A038396 in OEIS): 

2, 42, 642, 8642, 108642, 12108642, 1412108642, 161412108642, 18161412108642, 

2018161412108642. 

The back concatenated  square sequence: 

The first ten terms of the sequence (A038397 in OEIS): 

1, 41, 941, 16941, 2516941, 362516941, 49362516941, 6449362516941, 

816449362516941, 100816449362516941. 

The back concatenated cubic sequence: 

The first ten terms of the sequence (A019522 in OEIS): 

1, 18, 1827, 182764, 182764125, 182764125216, 182764125216343, 

182764125216343512, 182764125216343512729, 1827641252163435127291000. 

The back concatenated Fibonacci sequence: 

The first ten terms of the sequence (A038399 in OEIS): 

1, 11, 211, 3211, 53211, 853211, 13853211, 2113853211, 342113853211, 

55342113853211. 

 

(21)  The concatenated S-Sequence 

 

Definition: 

The sequence obtained generalizing the Smarandache concatenated sequences defined in 

the following way: let s1, s2, …, sn be a sequence of integers noted with S; then s1, s1s2, 

s1s2s3, …, s1s2s3…sn is named Concatenated S-Sequence.
 
 

Note: Florentin Smarandache raised the problem of the number of the terms of the 

Concatenated S-Sequence which belong to the initial sequence.
38

 

 

(22)  The generalized palindrome sequence
39

 

 

Definition: 

The sequence of numbers which are called Generalized Smarandache Palindromes (GSP) 

and are defined as follows: numbers of the form a1 a2 …an an …a 2a1 , with n ≥ 1, where 

a1, a2, …, an are positive integers of various number of digits.
 
 

Example:  

                                                 
36

 Beside the back concatenated prime sequence which is treated supra, F.S. defined many other back 

concatenated sequences; here are listed few of them. See F.S., Definitions, solved and unsolved problems, 

conjectures, and theorems in number theory and geometry, Xiquan Publishing House, 2000, Definitions 17, 

18, 19, 21, 22, 23. 
37

 For a recursion formula for general term of this sequence and theorems about it see Junzhuang, Li and 

Nianliang, Wang, On the Smarandache back concatenated odd sequences, in Wenpeng, Zhang, et al. (editors), 

Research on  Smarandache problems in number theory (vol. 2), Hexis, 2005. 
38

 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 

Xiquan Publishing House, 2000, Definition 20. 
39

 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 254. 
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 The number 1256767251 is a GSP of type ABCCBA because can be deconcatenated into 

the set of numbers {1, 25, 67, 67, 25, 1}. 

Conjecture:  

 There are infinitely many primes which are GSP. 

 

(23)  The Smarandache n2*n sequence
40

 

  

Definition: 

The n-th term of the sequence a(n) is obtained concatenating the numbers n and 2*n. 

The first fifteen terms of the sequence (A019550 in OEIS):  

12, 24, 36, 48, 510, 612, 714, 816, 918, 1020, 1122, 1224, 1326, 1428, 1530. 

Note:  

Because obviously every element of this sequence a(n) is divisible by 6*n, in the case of 

this sequence is studied the primality of the numbers a(n)/6*n. 

Conjecture:  

The sequence a(n)/6*n contains infinitely many primes. 

 

(24)  The Smarandache nn^2 sequence
41

 

  

Definition: 

The n-th term of the sequence a(n) is obtained concatenating the numbers n and n^2. 

The first fifteen terms of the sequence (A053061 in OEIS):  

11, 24, 39, 416, 525, 636, 749, 864, 981, 10100, 11121, 12144, 13169, 14196, 15225. 

Theorem:  

The Smarandache nn^2 sequence contains no perfect squares. 

Definition:  

The sequence a(n)/n is called the reduced Smarandache nn^2 sequence. 

The first fifteen terms of the reduced Smarandache nn^2 sequence (A061082 in OEIS):  

11, 12, 13, 104, 105, 106, 107, 108, 109, 1010, 1011, 1012, 1013, 1014, 1015. 

Conjecture:  

There are infinitely many primes in the reduced Smarandache nn^2 sequence. 

Definition: 

The sequence a(n) obtained concatenating the numbers n and n^m is called the 

Smarandache nn^m sequence. 

Theorem:  

The Smarandache nn^m sequence, for any value of m, contains only one prime, the 

number 11.  

Definition:  

The sequence a(n)/n is called the reduced Smarandache nn^m sequence. 

Question:  

How many terms in this sequence are prime? 

 

(25)  The Smarandache nk*n generalized sequence
42

 

  

                                                 
40

 Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 

Smarandache sequences, Hexis, 2005, p. 125. 
41

 Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 
Smarandache sequences, Hexis, 2005, p. 130. 
42

 Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 
Smarandache sequences, Hexis, 2005, p. 125. 
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Definition: 

The n-th term of the sequence a(n) is obtained concatenating all of the numbers n, 2*n, 

3*n, …, n*n. 

The first eight terms of the sequence (A053062 in OEIS):  

1, 24, 369, 481216, 510152025, 61218243036, 7142128354249, 816243240485664. 

Question:  

How many from the numbers a(n)/n are primes? 

 

(26)  The Smarandache breakup perfect power sequences 
  

Definition: 

The n-th term of the sequence is defined as the smallest positive integer which, by 

concatenation with all previous terms, forms a perfect power. 

The Smarandache breakup  square sequence (A051671 in OEIS): 
 4, 9, 284, 61209, 14204828164, 4440027571600000000001, … 

 Example: 284 belongs to the sequence because 49284 = 222^2. 

The Smarandache breakup  cube sequence (A061109): 

 1, 6, 6375, 34623551127976881, … 

 Example: 6375 belongs to the sequence because 166375 = 55^3. 

 

(27)  The Smarandache breakup prime sequence 
  

Definition: 

The n-th term of the sequence is defined as the smallest positive integer which, by 

concatenation with all previous terms, forms a prime. 

The Smarandache breakup  prime sequence (A048549 in OEIS): 
 2, 23, 233, 2333, 23333, 2333321, 233332117, 2333321173, 233332117313, … 

 

(28)  The Smarandache power stack sequences 
  

Definition: 

The n-th term of the sequence is defined as the positive integer obtained by concatenating 

all the powers of k from k^0 to k^n. 

The Smarandache power stack sequence for k = 2: 

 1, 12, 124, 1248, 12416, 1241632, 124163264… 

The Smarandache power stack sequence for k = 3: 

 1, 13, 139, 13927, 1392781, 1392781243… 

 

(29)  The Smarandache left-right and right-left sequences 
  

Definition 1
43

: 

The sequence of positive integers obtained starting with 1 and concatenating alternatively 

on the left and on the right the next numbers. 

The first ten terms of the sequence (A053063 in OEIS):  

1, 21, 213, 4213, 42135, 642135, 6421357, 86421357, 864213579, 10864213579. 

Definition 2: 

                                                 
43

 Russo, Felice, On a problem concerning the Smarandache left-right sequences, Smarandache Notions Journal, 

vol. 14, 2004. 
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The sequence of positive integers obtained starting with 1 and concatenating alternatively 

on the right and on the left the next numbers. 

The first ten terms of the sequence (A053064 in OEIS):  

1, 12, 312, 3124, 53124, 531246, 7531246, 75312468, 975312468, 97531246810. 

Definition 3: 

The sequence of positive integers obtained starting with 2 and concatenating alternatively 

on the left and on the right the next primes. 

The first nine terms of the sequence (A053065 in OEIS):  

 2, 32, 325, 7325, 732511, 13732511, 1373251117, 191373251117, 19137325111723. 

Definition 4: 

The sequence of positive integers obtained starting with 2 and concatenating alternatively 

on the right and on the left the next primes. 

The first nine terms of the sequence (A053066 in OEIS):  

 2, 23, 523, 5237, 115237, 11523713, 1711523713, 171152371319, 23171152371319. 

Questions:  

1. How many terms of this sequences are prime numbers? 

2. How many terms are additive primes?
44

 

3. Is the number of the primes in these sequences finite? 

 

(30)  The Smarandache sequences of happy numbers 
  

Definition 1
45

: 

The sequence of numbers obtained concatenating the happy numbers
46

. 

The first eight terms of the Smarandache sequence of happy numbers (A053064 in OEIS)
47

:  

1, 17, 1710, 171013, 17101319, 1710131923, 171013192328, 17101319232831. 

Definition 2 : 

The sequence of numbers obtained concatenating the happy numbers. 

The first eight terms of the reversed Smarandache H-sequence (A071827 in OEIS):  

1, 71, 1071, 131071, 19131071, 2319131071, 282319131071, 31282319131071. 

Comments:  

1. There are only 3 primes in the first 1000 terms of the H-sequence, i.e. SH(2) = 17, 

SH(5) = 17101319 and SH(43), a number with 108 digits.  

2. There are 1429 happy numbers in the first 10000 terms of the H-sequence. 

3. There are 8 primes in the reversed H-sequence. 

Questions:  

1. How many terms of the H-sequence or of the reversed H-sequence are primes? 

Are there infinitely many? 

2. How many terms are happy numbers? 

 

 

Chapter II. Other sequences and series 

 

(1)  The Smarandache Quotient sequence 

                                                 
44

 An additive prime is a prime number with the property that the sum of its digits is a prime too. 
45

 Gupta, Shyam Sunder, Smarandache sequence of happy numbers, Smarandache Notions Journal, vol. 13, 2002. 
46

 A happy number is a number with the property that, through the iterative summation of the squares of its 

digits, it is eventually obtained the number 1; e.g. 7 is a happy number because 7^2 = 49, 4^2 + 9^2 = 97, 9^2 

+ 7^2 = 130, 1^2 + 3^2 + 0^2 = 10, 1^2 + 0^2 = 1. The numbers which don’t have this property are called 

unhappy numbers. The first few happy numbers (sequence A007770 in OEIS): 1, 7, 10, 13, 19, 23, 28, 31, … 
47

 Also named with the acronym Smarandache H-sequence. 
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Definition
48

: 

The sequence of positive integers k with the property that they are the smallest positive 

integers so that the product n*k is a factorial number, where n integer, n ≥ 1. 

The first twenty terms of the sequence (A007672 in OEIS):  

1, 1, 2, 6, 24, 1, 720, 3, 80, 12, 3628800, 2, 479001600, 360, 8, 45, 20922789888000, 40, 

6402373705728000, 6. 

Comments: 

1. The sequence contains an infinity of factorial numbers.
49

 

2. The sequence contains an infinity of primes, perfect squares and perfect cubes.
50

 

 

(2)  The (non-cocatenated) permutation sequence 

 

Definition: 

The sequence Sn defined in the following way: the first term is 1, the second term is 2, 

then alternates sequences of ascending odd numbers with sequences of descending even 

numbers.
51

  

The first thirty terms of the sequence (A004741 in OEIS):  

1, 2, 1, 3, 4, 2, 1, 3, 5, 6, 4, 2, 1, 3, 5, 7, 8, 6, 4, 2, 1, 3, 5, 7, 9, 10, 8, 6, 4, 2. 

 

(3)  The deconstructive sequence 

 

Definition: 

The sequence obtained in the following way: the first term is 1 and then every term of the 

sequence it will have one more digit than the previous one, while the digits scroll from 1 

to 9 and then they are repetead cyclically.
52

 

The first seven terms of the sequence (A007923 in OEIS):  

1, 23, 456, 7891, 23456, 789123, 4567891, 23456789, 123456789, 1234567891. 

Properties
53

: 

1. The trailing digits of the terms of this sequence follow the sequence: 

1, 3, 6, 1, 6, 3, 1, 9, 9, 1, 3, 6, 1, 6, 3, 1, 9, 9, 1, ... 

2. The leading digit of the n-th term of this sequence is given by the formula n*(n + 1)/2 

(mod 9). 

 

 (4)  The generic digital sequence 

 

Definition: 

                                                 
48

 The number k is named Smarandache Quotient. See also infra, Part Two, Chapter I, Section (1): 

Smarandache function. F.S. named this sequence The factorial quotients. See Only problems, not solutions!, 

Xiquan Publishing House, fourth edition, 1993, Problem 45. 
49

 Kashihara, K., Comments and topics on Smarandache notions and problems, Erhus University Press, 1996, 

p. 16. 
50

 Ashbacher, C., Pluckings from the tree of Smarandache sequences and functions, American Research Press, 

1998, p. 8. 
51

 Some sources (Wolfram Math World, OEIS) name this sequence Smarandache permutation sequence. We 

name it Smarandache (non-concatenated) permutation sequence to distinguish it from the sequence 12, 1342, 

135642, 13578642…(see supra) which has the consacrated name Smarandache permutation sequence. 
52

 For a study of this sequence, see Atanassov, Krassimir T., On some of the Smarandache’s problems, 
American Research Press, 1999, p. 7-11. 
53

 Kashihara, K., Comments and topics on Smarandache notions and problems, Erhus University Press, 1996, 

Chapter 1: Some comments and problems on Smarandache notions. 
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The generic sequence (a particular case of the sequences of sequences) defined in the 

following way: in any numeration base B, for any sequence of integer or rational 

numbers s1, s2, s3, … and for any digit C, 0 ≤ C ≤ B – 1, is constructed a new sequence of 

integers which associates to s1 the number of digits C of s1,  in numeration base B, to s2 

the number of digits C of s2,  in numeration base B, and so on.
 54

 

Examples:  

1. We consider the sequence of primes in base 10 and the digit C = 1. The number of 

times the digit 1 appears in this sequence is: 0, 0, 0, 0, 2, 1, 1, 1, 0, 0, 1, 0 (…).
55

 

2. We consider the sequence of factorials in base 10 and the digit C = 0. The number of 

times the digit 0 appears in this sequence is: 0, 0, 0, 0, 0, 1, 1, 2, 2, 1, 3.
56

 

3. We consider the sequence n^n in base 10 and the digit C = 5. The number of times 

the digit 5 appears in this sequence is: 0, 0, 0, 1, 1, 1, 1, 0, 0, 0.
57

 

 

(5)  The generic construction sequence 

 

Definition: 

The generic sequence (a particular case of the sequences of sequences) defined in the 

following way: in any numeration base B, for any sequence of integer or rational 

numbers s1, s2, s3, … and for any digits C1, C2,…, Ck (k < B),  is constructed a new 

sequence of integers so that every of its terms Q1 < Q2 < Q3 < … is constituted only from 

the digits C1, C2,…, Ck (plus every from these digits must be used) and corresponds to a 

term si from the initial sequence.
58

 

Examples:  

1. We consider the sequence of primes in base 10 and the digits C1 = 1 and C2 = 7. The 

sequence of numbers constituted only from these digits (every from these digits must 

be used) is: 17, 71 (…).
59

 

2. We consider the sequence of multiples of primes 3 in base 10 and the digits C1 = 0 

and C2 = 1. The sequence of numbers constituted only from these digits (every from 

these digits must be used) is: 1011, 1101, 1110, 10011, 10101, 10110, 11001, 11010, 

11100 (…).
60

 

 

(6)  The digital sum sequence 

 

Definition:  

The sequence dS(n) defined as the sum of the digits of n.
61

 

The first forty terms of the sequence (A007953 in OEIS):  

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 3, 4, 5, 6, 

7, 8, 9, 10, 11, 12. 

 

(7)  The digital product sequence 

                                                 
54

 The sequence is named by F.S. (Only problems, no solutions!, Xiquan Publishing House, fourth edition, 

1993, Problem 4), Digital sequences. 
55

 The sequence is named by F.S. The Digit-1  prime sequence. 
56

 The sequence is named by F.S. The Digit-0  factorial sequence. 
57

 The sequence is named by F.S. The Digit-5  n^n sequence. 
58

 The sequence is named by F.S. (Only problems, no solutions!, Xiquan Publishing House, fourth edition, 

1993, Problem 4), Construction sequences. 
59

 The sequence is named by F.S. The Digit-1-7-only prime sequence. 
60

 The sequence is named by F.S. The Digit-0-1-only  multiple of 3 sequence. 
61

 For the formula of the n-the term of this sequence, see Atanassov, Krassimir T., On some of the 
Smarandache’s problems, American Research Press, 1999, p. 12-15. 
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Definition: 

The sequence dP(n) defined as the product of the digits of n.
62

 

The first forty terms of the sequence (A007954 in OEIS):  

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 0, 3, 6, 

9, 12, 15, 18, 21, 24, 27. 

 

(8)  The divisor products sequence 

 

Definition: 

The sequence Pd(n) defined as the product of the positive divisors of n.
63

 

The first thirty terms of the sequence (A007955 in OEIS):  

1, 2, 3, 8, 5, 36, 7, 64, 27, 100, 11, 1728, 13, 196, 225, 1024, 17, 5832, 19, 8000, 441, 

484, 23, 331776, 125, 676, 729, 21952, 29, 810000. 

Properties
64

: 

1. The sequence obviously contains an infinite number of primes: if p is prime, then 

Pd(p) = p. 

2. The sequence contains an infinite number of the forms p^k, where p is prime. 

3. Pd(n) = n only if n = 1 or n is prime; for any composite number, Pd(n) > n. 

4. For a prime p, p^m belongs to Pd only if there is some integer k such that k*(k + 

1)/2 = m. 

 

(9)  The proper divisor products sequence 

 

Definition: 

The sequence pd(n) defined as the product of the proper divisors of n. 

The first thirty terms of the sequence (A007956 in OEIS):  

1, 1, 1, 2, 1, 6, 1, 8, 3, 10, 1, 144, 1, 14, 15, 64, 1, 324, 1, 400, 21, 22, 1, 13824, 5, 26, 27, 

784, 1, 27000. 

Notes: 

1. If n is prime, then pd(n) = 1. 

2. “Numbers of the form pd(n) = n may well be called Smarandache amicable 

numbers, after the usual amicable numbers”.
65

 

 

(10)  The square complements sequence 

 

Definition: 

                                                 
62

 For a deeper study of this sequence, see Vassilev-Missana, Mladen and Atanassov, Krassimir, Some 

Smarandache problems, Hexis, 2004, Chapter 1: On some Smarandache’s problems, Section 4: On the 17-th 
Smarandache’s problem. 
63

 For a deeper study of this sequence and of the following one, see Vassilev-Missana, Mladen and Atanassov, 

Krassimir, Some Smarandache problems, Hexis, 2004, Chapter 1: On some Smarandache’s problems, Section 

5: On the 20-th and the 21-st Smarandache’s problems. 
64

 Kashihara, K., Comments and topics on Smarandache notions and problems, Erhus University Press, 1996, 

Chapter 1: Some comments and problems on Smarandache notions. 
65

 Kashihara, K., Comments and topics on Smarandache notions and problems, Erhus University Press, 1996, 

Chapter 1: Some comments and problems on Smarandache notions, p. 10. A pair of amicable numbers consists 
in two numbers that have the following relation: the sum of the proper divisors of one of them is equal to the 

other number: for instance [220, 284] is such a pair because the sum of proper divisors of 220 equals 284 while 

the sum of proper divisors of 284 equals 220. 
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The sequence of the numbers k with the property that k is the smallest integer so that n*k 

is a perfect square. 

The first forty terms of the sequence:  

1, 2, 3, 1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22, 23, 6, 1, 26, 3, 7, 29, 

30, 31, 2, 33, 34, 35, 1, 37, 38, 39, 10. 

Properties:  

All the terms of the sequence are squarefree. “The Smarandache square somplement 

sequence is the set of all square-free numbers. Moreover, each element of the set appears 

an infinite number of times.”
66

 

 

(11)  The cube complements sequence
67

 

 

Definition: 

The sequence of the numbers k with the property that k is the smallest integer so that n*k 

is a perfect cube. 

The first thirty terms of the sequence (A048798 in OEIS):   

1, 4, 9, 2, 25, 36, 49, 1, 3, 100, 121, 18, 169, 196, 225, 4, 289, 12, 361, 50, 441, 484, 529, 

9, 5, 676, 1, 98, 841, 900. 

Properties:  

All the terms of the sequence are cubefree. This sequence is the set of all cubefree 

numbers. Moreover, every number in the sequence appears an infinite number of times. 

 

(12)  The m-power complements sequence 

 

Definition: 

The sequence of the numbers k with the property that k is the smallest integer so that n*k 

is a perfect m-power (m ≥ 2)
68

. 

Properties:  

All the terms of the sequence are m-power free. 

 

(13)  The double factorial complements sequence 

 

Definition: 

The sequence of the numbers k with the property that k is the smallest integer so that n*k 

is a double factorial. 

The first twenty-five terms of the sequence (A007919 in OEIS):  

1, 1, 1, 2, 3, 8, 15, 1, 105, 192, 945, 4, 10395, 46080, 1, 3, 2027025, 2560, 34459425, 

192, 5, 3715891200, 13749310575, 2, 81081. 

 

(14)  The prime additive complements sequence
69

 

                                                 
66

 For the proof of this property, see Kashihara, K., Comments and topics on Smarandache notions and 
problems, Erhus University Press, 1996, Chapter 1: Some comments and problems on Smarandache notions, p. 

10. 
67

 The function that generates the numbers from this sequence is sometimes named the Smarandache cubic 
complementary function. For the properties of this function see Popescu, Marcela and Nicolescu, Mariana, 

About the Smarandache complementary cubic function, Smarandache Notions Journal, vol. 7, no. 1-2-3, 1996. 

For a generalization of Smarandache complementary functions see infra, Part Two, Chapter 1, Section (17): 
The Smarandache complementary functions. 
68

 For a study of this sequence, see Atanassov, Krassimir T., On some of the Smarandache’s problems, 

American Research Press, 1999, p. 16-21. 
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Definition: 

The sequence of the numbers k with the property that k is the smallest integer so that n + 

k is a prime.
70

 

The first thirty terms of the sequence (A007920 in OEIS):  

2, 1, 0, 0, 1, 0, 1, 0, 3, 2, 1, 0, 1, 0, 3, 2, 1, 0, 1, 0, 3, 2, 1, 0, 5, 4, 3, 2, 1, 0. 

Notes
71

: 

1. F.S. asked the following questions: Is it possible to have k as large as we want k, 

k – 1, k – 2, k – 3, ... , 2, 1 (where k is odd), included in this sequence? Is it 

possible to have k as large as we want k, k – 1, k – 2, k – 3, ... , 2, 1 (where k is 

even), included in this sequence?
72

 Is the sequence convergent or divergent? 

2. F.S. conjectured that the sequence is divergent. 

3. F.S. also defined (and raised the same questions from above) the prime nearest 

complements sequence, i.e. the sequence formed from the numbers k with the 

property that, for n ≥ 1, the absolute value of k is minimal and n + k is prime. The 

terms of this sequence are: {1, 0, 0, ±1, 0, ±1, 0, –1, ±2, 1, 0, ±1, 0, –1, ±2, …}.  

 

(15)  The  double factorial sequence 

 

Definition: 

The sequence of the numbers k with the property that k is the smallest integer so that k!! 

is a multiple of n. 

The first forty terms of the sequence (A007922 in OEIS):  

1, 2, 3, 4, 5, 6, 7, 4, 9, 10, 11, 6, 13, 14, 5, 6, 17, 12, 19, 10, 7, 22, 23, 6, 15, 26, 9, 14, 29, 

10, 31, 8, 11, 34, 7, 12, 37, 38, 13, 10. 

 

(16)  The “primitive numbers of power 2” sequence
73

 

 

Definition: 

The sequence of the numbers  S2(n) with the property that S2(n) is the smallest integer for 

which 2^n divides S2(n)!. 

The first forty terms of the sequence (A007843 in OEIS):  

1, 2, 4, 4, 6, 8, 8, 8, 10, 12, 12, 14, 16, 16, 16, 16, 18, 20, 20, 22, 24, 24, 24, 26, 28, 28, 

30, 32, 32, 32, 32, 32, 34, 36, 36, 38, 40, 40, 40, 42. 

                                                                                                                                                             
69

 The function that generates the numbers from this sequence is sometimes named the Smarandache prime 
complementary function. For the properties of this function see Popescu, Marcela and Seleacu, Vasile, About 

the Smarandache complementary prime function, Smarandache Notions Journal, vol. 7, no. 1-2-3, 1996. For a 

generalization of Smarandache complementary functions see infra, Part Two, Chapter 1, Section (17): The 

Smarandache complementary functions. 
70

 For a deeper study of this sequence, see Vassilev-Missana, Mladen and Atanassov, Krassimir, Some 
Smarandache problems, Hexis, 2004, Chapter 1: On some Smarandache’s problems, Section 8: On the 46-th 

Smarandache’s problem. 
71

 Kashihara, K., Comments and topics on Smarandache notions and problems, Erhus University Press, 1996, 

Chapter 1: Some comments and problems on Smarandache notions, p. 14. 
72

 Maohua Le proved that, for k an arbitrary large positive integer, the Smarandache prime additive 

complements sequence include the decreasing sequence k, k – 1, …, 1, 0. See On the Smarandache prime 

additive sequence, in Seleacu, V., Bălăcenoiu, I. (editors), Smarandache Notions (Book series), vol. 10, 

American Research Press, 1999. 
73

 See Only problems, not solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 3, F.S., 

Sequences of numbers involved in unsolved problems, Hexis, 2006, Problem 47. See also F.S., Sequences of 
numbers involved in unsolved problems, Hexis, 2006, Sequence 68. 
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Properties:  

1.  This is the sequence of even numbers, each number being repetead as many times as 

its exponent (of power 2) is. 

2. This is one of irreductible functions, noted S2(k), which helps to calculate the 

Smarandache function. 

 

(17)  The “primitive numbers of power 3” sequence
74

 

 

Definition: 

The sequence of the numbers  S3(n) with the property that S3(n) is the smallest integer for 

which 3^n divides S3(n)!. 

The first forty terms of the sequence (A007844 in OEIS):  

1, 3, 6, 9, 9, 12, 15, 18, 18, 21, 24, 27, 27, 27, 30, 33, 36, 36, 39, 42, 45, 45, 48, 51, 54, 

54, 54, 57, 60, 63, 63, 66, 69, 72, 72, 75, 78, 81, 81, 81, 81. 

Properties:  

1.  This is the sequence of multiples of 3, each number being repetead as many times as 

its exponent (of power 3) is. 

2. This is one of irreductible functions, noted S3(k), which helps to calculate the 

Smarandache function. 

 

(18)  The generalized primitive numbers (of power p) sequence
75

 

 

Definition: 

The sequence of the numbers  Sp(n) with the property that Sp(n) is the smallest integer for 

which p^n divides Sp(n)!, where p is prime. 

Properties:  

1.  This is the sequence of multiples of p, each number being repetead as many times as 

its exponent (of power p) is. 

2. These are irreductible functions, noted Sp(k), for any prime number p, which helps to 

calculate the Smarandache function. 

 

(19)  The cube free sieve sequence 

 

Definition: 

From the set of positive integers except 0 and 1 take off all multiples of 2^3, 3^3, 5^3 and 

so on: take off all multiples of all cubic primes.
76

 

The first forty terms of the sequence (A004709 in OEIS):  

2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 

33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47. 

Properties:  

All the terms of the sequence are cubefree. 

 

(20)  The m-power free sieve 

                                                 
74

 See F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 69. 
75

 See F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 70. For a study of 

this sequence, see Ibstedt, Henry, Computer analysis of number sequences, American Research Press, 1998, 

Chapter III: Non-recursive sequences, Section 1: Smarandache primitive numbers. 
76

 For a deeper study of this sequence and of the following one, see Vassilev-Missana, Mladen and Atanassov, 

Krassimir, Some Smarandache problems, Hexis, 2004, Chapter 1: On some Smarandache’s problems, Section 

6: On the 25-th and the 26-th Smarandache’s problems. 
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Definition: 

From the set of positive integers except 0 and 1 take off all multiples of 2^m, 3^m, 5^m 

and so on: take off all multiples of all m-power primes (m ≥ 2). 

Properties:  

All the terms of the sequence are m-power free. 

 

(21)  The inferior prime part sequence
77

 

 

Definition: 

The sequence PP(n) defined as the sequence of numbers with the property that they are 

the largest primes smaller than or equal to n. 

The first forty terms of the sequence (A007917 in OEIS):  

2, 3, 3, 5, 5, 7, 7, 7, 7, 11, 11, 13, 13, 13, 13, 17, 17, 19, 19, 19, 19, 23, 23, 23, 23, 23, 23, 

29, 29, 31, 31, 31, 31, 31, 31, 37, 37, 37, 37, 41. 

 

(22)  The superior prime part sequence
78

  

 

Definition: 

The sequence PP(n) defined as the sequence of numbers with the property that they are 

the smallest primes greater than or equal to n.
79

 

The first forty terms of the sequence (A007918 in OEIS):   

2, 2, 2, 3, 5, 5, 7, 7, 11, 11, 11, 11, 13, 13, 17, 17, 17, 17, 19, 19, 23, 23, 23, 23, 29, 29, 

29, 29, 29, 29, 31, 31, 37, 37, 37, 37, 37, 37, 41, 41. 

 

(23)  The inferior square part sequence
80

 

 

Definition: 

The sequence of numbers with the property that they are the largest squares smaller than 

or equal to n. 

The first forty terms of the sequence (A048761 in OEIS):  

0, 1, 1, 1, 4, 4, 4, 4, 4, 9, 9, 9, 9, 9, 9, 9, 16, 16, 16, 16, 16, 16, 16, 16, 16, 25, 25, 25, 25, 

25, 25, 25, 25, 25, 25, 25, 36, 36, 36, 36. 

 

(24)  The superior square part sequence
81

 

 

Definition: 

The sequence of numbers with the property that they are the smallest squares greater than 

or equal to n.
82

 

The first forty terms of the sequence (A048761 in OEIS):  

                                                 
77

 See F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 38. 
78

 See F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 39. 
79

 For a study of  Superior and Inferior prime part sequences, see Atanassov, Krassimir T., On some of the 
Smarandache’s problems, American Research Press, 1999, p. 22-26. 
80

 See F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 40. 
81

 See F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 41. The Sequences 
42-43 from the same book define the inferior and the superior cube part. 
82

 For a study of  Superior and Inferior square part sequences, see Atanassov, Krassimir T., On some of the 
Smarandache’s problems, American Research Press, 1999, p. 27-32. 
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0, 1, 4, 4, 4, 9, 9, 9, 9, 9, 16, 16, 16, 16, 16, 16, 16, 25, 25, 25, 25, 25, 25, 25, 25, 25, 36, 

36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 49, 49, 49. 

 

(25)  The inferior factorial part sequence
83

 

 

Definition: 

The sequence FP(n) defined as the sequence of numbers with the property that they are 

the largest factorials smaller than or equal to n. 

The first thirty terms of the sequence (A048674 in OEIS):  

1, 2, 2, 2, 2, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 24, 24, 24, 24, 24, 24, 24. 

 

(26)  The superior factorial part sequence
84

 

 

Definition: 

The sequence fP(n) defined as the sequence of numbers with the property that they are the 

smallest factorials greater than or equal to n.
85

 

The first forty terms of the sequence (A048675 in OEIS): 

1, 2, 6, 6, 6, 6, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 120, 

120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120. 

 

(27)  The irrational root sieve sequence 

 

Definition: 

From the set of positive integers greater than 1 take off all multiples of all square primes. 

The first forty terms of the sequence:  

2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 

41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66. 

Properties:  

The terms of the sequence are all natural numbers those m-roots, for any m ≥ 2, are 

irrational. 

 

(28)  The odd sieve sequence  
 

Definition: 

The sequence obtained in the following way: subtract 2 from all primes and obtain a 

temporary sequence; choose all odd numbers that do not belong to the temporary 

sequence.
86

 

The first forty terms of the sequence (A007921 in OEIS):  

7, 13, 19, 23, 25, 31, 33, 37, 43, 47, 49, 53, 55, 61, 63, 67, 73, 75, 79, 83, 85, 89, 91, 93, 

97, 103, 109, 113, 115, 117, 119, 121, 123, 127, 131, 133, 139, 141, 143, 145. 

 

(29)  The binary sieve sequence
87

 

                                                 
83

 See F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 44. 
84

 See F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 45. 
85

 For a study of  Superior and Inferior prime part sequences, see Atanassov, Krassimir T., On some of the 

Smarandache’s problems, American Research Press, 1999, p. 33-37. 
86

 For explicit formulae for the n-th term of this sequence and theorems, see Vassilev-Missana, Mladen and 

Atanassov, Krassimir, Some Smarandache problems, Hexis, 2004, Chapter 1: On some Smarandache’s 
problems, Section 7: On the 28-th Smarandache’s problem. 
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Definition: 

The sequence obtained in the following way: start to count on the natural numbers set 

and, at any step from 1, delete every 2-nd numbers, delete, from the remaining ones, 

every 4-th numbers and so on, delete, from the remaining ones, every (2^k)-th numbers, 

where k = 1, 2, ... 

The first forty terms of the sequence (A007950 in OEIS):  

1, 3, 5, 9, 11, 13, 17, 21, 25, 27, 29, 33, 35, 37, 43, 49, 51, 53, 57, 59, 65, 67, 69, 73, 75, 

77, 81, 85, 89, 91, 97, 101, 107, 109, 113, 115, 117, 121, 123, 129, 131. 

 

(30)  The consecutive sieve sequence
88

 

 

Definition: 

The sequence obtained in the following way: from the natural numbers set: keep the first 

number and delete one number out of 2 from all remaining numbers; keep the first 

remaining number and delete one number out of 3 from the next remaining numbers; 

keep the first remaining number and delete one number out of 4 from the next remaining 

numbers and so on, for step k (k ≥ 2), keep the first remaining number and delete one 

number out of k from the next remaining numbers.  

The first thirty terms of the sequence (A007952 in OEIS):  

0, 1, 3, 5, 9, 11, 17, 21, 29, 33, 41, 47, 57, 59, 77, 81, 101, 107, 117, 131, 149, 153, 173, 

191, 209, 213, 239, 257, 273, 281. 

Property:  

This sequence is much less dense than the prime number sequence, and their ratio tends 

to pn/n as n tends to infinity. 

 

(31)  The Smarandache-Fibonacci triplets sequence
89

 

 

Definition: 

The sequence obtained in the following way: the integer n is such one that S(n) = S(n – 1) 

+ S(n – 2), where S(k) is the Smarandache function.  

The first fifteen terms of the sequence (A015047 in OEIS):  

11, 121, 4902, 26245, 32112, 64010, 368140, 415664, 2091206, 2519648, 4573053, 

7783364, 79269727, 136193976, 321022289.  

Notes:  

1. The Smarandache function S(n) is defined as the smallest integer S(n) such that 

S(n)! is divisible by n.
 90

 

 2. The Fibonacci recurence formula is Fn = Fn-1 + Fn-2, for n ≥ 2 and F0 = F1 = 1.  

3. The numbers that form the numbers from this sequence are known as 

Smarandache-Fibonacci triplets. 

                                                                                                                                                             
87

 Similarly is defined the Smarandache n-ary sieve sequence. For instance, if Sn denote the Smarandache n-

ary sieve sequence, S2 is the binary sieve sequence and S3 is the sequence  {1, 2, 4, 5, 7, 8, 10, 11, 14, 16, 17, 

19, 20…}. 
88

 For other related sieve sequences, like Trinary sieve sequence, n-ary power sieve sequence, k-ary 

consecutive sieve sequence, General-sequence sieve, see F.S., Sequences of numbers involved in unsolved 
problems, Hexis, 2006, p. 19-21. 
89

 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 

Xiquan Publishing House, 2000, Problem 10. See also Ibstedt, H., Surphing on the ocean of numbers – a few 
Smarandache notions and similar topics, Erhus University Press, Vail, 1997, Chapter II: On Smarandache 

functions. 
90

 See infra, Part Two, Chapter I, Section (1): The Smarandache function.  
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Properties:  

1. It is not known whether this sequence has infinitely or finitely many terms. 
91

 

2. The largest known number from this sequence is 19448047080036.
92

 

Observation: 

Apart from the case n = 26245, all the (known) terms of this sequence have a common 

property: from the three numbers which form a Smarandache-Fibonacci triplet, one is 

two times a prime number while the other two are prime numbers.
 
Henry Ibstedt raised 

the following question: is the case n = 26245 the only  different case?
93

 

 

(32)  The Smarandache-Radu duplets sequence
94

 

 

Definition: 

The sequence obtained in the following way: the integer n is such one that between S(n) 

and S(n + 1) there is no prime, where S(n) and S(n +1) are included, where S(k) is the 

Smarandache function.  

The first fifteen terms of the sequence (A015048 in OEIS):  

224, 2057, 265225, 843637, 6530355, 24652435, 35558770, 40201975, 45388758, 

46297822, 67697937, 138852445, 157906534, 171531580, 299441785. 

Notes:  

1. The Smarandache function S(n) is defined as the smallest integer S(n) such that 

S(n)! is divisible by n.
 95

 

2. The numbers from this sequence are known as Smarandache-Radu duplets. 

Properties:  

1. It is not known whether this sequence has infinitely or finitely many terms.
96

 

2. The largest known number from this sequence is 

270329975921205253634707051822848570391313.
97

 

 

(33)  The Smarandache prime product sequence
98

 

 

Definition: 

The sequence of primes of the form pn# ± 1, where pn# is the product of the first n 

primes.  

The first seven terms of the sequence (A034386 in OEIS)
99

:  

                                                 
91

 Henry Ibstedt and Charles Ashbacher independently conjectured that are infinitely many terms. 
92

 Found by H. Ibstedt. See Begay, Anthony, Smarandache ceil functions, Smarandache Notions Journal. 
93

 See Ibstedt, H., Surphing on the ocean of numbers – a few Smarandache notions and similar topics, Erhus 

University Press, Vail, 1997, Chapter II: On Smarandache functions. 
94

 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 

Xiquan Publishing House, 2000, Problem 11.  
95

 See infra, Part Two, Chapter I, Section (1): The Smarandache function.  
96

 I.M. Radu and Henry Ibstedt conjectured that are infinitely many terms. See Ibstedt, H., Surphing on the 

ocean of numbers – a few Smarandache notions and similar topics, Erhus University Press, Vail, 1997, 

Chapter II: On Smarandache functions, Section 2: Radu’s problem. In other words, Radu’s problem can be 

formulated this way: “show that, except for a finite set of numbers, there exists at least one prime number 

between S(n) and S(n + 1)”. See Radu I.M., Proposed problem, Ibstedt, H., Base solution (the Smarandache 
function), Ibstedt, H., On Radu’s problem, all three articles in Smarandache Notions Journal, vol. 7, no. 1-2-3, 

1996. 
97

 Found by H. Ibstedt. See Begay, Anthony, Smarandache ceil functions, Smarandache Notions Journal. 
98

 For a study of this sequence, see Ibstedt, Henry, Computer analysis of number sequences, American 

Research Press, 1998, Chapter II: Recursive integer sequences. 
99

 The eighth term of the sequence has 154 digits. 
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2, 3, 7, 31, 211, 2311, 200560490131.  

Notes:  

1. It is not known if the number of the terms of this sequence is infinite. 

2. The primes of this type are known under the acronym PPS primes
100

 but they are 

also known under the name primorial primes
101

. The programs PrimeGrid, Open 

PFGW and others are searching for PPS primes: the biggest prime known of the 

form pn# – 1 is the number 1098133# – 1 (a number with more than 450 thousand 

digits) and the biggest prime known of the form pn# + 1 is the number 392113# + 

1 (a number with more than 150 thousand digits). 

 

(34)  The Smarandache friendly pairs set 

 

Definition: 

The set of pairs of natural numbers [m, n], where m < n, with the property that the 

product m*n is equal to the sum of all natural numbers from m to n (m and n are 

included).  

Example:  

[3, 6] is such a pair because 3*6 = 3 + 4 + 5 + 6.  

First four Smarandache friendly pairs:  

[1, 1], [3, 6], [15, 35], [85, 204]. 

Notes:   

1. There is an infinity of Smarandache friendly pairs (they are known under the 

acronym SFP).  

2. If [m, n] is a Smarandache friendly pair, then [2*n + m, 5*n + 2*m – 1] it will be 

too such a pair. 

Question
102

:   

Is there an infinity of primes q for every prime p such that [p, q] is a Smarandache 

friendly pair? 

Definitions
103

:   

1. If the sum of any set of consecutive terms of a sequence is a divisor of the product 

of the first and the last number of the set then this pair is called a Smarandache 

under-friendly pair with respect to the sequence. 

2. If the sum of any set of consecutive terms of a sequence is a multiple of the 

product of the first and the last number of the set then this pair is called a 

Smarandache over-friendly pair with respect to the sequence. 

 

(35)  The Smarandache friendly prime pairs set 

 

Definition: 

The set of pairs of primes [p, q], where p < q, with the property that the product p*q is 

equal to the sum of all primes from p to q (p and q are included).  

                                                 
100

 Majumdar, A.A.K., Wandering in the world of Smarandache numbers, InProQuest, 2010, Chapter 1(1.4): 

Smarandache prime product sequence. 
101

 Claims on primorial primes, Turker Ozsari, Arxiv. 
102

 Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 

Smarandache sequences, Hexis, 2005, Chapter 2: Smarandache sequences, Section 5: Smarandache friendly 

numbers and a few more sequences. 
103

 Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 

Smarandache sequences, Hexis, 2005, Chapter 2: Smarandache sequences, Section 5: Smarandache friendly 
numbers and a few more sequences. 
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Example:  

[7, 53] is such a pair because 7*53 = 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 43 + 

47 + 53. 

The five known Smarandache friendly prime pairs (sequence A176914 in OEIS):  

[2, 5], [3, 13], [5, 31], [7, 53], [3536123, 128541727]. 

Notes:   

1. There are only five known Smarandache friendly prime pairs (they are known 

under the acronym SFPP), discovered by mathematicians Philip Gibbs and Felice 

Russo.  

2. It is not known if there is an infinity of Smarandache friendly prime pairs. 

3. It is not known if for every prime p there is a prime q such that [p, q] is a 

Smarandache friendly prime pair.
104

  

 

(36)  The 3n-digital subsequence 

 

Definition
105

: 

The sequence of numbers that can be partitioned into two groups such that the second is 

three times biger than the first. 

The first fifteen terms of the sequence (A019551 in OEIS):  

13, 26, 39, 412, 515, 618, 721, 824, 927, 1030, 1133, 1236, 1339, 1442, 1545. 

 

(37)  The 4n-digital subsequence 

 

Definition
106

: 

The sequence of numbers that can be partitioned into two groups such that the second is 

four times biger than the first. 

The first fifteen terms of the sequence (A019552 in OEIS):  

14, 28, 312, 416, 520, 624, 728, 832, 936, 1040, 1144, 1248, 1352, 1456, 1560. 

 

(38)  The 5n-digital subsequence 

 

Definition
107

: 

The sequence of numbers that can be partitioned into two groups such that the second is 

five times biger than the first. 

The first fifteen terms of the sequence (A019553 in OEIS):  

15, 210, 315, 420, 525, 630, 735, 840, 945, 1050, 1155, 1260, 1365, 1470, 1575. 

 

(39)  The crescendo and decrescendo subsequences 
 

The crescendo sequence: 

The type of sequence of sequences constructed in the following way:  

1,   

1, 2,   

1, 2, 3, … (sequence A002260 in OEIS). 

                                                 
104

 For more questions about these pairs of primes see Russo, Felice, On a problem concerning the 

Smarandache friendly prime pairs, Smarandache Notions Journal; see also Gibbs, Philip, A fifth Smarandache 

friendly prime pair, Vixra. 
105

 F.S., Considerations on new functions in number theory, Arxiv. 
106

 F.S., Considerations on new functions in number theory, Arxiv. 
107

 F.S., Considerations on new functions in number theory, Arxiv. 
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The descrescendo sequence: 

The type of sequence of sequences constructed in the following way:  

1,   

2, 1,   

3, 2, 1, … (sequence A004736 in OEIS). 

 

(40)  The crescendo and decrescendo pyramidal subsequences 
 

The crescendo pyramidal sequence: 

The type of sequence of sequences constructed in the following way:  

1,   

1, 2, 1, 

1, 2, 3, 2, 1, … (sequence A004737 in OEIS). 

The descrescendo pyramidal sequence: 

The type of sequence of sequences constructed in the following way:  

1,   

2, 1, 2,  

3, 2, 1, 2, 3… (sequence A004738 in OEIS). 

 

(41)  The crescendo and decrescendo symmetric subsequences 
 

The crescendo symmetric sequence: 

The type of sequence of sequences constructed in the following way:  

1, 1,  

1, 2, 2, 1, 

1, 2, 3, 3, 2, 1, … (sequence A004739 in OEIS). 

The descrescendo symmetric sequence: 

The type of sequence of sequences constructed in the following way:  

1, 1,  

2, 1, 1, 2,   

3, 2, 1, 1, 2, 3… (sequence A004737 in OEIS). 

 

(42)  The permutation subsequences 
 

Definition: 

The type of sequence of sequences constructed in the following way:  

1, 2,  

1, 3, 4, 2,   

1, 3, 5, 6, 4, 2… (sequence A004741 in OEIS).
108

 

 

(43)  The Smarandache bases of numeration sequences
109

 

 

The Smarandache prime base sequence
110

: 

                                                 
108

 For formulas for the general term of these sequences of subsequences (40-43) see F.S., Considerations on 
new functions in number theory, Arxiv. 
109

 For the properties of the natural numbers written in the following Smarandache bases of numeration see 

F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 
Xiquan Publishing House, 2000, Definitions 11, 12, 14, 30, 31, 32.  
110

 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 58. F.S., Only problems, 
not solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 90. Studying this sequence, F.S. shows 
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On the set of natural numbers is defined the following infinite base: p0 = 1 and pk is the k-

th prime number for k ≥ 1.  

The first twelve terms of the sequence (A007924 in OEIS): 

0, 1, 10, 100, 101, 1000, 1001, 10000, 10001, 10010, 10100, 100000, 100001. 

The Smarandache square base sequence
111

: 

On the set of natural numbers is defined the following infinite base: sk = k^2 for k ≥ 0.  

The first twelve terms of the sequence: 

0, 1, 2, 3, 10, 11, 12, 13, 20, 100, 101, 102, 103, 110. 

The Smarandache cubic base sequence (A007094 in OEIS): 

On the set of natural numbers is defined the following infinite base: sk = k^3 for k ≥ 0.  

The first twelve terms of the sequence: 

0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13. 

The Smarandache factorial base sequence
112

: 

On the set of natural numbers is defined the following infinite base: : fk = k! for k ≥ 1.  

The first twelve terms of the sequence (A007623 in OEIS): 

0, 1, 10, 11, 20, 21, 100, 101, 110, 111, 120, 121. 

The Smarandache double factorial base sequence
113

: 

On the set of natural numbers is defined the following infinite base: : dfk = k!! 

The first twelve terms of the sequence (A019513 in OEIS): 

1, 10, 100, 101, 110, 200, 201, 1000, 1001, 1010, 1100, 1101. 

The Smarandache triangular base sequence
114

: 

On the set of natural numbers is defined the following infinite base: : tk = k*(k + 1)/2 for 

k ≥ 1.  

The first twelve terms of the sequence (A000462 in OEIS): 

1, 2, 10, 11, 12, 100, 101, 102, 110, 1000, 1001, 1002. 

 

(44)  The multiplicative sequence
115

 

 

Definition:  

The sequence obtained in the following way: if m1 and m2 are the first two terms of the 

sequence, then mk, for k ≥ 3, is the smallest number equal to the product of two previous 

distinct terms. 

Comment:  

All terms of rank greater than or equal to 3 are divisible by m1 and m2. 

The first twenty terms of the sequence for the particular case m1 = 2, m2 = 3:  

2, 3, 6, 12, 18, 24, 36, 48, 54, 72, 96, 108, 144, 162, 192, 216, 288, 324, 384, 432. 

Theorem
116

:  

                                                                                                                                                             
that any number can be written as a sum of prime numbers or as a sum of prime numbers plus 1. See also 

Kashihara, K., Comments and topics on Smarandache notions and problems, Erhus University Press, 1996, p. 

33. 
111

 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 59. The Sequence 60 

from the same book defines in an analogous way the m-power base sequence. 
112

 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 61. 
113

 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 62. 
114

 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 63. The sequence 64 

from the same book defines the generalizerd base sequence. 
115

 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 

Xiquan Publishing House, 2000, Definition 26.  
116

 Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 

Smarandache sequences, Hexis, 2005, Chapter 2: Smarandache sequences, Section 10: The sum of the 
reciprocals of the Smarandache multiplicative sequence. 
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The limit of the sum of the reciprocals of the terms of the multiplicative sequence exists 

for all initial terms m1 and m2. The sum of the reciprocals of the multiplicative sequence 

with initial terms m1 and m2 is S = 1/((m1 – 1)*(m2 – 1)) + 1/m1 + 1/m2. 

 

(45)  The non-multiplicative general sequence
117

 

 

Definition:  

The sequence obtained in the following way: let m1, m2 …, mk be the first k terms of the 

sequence, where k ≥ 2. Then mi, for i ≥ k + 1,  is the smallest number not equal to the 

product of k previous distinct terms. 

 

(46)  The non-arithmetic progression sequence
118

 

 

Definition:  

The sequence defined in the following way: if m1 and m2 are the first two terms of the 

sequence, then mk, for k ≥ 3, is the smallest number such that no 3-term arithmetic 

progression is in the sequence. Generalization: the same initial conditions, but with no i-

term arithmetic progression in the sequence, for a given i ≥ 3. 

 

(47)  The non-geometric progression sequence
119

 

 

Definition:  

The sequence defined in the following way: if m1 and m2 are the first two terms of the 

sequence, then mk, for k ≥ 3, is the smallest number such that no 3-term geometric 

progression is in the sequence. Generalization: the same initial conditions, but with no i-

term geometric progression in the sequence, for a given i ≥ 3. 

 

(48)  The “wrong numbers” sequence
120

 

 

Definition:  

The sequence of “wrong numbers” which are defined in the following way: the number n 

= a1a2…ak, consisted of at least two digits, with the property that the sequence a1, a2, …, 

ak, bk+1, bk+2, …(where bk+i is the product of the previous k terms, for any i ≥ 1), contains 

n as its term. 

Comment:  

F.S. conjectured that no number is wrong; therefore, this sequence is empty. 

 

(49)  The “impotent numbers” sequence
121

 

                                                 
117

 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 

Xiquan Publishing House, 2000, Definition 34.  
118

 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 

Xiquan Publishing House, 2000, Definition 35. F.S., Sequences of numbers involved in unsolved problems, 

Hexis, 2006, Sequence 232. For a study of this sequence, see Ibstedt, Henry, Computer analysis of number 

sequences, American Research Press, 1998, Chapter II: Recursive integer sequences. 
119

 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 

Xiquan Publishing House, 2000, Definition 43. F.S., Sequences of numbers involved in unsolved problems, 

Hexis, 2006, Sequence 217. 
120

 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 
Xiquan Publishing House, 2000, Definition 27.  
121

 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 

Xiquan Publishing House, 2000, Definition 28.  
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Definition:  

The sequence of “impotent numbers” which are defined in the following way: a number n 

those proper divisors product is less than n. 

Comment:  

The terms of this sequence are the primes and the squares of primes. 

The first twenty terms of the sequence (A000430 in OEIS): 

2, 3, 4, 5, 7, 9, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 49, 53, 59. 

 

(50)  The “simple numbers” sequence
122

 

  

Definition:  

The sequence of “simple numbers” which are defined in the following way: a number n 

those proper divisors product is less than or equal to n.
123

 

Theorem
124

:  

The terms of this sequence can be only primes, squares of primes, cubes of primes or 

semiprimes. 

The first twenty terms of the sequence (A007964 in OEIS): 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25. 

 

(51)  The square product sequence
125

 

  

Definition:  

The sequence defined in the following way: Sn = 1 + s1*s2*…*sn, where sk is the k-th 

square number. 

The first nine terms of the sequence: 

2, 5, 27, 577, 14401, 518401, 25401601, 1625702401, 131681894401. 

Comment:  

F.S. raised the question: how many terms of this sequence are primes?  

Note:   

The sequence defined above (i.e. 1^2*2^2*3^2*…*n^2 + 1, where n ≥ 1) is sometimes 

called the Smarandache square product sequence of the first kind and named with the 

acronym SPS1(n) while the sequence defined as 1^2*2^2*3^2*…*n^2 – 1, where n ≥ 1, 

is called the Smarandache square product sequence of the second kind and named with 

the acronym SPS2(n).
126

 

 

(52)  The cubic product sequence
127

 

  

Definition:  

                                                 
122

 F.S., Only problems, not solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 23. 
123

 For three different explicit representations for the n-th term of the sequence, see Vassilev-Missana, Mladen 

and Atanassov, Krassimir, Some Smarandache problems, Hexis, 2004, Chapter 1: On some Smarandache’s 
problems, Section 3: On the 15-th Smarandache’s problem. 
124
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The sequence defined in the following way: Cn = 1 + c1*c2*…*cn, where ck is the k-th 

cubic number. 

The first nine terms of the sequence (A019514 in OEIS): 

2, 3, 13, 289, 34561, 24883201, 125411328001, 5056584744960001, 

1834933472251084800001. 

Comment:  

F.S. raised the question: how many terms of this sequence are primes?
128

   

Note:   

The square product and the cubic product sequences defined above were generalized 

resulting Smarandache higher power product sequence of the first kind respectively 

Smarandache higher power product sequence of the second kind named with the 

acronyms HPPS1(n) the one defined as 1^m*2^m*…*n^m + 1, where n ≥ 1, m > 3, 

respectively HPPS2(n) the one defined as 1^m*2^m*…*n^m – 1, where n ≥ 1, m > 3.
129

 

 

(53)  The factorial product sequence
130

 

  

Definition:  

The sequence defined in the following way: Fn = 1 + f1*f2*…*fn, where fk is the k-th 

factorial number. 

The first nine terms of the sequence (A019515 in OEIS): 

2, 9, 217, 13825, 1728001, 373248001, 128024064001, 65548320768001, 

47784725839872001. 

Comment:  

F.S. raised the question: how many terms of this sequence are primes?  

 

(54)  The Smarandache recurrence type sequences
131

 

 

1. The general term of the sequence is: 

The smallest number, strictly greater than the previous one, which is the sum of squares 

of two previous distinct terms of the sequence, for given first two terms. 

The first sixteen terms of the sequence for first two terms 1 and 2 (A008318 in OEIS): 

1, 2, 5, 26, 29, 677, 680, 701, 842, 845, 866, 1517, 458330, 458333, 458354, 459005. 

2. The general term of the sequence is: 

The smallest number which is the sum of squares of previous distinct terms of the 

sequence. 

The first sixteen terms of the sequence (A008319 in OEIS): 

1, 1, 2, 4, 5, 6, 16, 17, 18, 20, 21, 22, 25, 26, 27, 29. 

3. The general term of the sequence is: 

The smallest number, strictly greater than the previous one, which is not the sum of 

squares of two previous distinct terms of the sequence, for given first two terms. 
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The first sixteen terms of the sequence for first two terms 1 and 2 (A004439 in OEIS): 

1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 14, 15, 16, 18, 19, 21. 

4. The general term of the sequence is: 

The smallest number which is not the sum of squares of previous distinct terms of the 

sequence. 

The first sixteen terms of the sequence (A008321 in OEIS): 

1, 2, 3, 6, 7, 8, 11, 12, 15, 16, 17, 18, 19, 20, 21, 22. 

5. The general term of the sequence is: 

The smallest number, strictly greater than the previous one, which is the sum of cubes of 

two previous distinct terms of the sequence, for given first two terms. 

The first ten terms of the sequence for first two terms 1 and 2 (A008322 in OEIS): 

1, 2, 9, 730, 737, 389017001, 389017008, 389017729, 400315554, 400315561. 

6. The general term of the sequence is: 

The smallest number which is the sum of cubes of previous distinct terms of the 

sequence. 

The first sixteen terms of the sequence (A019511 in OEIS): 

1, 1, 2, 8, 9, 10, 512, 513, 514, 520. 

7. The general term of the sequence is: 

The smallest number, strictly greater than the previous one, which is not the sum of cubes 

of two previous distinct terms of the sequence, for given first two terms. 

The first sixteen terms of the sequence for first two terms 1 and 2 (A031980 in OEIS): 

1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17. 

8. The general term of the sequence is: 

The smallest number which is not the sum of cubes of previous distinct terms of the 

sequence. 

The first sixteen terms of the sequence (A019511 in OEIS): 

1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18. 

 

(55)  The Smarandache partition type sequences
132

 

 

1. The general term of the sequence, a(n), is: 

The number of times in which n can be written as a sum of non-null squares, disregarding 

terms order.  

Example: a(9) = 4 because 9 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 = 

1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 2^2  = 1^2 + 2^2 + 2^2 = 3^2. 

The first thirty terms of the sequence (A001156 in OEIS): 

1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 4, 4, 5, 6, 6, 6, 8, 9, 10, 10, 12, 13, 14, 14, 16, 19, 20, 21, 23, 26. 

2. The general term of the sequence, a(n), is: 

The number of times in which n can be written as a sum of non-null cubes, disregarding 

terms order. 

The first thirty terms of the sequence (A003108 in OEIS): 

1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5. 

 

(56)  The square residues sequence
133
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Definition:  

The general term of the sequence, a(n), is the largest square free number which divides n. 

The first twenty-five terms of the sequence (A007947 in OEIS): 

1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 11, 6, 13, 14, 15, 2, 17, 6, 19, 10, 21, 22, 23, 6, 5. 

 

(57)  The cubic residues sequence
134

 

  

Definition:  

The general term of the sequence, a(n), is the largest cube free number which divides n. 

The first twenty-five terms of the sequence (A007948 in OEIS): 

1, 2, 3, 4, 5, 6, 7, 4, 9, 10, 11, 12, 13, 14, 15, 4, 17, 18, 19, 20, 21, 22, 23, 12, 25. 

 

(58)  The exponents of power 2 sequence
135

 

  

Definition:  

The general term of the sequence, e2(n), is the largest exponent of power 2 which divides 

n. 

The first thirty terms of the sequence (A007814 in OEIS): 

0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1. 

 

(59)  The exponents of power 3 sequence
136

 

  

Definition:  

The general term of the sequence, e3(n), is the largest exponent of power 3 which divides 

n. 

The first thirty terms of the sequence (A007949 in OEIS): 

0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 0, 3, 0, 0, 1. 

 

(60)  The unary sequence
137

 

  

Definition:  

The general term of the sequence, u(n), is equal to 11…1, where the digit 1 is repetead pn 

times, pn being the n-th prime. 

The first seven terms of the sequence (A031974 in OEIS): 

11, 111, 11111, 1111111, 11111111111, 1111111111111, 11111111111111111. 

Note:  

F.S. raised the question: is there an infinite number of primes belonging to this 

sequence?
138
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(61)  The Smarandache periodic sequences
139

 

  

The subtraction periodic sequences
140

: 

Definition:  Let c be a positive integer; start with the positive integer n and let R(n) be 

its digital reverse. Put n1 be the absolute value of the number  (R(n) – c) 

and let R(n1) be its digital reverse and so on. It is obtained eventually a 

repetition. 

Exemple:  For c = 1 and n = 52 the sequence is: 52, 24, 41, 13, 30, 02, 19, 90, 08, 79, 

96, 68, 85, 57, 74, 46, 63, 35, 52, … 

Comment:  In the example above the repetition occurs after 18 steps, and the length of 

the repeating cycle is 18. 

The multiplication periodic sequences
141

: 

Definition:  Let c > 1 be a positive integer; start with the positive integer n, multiply 

each digit x of n by c and replace that digit by the last digit of c*x to give 

n1 and so on. It is obtained eventually a repetition. 

Exemple:  For c = 7 and n = 68 the sequence is: 68, 26, 42, 8468, … 

Comment:  Integers with digits that are all equal to 5 are invariant under the given 

operation after one iteration. 

The mixed composition periodic sequences
142

: 

Definition:  Let n be a two-digit number; add the digits and, if the sum is greater than 

10, add them again; also take the absolute value of their difference: these 

are the first and second digits of n1; repeat the operation. 

Exemple:  For n = 75 the sequence is: 75, 32, 51, 64, 12, 31, 42, 62, 84, 34, 71, 86, 

52, 73, 14, 53, 82, 16, 75, … 

Comment:  There are no invariants in this case. 

The two-digit periodic sequence
143

: 
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Definition:  Let n1 be an integer of at most two digits and R(n1) its digital reverse; its’s 

defined n2 as the absolute value of the number n1 – R(n1), n3 as the 

absolute value of the number n2 – R(n2) and so on; if the number n has one 

digit only, is considered its reverse as n*10 (for example 5, which is 05, 

reversed will be 50). 

Comment:  This sequence is periodic, except the case when the two digits are equal. 

The iteration always produces a loop of length 5, which starts on the 

second or the third term of the sequence, and the period is 9, 81, 63, 27, 45 

or a cyclic permutation thereof. 

 

(62)  The Smarandache pseudo-primes sequences
144

 

  

The pseudo-primes of first kind sequence: 

Definition:  A number is pseudo-prime of first kind if some permutation of its digits is 

a prime number, including the identity permutation. 

The first fifteen terms of the sequence (A007933 in OEIS): 

2, 3, 5, 7, 11, 13, 14, 16, 17, 19, 20, 23, 29, 30, 31. 

The pseudo-primes of second kind sequence:  

Definition:  A number is pseudo-prime of second kind if is composite and some 

permutation of its digits is a prime number. 

The first fifteen terms of the sequence (A007935 in OEIS): 

14, 16, 20, 30, 32, 34, 35, 38, 50, 70, 74, 76, 91, 92, 95. 

The pseudo-primes of third kind sequence:  

Definition:  A number is pseudo-prime of third kind if its reversal, when leading zeros 

are omitted, is prime.  

The first fifteen terms of the sequence (A095179 in OEIS): 

14, 16, 20, 30, 32, 34, 35, 38, 50, 70, 74, 76, 91, 92, 95. 

Note:  F.S. conjectured that there exist infinite many pseudo-primes of third kind 

which are primes. 

 

(63)  The Smarandache pseudo-squares sequences
145

: 

  

The pseudo-square of first kind sequence 

Definition:  A number is pseudo-square of first kind if some permutation of its digits is 

a perfect square, including the identity permutation. 

The first fifteen terms of the sequence (A007936 in OEIS): 

1, 4, 9, 10, 16, 18, 25, 36, 40, 46, 49, 52, 61, 63, 64. 

The pseudo-square of second kind sequence 

Definition:  A number is pseudo-square of second kind if is composite and some 

permutation of its digits is a perfect square. 

The first fifteen terms of the sequence (A007937 in OEIS): 

10, 18, 40, 46, 52, 61, 63, 90, 94, 106, 108, 112, 136, 148, 160. 

The pseudo-square of third kind sequence 
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Definition:  A number is pseudo-square of third kind if some nontrivial permutation of 

its digits is a perfect square. 

The first fifteen terms of the sequence (A007938 in OEIS): 

10, 18, 40, 46, 52, 61, 63, 90, 94, 100, 106, 108, 112, 121, 136. 

 

(64)  The Smarandache pseudo-factorials sequences
146

: 

  

The pseudo-factorials of first kind sequence 

Definition:  A number is pseudo-factorial of first kind if some permutation of its digits 

is a factorial number, including the identity permutation. 

The first fifteen terms of the sequence (A007926 in OEIS): 

1, 2, 6, 10, 20, 24, 42, 60, 100, 102, 120, 200, 201, 204, 207. 

The pseudo-factrorials of second kind sequence 

Definition:  A number is pseudo-factorial of second kind if is non-factorial and some 

permutation of its digits is a factorial number. 

The first fifteen terms of the sequence: 

10, 20, 42, 60, 100, 102, 200, 201, 204, 207, 210, 240, 270, 402, 420. 

The pseudo-factorials of third kind sequence: 

Definition:  A number is pseudo-factorial of third kind if some nontrivial permutation 

of its digits is a factorial number. 

The first fifteen terms of the sequence (A007927 in OEIS): 

10, 20, 42, 60, 100, 102, 200, 201, 204, 207, 210, 240, 270, 402, 420. 

Conjecture: 

F.S. conjectured that there are no pseudo-factorials of third kind to be also factorial 

numbers, which means that the pseudo-factorils of the second kind set and the pseudo-

factorials of the third kind set coincide. 

 

(65)  The Smarandache pseudo-divisors sequences
147

: 

  

The pseudo-divisors of first kind sequence 

Definition:  A number is a pseudo-divisor of first kind of n if some permutation of its 

digits is a divisor of n, including the identity permutation. 

The first fifteen terms of the sequence: 

1, 10, 100, 1, 2, 10, 20, 100, 200, 1, 3, 10, 30, 100, 300. 

The pseudo-divisors of second kind sequence 

Definition:  A number is pseudo-divisor of second kind of n if is a non-divisor of n and 

some permutation of its digits is a divisor of n. 

The first fifteen terms of the sequence: 

10, 100, 10, 20, 100, 200, 10, 30, 100, 300, 10, 20, 40, 100, 200. 

The pseudo-divisors of third kind sequence: 

Definition:  A number is a pseudo-divisor of third kind of n if some nontrivial 

permutation of its digits is a divisor of n. 
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The first fifteen terms of the sequence: 

10, 100, 10, 20, 100, 200, 10, 30, 100, 300, 10, 20, 40, 100, 200. 

Properties: 

Any integer has an infinity of pseudo-divisors of first kind and of the third kind because 1 

divides any integer. 

 

(66)  The Smarandache almost primes sequences
148

: 

  

The almost primes of first kind sequence 

Definition:  Let a(1) ≥ 2 and, for n ≥ 1, a(n+1) is the smallest number that is not 

divisible by any of the previous terms of the sequence a(1), a(2), …, a(n). 

Example for a(1) = 10: 

10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 23, 25, 27, 29, 31, 35, 37, 41, … 

Comment:  If one starts by a(1) = 2 it obtains the complete prime sequence and only 

it. If one starts by a(1) > 2, it obtains after a rank r, where a(r) = p(a(1))^2, 

with p(x) the strictly superior prime part of x, i.e. the largest prime strictly 

less than x, the prime sequence: between a(1) and a(r), the sequence 

contains all prime numbers of this interval and some composite numbers; 

from a(r+1) and up, the sequence contains all prime numbers greater than 

a(r) and no composite numbers. 

The almost primes of second kind sequence 

Definition:  Let a(1) ≥ 2 and, for n ≥ 1, a(n+1) is the smallest number that is coprime 

with all of the previous terms of the sequence a(1), a(2), …, a(n). 

Example for a(1) = 10: 

10, 11, 13, 17, 19, 21, 23, 29, 31, 37, 41, 43, 47, 53, 57, 61, 67, 71, 73, ...  

Comment:  This second kind sequence merges faster to the prime numbers than the 

first kind sequence. 

 

(67)  The square roots sequence
149

 

  

Definition:  

The general term of the sequence, sq(n), is the superior integer part of square root of n. 

The first thirty terms of the sequence (A000196 in OEIS): 

0, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5. 

Comment:  

This sequence is the natural sequence, where each number is repetead 2*n + 1 times, 

because between n^2 (included) and (n + 1)^2 (excluded) there are (n + 1)^2 – n^2 

different numbers. 

 

(68)  The cubical roots sequence
150

 

  

Definition:  

The general term of the sequence, cq(n), is the superior integer part of cubical root of n. 

The first thirty terms of the sequence (A048766 in OEIS): 

0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3. 

Comment:  
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This sequence is the natural sequence, where each number is repetead 3*n^2 + 3*n + 1 

times, because between n^3 (included) and (n + 1)^3 (excluded) there are (n + 1)^3 – n^3 

different numbers. 

 

(69)  The m-power roots sequence
151

 

  

Definition:  

The general term of the sequence, mq(n), is the superior integer part of m-power root of n. 

Comment:  

This sequence is the natural sequence, where each number is repetead (n + 1)^m – n^m 

times. 

 

(70)  The no-prime-digit sequence
152

 

  

Definition:  

The terms of this sequence contain no digits which are primes. 

The first thirty-five terms of the sequence (A019516 in OEIS): 

0, 1, 4, 6, 8, 9, 10, 11, 1, 1, 14, 1, 16, 1, 18, 19, 0, 1, 4, 6, 8, 9, 0, 1, 4, 6, 8, 9, 40. 

Comment:  

F.S. raised the question if there is any number which occurs infinitely many times in this 

sequence (for instance 1, or 4, or 6, or 11). Igor Shparlinski showed that, if n has already 

occurred, then, for instance, n3, n33, n333 etc. gives infinitely many repetitions of the 

number. 

 

(71)  The no-square-digit sequence
153

 

  

Definition:  

The terms of this sequence contain no digits which are squares. 

The first thirty terms of the sequence (A031976 in OEIS): 

2, 3, 5, 6, 7, 8, 2, 3, 5, 6, 7, 8, 2, 2, 22, 23, 2, 25, 26, 27, 28, 2, 3, 3, 32, 33, 3, 35, 36, 37. 

 

(72)  The Smarandache prime-digital subsequence
154

 

  

Definition:  

The terms of this sequence are primes that contain only digits which are also primes. 

The first twenty terms of the sequence (A019546 in OEIS): 

2, 3, 5, 7, 23, 37, 53, 73, 223, 227, 233, 257, 277, 337, 353, 373, 523, 557, 577, 727. 

Comments:  

1. Charles Ashbacher
155

 conjectured that this sequence is infinite. Henry Ibstedt 

proved that this conjecture is true.
156

 

                                                 
151

 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 119. For a study of this 

sequence, see Atanassov, Krassimir T., On some of the Smarandache’s problems, American Research Press, 

1999, p. 58-61. 
152

 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 219. 
153

 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 220. 
154

 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 235. This sequence is 

sometimes named with the acronym SPDS.  
155

 Ashbacher, Charles, Collection of problems on Smarandache notions, Erhus University Press, 1996, 
Conjecture 5. 
156

 Ibstedt, Henry, Computer analysis of number sequences, American Research Press, 1998, Chapter II: 

Recursive integer sequences, Serction 4: The Smarandache prime-digital sub-sequence. 



 49 

2. C. Ashbacher
157

 raised the question, which he related to the problem of infinity of 

the set SPDS, how many repunit primes
158

 exist. 

3. C. Ashbacher
159

 also conjectured that the limit of the sequence SPDSN(n)/π(n) is 

0 as n tends to infinity, where SPDSN(n) represents the number of elements of 

SPSD(n) not exceeding n and π(n) represents the number of primes not exceeding 

n. 

 

(73)  The Smarandache prime-partial-digital sequence
160

 

  

Definition:  

The sequence of prime numbers which admit a deconcatenation into a set of primes. 

Exemple:  

The number 241 belongs to this sequence because admits the deconcatenation into the set 

of numbers {2, 41} which are both primes. 

The first twenty terms of the sequence (A019549 in OEIS): 

23, 37, 53, 73, 113, 137, 173, 193, 197, 211, 223, 227, 229, 233, 241, 257, 271, 277, 283, 

293. 

Comments:  

Charles Ashbacher conjectured that this sequence is infinite; because SPPDS includes 

SPDS, the proof that SPDS is infinite implies that SPPDS is also infinite, and Henry 

Ibstedt proved that SPDS is indeed infinite.
161

 

 

(74)  The square-partial-digital subsequence
162

 

  

Definition:  

The sequence of square integers which admit a deconcatenation into a set of square 

integers.  

Exemple:  

The number 256036 (= 506^2) belongs to this sequence because admits the 

deconcatenation into the set of numbers {256 (= 16^2), 0, 36 (= 6^2)}, which are all three 

perfect squares. 

Comment:  

 Charles Ashbacher proved that SSPDS is infinite.
163

 

                                                 
157

 Ashbacher, Charles, Collection of problems on Smarandache notions, Erhus University Press, 1996, 

Unsolved problem 3. 
158

 Primes that contain only digit 1. That are only 5 such primes known, having 2, 19, 23, 317 respectively 

1031 digits 1 (sequence A004023 in OEIS); a necessary but not sufficient condition for a repunit to be prime is 

that the number of its digits (of 1) to be prime. 
159

 Ashbacher, Charles, Collection of problems on Smarandache notions, Erhus University Press, 1996, 

Unsolved problem 4. The conjecture was proved: see Shang, Songye; Su, Juanli, On the Smarandache prime-
digital subsequence sequences, Scientia Magna, Dec 1, 2008. 
160

 Ashbacher, Charles, Collection of problems on Smarandache notions, Erhus University Press, 1996, 

Definition 32. This sequence is sometimes named with the acronym SPPDS. This sequence could as well be 

defined as the sequence of primes formed by concatenating other primes and treated to the chapter regarding 

concatenated sequences, but from obvious reasons (is related with the previous treated sequence) we treated it 

here. 
161

 For a study of this sequence, see Ibstedt, Henry, Computer analysis of number sequences, American 

Research Press, 1998, Chapter I: Partition sequences. 
162

 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 

Xiquan Publishing House, 2000, Definition 50. F.S., Sequences of numbers involved in unsolved problems, 

Hexis, 2006, Sequence 234. This sequence is sometimes named with the acronym SSPDS. 
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Questions:  

1. The number 441 belongs to SSPDS and its square 194481 also belongs to the 

SSPDS. Can another example of integers m, m^2, m^4, all belonging to SSPDS, 

be found? 

2. It is relatively easy to find two consecutive squares in SSPDS, e.g. 144 (= 12^2) 

and 169 (= 13^2). Does the SSPDS contain three or more consecutive squares as 

well? What is the maximum length? 

 

(75)  The Erdős-Smarandache numbers sequence
164

 

  

Definition:  

The sequence of  Erdős-Smarandache numbers which are defined in the following way: 

solutions of the diophantine equation P(n) = S(n), where P(n) is the largest prime factor 

which divides n, and S(n) is the Smarandache function. 

The first twenty-five terms of the sequence: 

2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 26, 28, 29, 30, 31, 33, 34, 35, 37. 

 

(76)  The Goldbach-Smarandache table sequence
165

 

  

Definition:  

The general term of the sequence, t(n), is the largest even number such that any other 

even number not exceeding it is the sum of two of the first n odd primes.  

The first twenty  terms of the sequence (A007944 in OEIS): 

6, 10, 14, 18, 26, 30, 38, 42, 42, 54, 62, 74, 74, 90, 90, 90, 108, 114, 114, 134. 

Comments:  

1. This sequence helps to better understand Goldbach’s Conjecture
166

: if t(n) is 

unlimited, then the conjecture is true; if t(n) is constant after a certain rank, then 

the conjecture is false.  

2. The sequence also gives how many times an even number is written as a sum of 

two odd primes, and in what combinations. 

Problems
167

:  

1. All of the values known from this sequence are congruent to 2 modulo 4. Is that 

true for every term in the sequence? 

2. How many primes does it take to represent all even numbers less than 2*n as 

sums of two primes from that set? 

 

(77)  The Smarandache-Vinogradov table sequence
168

 

  

                                                                                                                                                             
163

 For a study of this sequence, see Ibstedt, Henry, Computer analysis of number sequences, American 

Research Press, 1998, Chapter I: Partition sequences. Here is also a study of the Smarandache cube-partial-

digital subsequence. 
164

 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 

Xiquan Publishing House, 2000, Problem 44. 
165

 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 121. 
166

 Which states that every number that is greater than 2 is the sum of three primes; note that Golbach 

considered the number 1 to be a prime – the majority of mathematicians from today don’t; note also that the 

conjecture is equivalent with the statement that all positive even integers greater than 4 can be expressed as the 

sum of two primes. 
167

 Kashihara, K., Comments and topics on Smarandache notions and problems, Erhus University Press, 1996, 

Chapter 1: Some comments and problems on Smarandache notions, p. 20. 
168

 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 122. 
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Definition:  

The general term of the sequence, v(n), is the largest odd number such that any odd 

number greater than or equal to 9 not exceeding it is the sum of three of the first n odd 

primes.  

The first twenty  terms of the sequence (A007962 in OEIS): 

9, 15, 21, 29, 39, 47, 57, 65, 71, 93, 99, 115, 129, 137, 143, 149, 183, 189, 205, 219. 

Comments:  

1. This sequence helps to better understand Goldbach’s Conjecture: if v(n) is 

unlimited, then the conjecture is true; if v(n) is constant after a certain rank, then 

the conjecture is false.  

2. Vinogradov proved in 1937 that any sufficiently large odd number is a sum of 

three primes. Mathematicians J.R. Chen şi T.Z. Wang showed in 1989 that the 

number is enough to be greater than 10^43000. 

3. The sequence also gives in how many different combinations an odd number is 

written as a sum of three odd primes, and in what combinations. 

4.  The general term of the sequence, v(n), is smaller than or equal to 3*pn, where pn 

is the n-th odd prime. 

5. The table is also generalized for the sum of m primes and how many times a 

number is written as a sum of m primes (m > 2). 

Problems
169

:  

1. Examine the congruence of the terms of this sequence and determine if there is a 

pattern. 

2. How many primes are needed to represent all odd numbers smaller than 3*n as 

sums of three primes? 

 

(78)  The Smarandache-Vinogradov sequence
170

 

  

Definition:  

Let G = {g1, g2, …gk, …} be an ordered set of positive integers with a given property G. 

Then the corresponding G add-on sequence is defined through formula: 

 SG = {ai: a1 = g1, a = ak*10^(1 + log10 (gk)) + gk, k ≥ 1}. 

Note: The sequence is deduced from the Smarandache-Vinogradov table. 

 

(79)  The Smarandache paradoxist numbers sequence
171

 

  

Definition:  

The sequence of numbers (called “Smarandache paradoxist numbers”) which don’t 

belong to any of the Smarandache defined sequences of numbers. 

Dilemma:  

                                                 
169

 Kashihara, K., Comments and topics on Smarandache notions and problems, Erhus University Press, 1996, 

Chapter 1: Some comments and problems on Smarandache notions, p. 20. 
170

 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 123. Kashihara defines 

different sequences under the names Goldbach-Smarandache and Vinogradov-Smarandache, respectivelly 

Smarandache-Goldbach and Smarandache-Vinogradov (note the different order in listing of the names): see 

Kashihara, K., Comments and topics on Smarandache notions and problems, Erhus University Press, 1996, p. 

19-21. 
171

 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 124.  

See also in the same book sequences 125-126 which define The non-Smarandache numbers and The paradox 
of Smarandache numbers. 
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If a number k doesn't belong to any of the Smarandache defined numbers, then k is a 

Smarandache paradoxist number, therefore k belongs to a Smarandache defined sequence 

of numbers (because Smarandache paradoxist numbers is also in the same category) – 

contradiction. Is the Smarandache paradoxist number sequence empty?
172

 

 

(80)  Sequences involving the Smarandache function
173

 

  

Definition 1:  

Let {an} be the sequence defined in the following way: a0 = 1, a1 = 2 and an+1 = aS(n) + 

S(an) for n > 1, where S(n) is the Smarandache function
174

. 

Question 1:  

Are there infinitely many pairs of integers (m, n), with m ≠ n, such that am = an? 

 Conjecture: There are infinitely many such pairs. 

Question 2:  

 Is there a number M such that an < M for all n > 0? 

Theorem: There is no such number M. 

Definition 2:  

An A-sequence is an integer sequence 1 ≤ a1 < a2 <… such that no element ai is the sum 

of a set of distinct elements of the sequence that does not contain ai. 

Question 3:  

Is it possible to construct an A-sequence a1, a2,… such that S(a1), S(a2),… is also an A-

sequence? 

Theorem: There are infinitely many such A-sequences. 

Question 4:  
For how many values of k is there a set of numbers n, n + 1, n + 2, n + 3,…, n + k such that S(n), 

S(n + 1),…, S(n + k) is a complete system of residues modulo k + 1?  

Conjecture: The numbers of such integers k is finite. 

Theorem: There is no limit to the size of n where a1, a2,…, an is a complete system of 

residue systems modulo n and S(a1), S(a2),…, S(an) is also a complete system of residues 

modulo n.
175

 

Theorem: If there is a sequence of primes p1, p2,…, pk such that the primes are all in arithmetic 

progression, then S(p1), S(p2),…, S(pk) is also in arithmetic progression.
176 

 

(81)  The Smarandache perfect sequence
177

 

  

Definition:  

                                                 
172

 Another paradox, about the natural numbers, is the “interesting numbers paradox”: if exists a set of 

uninteresting natural numbers, than one is the smaller one from them, an enough quality to make this number 

interesting. For instance, the number 11630 was the smaller integer which didn’t appear in any of the 

sequences from OEIS in june 2009 (see Nathaniel Johnston, 11630 is the first uninteresting number); now, it 

appears in 6 sequences from OEIS, and another number is “the smallest uninteresting number”. 
173

 Ashbacher, C., Pluckings from the tree of Smarandache sequences and functions, American Research Press, 

1998, p. 15-41. 
174

 The Smarandache function is defined infra, Part Two, Chapter I, Section (1). 
175

 The proof is based on Dirichlet’s Theorem: let d  > 2 and a ≠ 0 be two numbers relatively prime to each 

other. Then the sequence a, a + d, a + 2*d, a + 3*d,… contains an infinite numbers of primes. 
176

 The longest arithmetic progression of primes known to date has 26 terms.  
177

 Ibstedt, H., Mainly natural numbers – a few elementary studies on Smarandache sequences and other 

number problems, American Research Press, 2003, Chapter V: The Smarandache partial perfect additive 
sequence. 
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A Smarandache perfect fp sequence is defined in the following way: if fp is a p-ary 

relation on {a1, a2, a3, …} and fp(ai, ai+1, ai+2, …, ai+p-1) = fp(aj, aj+1, aj+2, …, aj+p-1) for all 

ai, aj and all p > 1, then {an} is called a Smarandache perfect fp sequence. 

Note: 

If the defining relation is not satisfied for all ai, aj or all p then {an} may qualify as a 

Smarandache partial perfect fp sequence. 

 

(82)  The partial perfect additive sequence
178

 

  

Definition:  

A particular case of Smarandache partial perfect sequence, defined in the following way: 

a2*k+1 =ak+1 – 1, a2*k+2 = ak+1 + 1 for k ≥ 1, with a1 = a2 = 1. 

 

(83)  The Smarandache A-sequence
179

 

  

Definition:  

An infinite Smarandache sequence a(n) of positive integers 1 ≤ a(1) ≤ a(2) ≤ a(3) ≤… is 

called an A-sequence if a(k) cannot be expressed as the sum of two or more distinct 

earlier terms of the sequence. 

 

(84)  The Smarandache B2-sequence 
  

Definition:  

An infinite Smarandache sequence b(n) of positive integers 1 ≤ b(1) ≤ b(2) ≤ b(3) ≤… is 

called an B2-sequence if all pairwise sums b(i) + b(j), i ≤ j, are distinct. 

 

(85)  The Smarandache C-sequence 
  

Definition:  

An infinite Smarandache sequence c(n) of positive integers 1 ≤ c(1) ≤ c(2) ≤ c(3) ≤…  is 

said to be a nonaveraging sequence or a C-sequence if it contains no three terms in 

arithmetic progression. That is, c(i) + c(j) ≠ c(k) for any three distinct terms c(i), c(j) and 

c(k) forming the sequence. 

 

(86)  The Smarandache uniform sequences
180

 

  

Definition:  

Let n be an integer not equal to 0 and d1, d2, …, dr digits in a base B (of course, r < B). 

Then the multiples of n, written with digits d1, d2, …, dr only (but all r of them), in base 

B, increasingly ordered, are called the Smarandache uniform sequence. 

Examples (in base 10):  

                                                 
178

 Ibstedt, H., Mainly natural numbers – a few elementary studies on Smarandache sequences and other 

number problems, American Research Press, 2003, Chapter V: The Smarandache partial perfect additive 

sequence. 
179

 The sequences treated in the sections (83)-(85) are defined by Felice Russo; see R., Felice, A set of new 

Smarandache functions, sequences and conjectures in number theory, American Research  Press, 2000, 

Chapter II: A set of new Smarandache-type notions in number theory. The author presents in this book, 
Chapter III: A set of new Smarandache sequences, yet a lot of Smarandache type sequences: Smarandache 

repetead digit sequence with 1-endpoints, Smarandache alternate consecutive and reverse sequence etc. 
180

 Smith, Sylvester, A set of conjectures on Smarandache sequences, Smarandache Notions Journal. 
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1. Multiples of 7 written with digit 1 only: 

 111111, 111111, 111111, 111111, 111111, 111111,  111111, 111111, 111111… 

 2. Multiples of 7 written with digit 2 only: 

 222222, 222222222222, 222222222222222222, 222222222222222222222222… 

3. Multiples of 79365 written with digit 5 only: 

 555555, 555555555555, 555555555555555555, 555555555555555555555555… 

Note:  

For some cases, the Smarandache uniform sequence may be empty (impossible): e.g. the 

multiples of 79365 written with digit 6 only (because any multiple will end in 0 or 5). 

 

(87)  The Smarandache operation sequences
181

 

  

Definition:  

Let E be an ordered set of elements, E = {e1, e2, …} and O a set of binary operations 

well-defined for these elements. Then: a1 is an element of E and an+1 = 

min{e1O1e2O2…Onen+1} > an, for n > 1, where all Oi are operations belonging to O, is 

called the Smarandache operation sequence.  

Example:  

Let E be the natural numbers set and O be formed by the four arithmetic operations: 

addition, subtraction, multiplication and division. Then a1 = 1 and an+1 = 

min{1O12O2…O9899} > an, for n > 1, where all Oi are elements of {+, –, *, /}, chosen in 

a convenient way. 

 

(88)  The repeatable reciprocal partition of unity sequence
182

 

  

Definition:  

For n > 0, the Smarandache repeatable reciprocal partition of unity for n, noted with the 

acronym SRRPS(n), is the set of all sets of n natural numbers such that the sum of the 

reciprocals is 1, algebraic formulated SRRPS(n) = {x: x = (a1, a2, …, an), where the sum 

from r = 1 to r = n  of the numbers 1/ar is equal to 1}. 

Examples:  

If we note with fRP(n) the order of the set SRRPS(n), we have: 

1. SRRPS(1) = {(1)}, fRP(n) = 1; 

2. SRRPS(2) = {(2, 2)}, fRP(2) = 1; 

3. SRRPS(3) = {(3, 3, 3), (2, 3, 6), (2, 4, 4)}, fRP(3) = 3; 

4. SRRPS(4) = {(4, 4, 4, 4), (2, 4, 6, 12), (2, 3, 7, 42), (2, 4, 5, 20), (2, 6, 6, 6), (2, 4, 

8, 8), (2, 3, 12, 12), (4, 4, 3, 6), (3, 3, 6, 6), (2, 3, 10, 15), (2, 3, 9, 18)}, fRP(4) = 

14. 

Theorem
183

:  

Let m be a member of SRRPS(n), say m = ak, from (a1, a2, …, an) and by definition the 

sum from k = 1 to k = n of the numbers 1/ak is equal to 1. Then m contributes [(τ(m) + 

1)/2] elements to SRRPS(n + 1), where τ(m) is the number of divisors of m. 
 

(89)  The distinct reciprocal partition of unity sequence
184

 

                                                 
181

 Smith, Sylvester, A set of conjectures on Smarandache sequences, Smarandache Notions Journal. 
182

 Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 

Smarandache sequences, Hexis, 2005, Chapter 1: Smarandache partition functions, Section 1: Smarandache 
partition sets, sequences and functions. 
183

 For the proof of the theorem see Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and 
new ideas on number theory and Smarandache sequences, Hexis, 2005, p. 14-15. 
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Definition:  

For n > 0, the Smarandache distinct reciprocal partition of unity set, noted with the 

acronym SDRPS(n), is the set SRRPS(n) where the element of each set of size n must be 

unique, algebraic formulated SDRPS(n) = {x: x = (a1, a2, …, an), where the sum from r = 

1 to r = n  of the numbers 1/ar is equal to 1 and a = a < = > i = j}. 

Examples:  

If we note with fDP(n) the order of the set SDRPS(n), we have: 

1. SDRPS(3) = {(2, 3, 6)}, fDP(3) = 1; 

2. SDRPS(4) = {(2, 4, 6, 12), (2, 3, 7, 42), (2, 4, 5, 20), (2, 3, 10, 15), (2, 3, 9, 18)}, 

fDP(4) = 5. 

Definition:  

The Smarandache distinct reciprocal partition of unity sequence is the sequence of 

numbers fDP(n). 

Theorem
185

:  

The following inequality is true: fDP(n) ≥ Σ + (n^2 – 5*n + 8)/2, where Σ is the sum from 

k = 3 to k = n – 1 of the numbers fDP(k) and n > 3. 

 

(90)  The Smarandache Pascal derived sequences
186

 

  

Definition:  

Starting with any sequence Sb = {b1, b2, …}, called the base sequence, a Smarandache 

Pascal derived sequence Sd = {d1, d2, …} is defined as follows: d1 = b1, d2 = b1 + b2, d3 = 

b1 + 2*b2 + b3, d4 = b1 + 3*b2 + 3*b3 + b4, … 

Examples:  

1. Let Sb be the set of positive integers {1, 2, 3, 4, …}; then Sd = {1, 3, 8, 20, …}. 

Let Tn be the general term of the sequence: 

Properties:  

(i) Tn = 4*(Tn-1 – Tn-2) for n > 2; 

(ii) Tn = (n + 1)*2^(n – 2). 

2. Let Sb be the set of odd integers {1, 3, 5, 7, …}; then Sd = {1, 4, 12, 32, …}.  

3. Let Sb be the set of Bell numbers
187

 {1, 1, 2, 5, 15, 52, 203, …}. Then Sd is 

identically with Sb.
188

 

4. Let Sb be the set of Fibonacci numbers {1, 1, 2, 3, 5, 8, 13, …}; then Sd = {1, 2, 5, 

13, 34, 89, 233…}. Let Sd be the base sequence; then Sdd = {1, 3, 10, 35, 125, 

450, 1625, 5875, 21250, …}. 

Property: T2*n-1 ≡ T2*n ≡ 0 (mod 5^n). 

 

                                                                                                                                                             
184

 Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 

Smarandache sequences, Hexis, 2005, Chapter 1: Smarandache partition functions, Section 1: Smarandache 
partition sets, sequences and functions. 
185

 For the proof of the theorem see Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and 
new ideas on number theory and Smarandache sequences, Hexis, 2005, p. 12. 
186

 Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 

Smarandache sequences, Hexis, 2005, Chapter 2: Smarandache sequences, Section 2: Smarandache Pascal 
derived sequences. 
187

 Bell numbers, named after mathematician Eric Temple Bell, are the natural numbers which satisfy the 

following relation of recurrence expressed with the binomial coefficients: B(0) = 1, B(1) = 1 and B(n + 1) is 
equal to the sum of the first n terms, each one multiplicated with C(n, k), where k takes values from 0 to n. 
188

 The Bell numbers sequence is identically with the Smarandache factor partitions sequence (SFP) for the 

squarefree numbers.  
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(91)  The Smarandache sigma divisor prime sequence
189

 

  

Definition:  

The sequence of the primes p with the property that p divides the sum of all primes less 

than or equal to p. 

The five known terms of the sequence (A007506 in OEIS): 

 2, 5, 71, 369119, 415074643. 

Examples:  

 (i) The  number 5 is an element of this sequence because 5 divides 2 + 3 + 5 = 10. 

 (ii) The number 71 is an element of this sequence because 71 divides 2 + 3 +…+ 67 +  

71 = 639. 

Note: There are not any other elements known (all the primes less than 10^12 were checked) 

beside these five ones. 

Question: 

 Is this sequence infinite? 

 

(92)  The Smarandache smallest number with n divisors sequence
190

 

  

Definition:  

The sequence of numbers which are the smallest numbers with exactly n divisors. 

The first twenty terms of the sequence (A005179 in OEIS): 

 1, 2, 4, 6, 16, 12, 64, 24, 36, 48, 1024, 60, 4096, 192, 144, 120, 65536, 180, 262144, 240. 

Conjectures:  

1. The Tn + 1 sequence contains infinitely many primes (where Tn is the general 

term of the Smarandache smallest number with n divisors sequence). 

2. The number 7 is the only Mersenne prime in the sequence Tn + 1. 

3. The Tn + 1 sequence contains infinitely many perfect squares. 

 

(93)  The Smarandache summable divisor pairs set
191

 

  

Definition:  

The set of ordered pairs [m, n] with the property that τ(m) + τ(n) = τ(m + n). 
Examples of Smarandache summable divisor pairs:  

[2, 10], [3, 5], [4, 256], [8, 22]. 

Conjectures:  

 1. There are infinitely many SSDPs. 

 2. For every integer m there exists an integer n such that [m, n] is a SSDP. 

 

(94)  The Smarandache integer part of x^n sequences
192

 

  

Definition 1 :  

The Smarandache integer part of π^n is the sequence of numbers:  

                                                 
189

 Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 

Smarandache sequences, Hexis, 2005, p. 87. 
190

 Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 

Smarandache sequences, Hexis, 2005, p. 87. 
191

 Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 
Smarandache sequences, Hexis, 2005, p. 88. 
192

 Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 
Smarandache sequences, Hexis, 2005, p. 88. 



 57 

[π^1], [π^2], [π^3], … 

 The first thirteen terms of the sequence (001672 in OEIS):  

 1, 3, 9, 31, 97, 306, 961, 3020, 9488, 29809, 93648, 294204, 924269. 

Definition 2 :  

The Smarandache integer part of e^n is the sequence of numbers:  

[e^1], [e^2], [e^3], … 

 The first thirteen terms of the sequence (000149 in OEIS):  

 1, 2, 7, 20, 54, 148, 403, 1096, 2980, 8103, 22026, 59874, 162754, 442413. 

 

(95)  The Smarandache sigma product of digits natural sequence
 193

 

  

Definition: 

The n-th term of this sequence is defined as the sum of the products of the digits of all the 

numbers from 1 to n. 

The first twenty terms of the sequence (061076 in OEIS):  

 1, 3, 6, 10, 15, 21, 28, 36, 45, 45, 46, 48, 51, 55, 60, 66, 73, 81, 90, 90. 

Subsequence 1: The Smarandache sigma product of digits odd sequence: 

 The first twenty terms of the sequence (061077 in OEIS):  

  1, 4, 9, 16, 25, 26, 29, 34, 41, 50, 52, 58, 68, 82, 100, 103, 112, 127, 148, 175. 

Subsequence 2: The Smarandache sigma product of digits even sequence: 

 The first twenty terms of the sequence (061078 in OEIS):  

  2, 6, 12, 20, 20, 22, 26, 32, 40, 40, 44, 52, 64, 80, 80, 86, 98, 116, 140, 140. 

 

(96)  The Smarandache least common multiple sequence
 194

 

  

Definition: 

The n-th term of this sequence is the least common multiple of the natural numbers from 

1 to n. 

The first fifteen terms of the sequence (003418 in OEIS):  

 1, 1, 2, 6, 12, 60, 60, 420, 840, 2520, 2520, 27720, 27720, 360360, 360360. 

 

(97)  The Smarandache reverse auto correlated sequences
 195

 

  

Definition: 

Let {a1, a2, …} be a sequence; then the n-th term bn of the Smarandache reverse auto 

correlated sequence {b1, b2, …} is defined in the following way: bn is the sum from k = 1 

to k = n of the numbers an*an-k+1.  

The first three terms of the sequence:  

b1 = a1^2, b2 = 2*a1*a2, b3 = a2^2 + 2*a1*a3. 

 

(98)  The Smarandache forward reverse sum sequence
196

 

  

                                                 
193

 Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 

Smarandache sequences, Hexis, 2005, p. 88-89. 
194

 Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 

Smarandache sequences, Hexis, 2005, p. 88-89. 
195

 Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 
Smarandache sequences, Hexis, 2005, p. 94. 
196

 Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 
Smarandache sequences, Hexis, 2005, p. 114. 
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Definition: 

The n-th term of the sequence Tn  is equal to Tn-1 + R(Tn-1), where R(Tn-1) is the number 

formed reversing the digits of Tn-1. 

The first fifteen terms of the sequence (A001127 in OEIS):  

1, 2, 4, 8, 16, 77, 154, 605, 1111, 2222, 4444, 8888, 17776, 85547, 160105. 

Conjectures: 

 1. There are infinitely many palindromes in this sequence. 

 2. The number 16 is the only square in this sequence. 

 

(99)  The Smarandache reverse multiple sequence
197

 

  

Definition: 

The sequence of numbers that are multiples of their reversals; palindromes and multiples 

of ten are considered trivial and are not included. 

The first ten terms of the sequence (A031877 in OEIS):  

8712, 9801, 87912, 98901, 879912, 989901, 8799912, 9899901, 87128712, 87999912. 

Properties: 

 1. This sequence is infinite. 

2. There are two families of numbers in this sequence, one derived from 8712 and 

one derived from 9801; each family is constructed by placing 9’s in the middle. 

3. The number formed by concatenation of two terms of this sequence derived from 

the same family is also a member of that family. 

 

(100)  The Smarandache symmetric perfect power sequences
 198

 

  

Definition: 

The sequence of numbers that are simultaneously m-th power and palindromic. 

Smarandache symmetric perfect square sequence:  

{1, 4, 9, 121, 484, 14641, …} 

Smarandache symmetric perfect cube sequence:  

{1, 8, 343, 1331, …} 

Theorem: 

The Smarandache symmetric perfect m-th power sequence has infinitely many terms for 

m = 1, 2, 3 and 4. 

Conjecture: 

The Smarandache symmetric perfect m-th power sequence has infinitely many terms for 

all values of m. 

 

(101)  The Smarandache Fermat additive cubic sequence
199

 

  

Definition: 

                                                 
197

 Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 

Smarandache sequences, Hexis, 2005, p. 114. 
198

 Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 

Smarandache sequences, Hexis, 2005, p. 124. 
199

 Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 
Smarandache sequences, Hexis, 2005, p. 127. According to the authors, “the name of Fermat is included in the 

description to relate it to the fact that though the sum of two cubes can not yield a third cube, the sum of more 

than two cubes can be a third cube (3^3 + 4^3 + 5^3 = 6^3)”. 
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The terms of the sequence are the perfect cubes that have the property that the sum of the 

cubes of their digits is also a perfect cube. 

The first four terms of the sequence (A061212 in OEIS):  

1, 8, 474552, 27818127. 

Examples:  

(i) 474552 = 78^3 and 4^3 + 7^3 + 4^3 + 5^3 + 5^3 + 2^3 = 729 = 9^3. 

(ii) 27818127 = 303^3 and the sum of cubes of digits equals 1728 =12^3. 

Theorems:  

1. The Smarandache Fermat additive cubic sequence contains an infinite number of 

terms. 

2. The number (10^(n + 2) – 4)^3 is a member of the Smarandache Fermat additive 

cubic sequence when n can be expressed in the form 4*((10^(3*k – 1)/27) – 1, 

where k positive integer. The sum of the cubes of the digits will then equal 

(6*10^k)^3. 

 

(102)  The Smarandache patterned sequences 
  

Definition: 

Sequences of numbers which follow a certain pattern, obtained through a certain 

arithmetic operation from a root sequence of numbers which also follow a certain 

pattern.
200

 

Smarandache patterned perfect square sequences
201

: 

bn = 169, 17689, 1776889, 177768889, … is obtained from the root sequence: 

an = 13, 133, 1333, 13333, … (bn = an^2); 

bn = 1156, 111556, 11115556, 1111155556, … is obtained from the root sequence: 

an = 34, 334, 3334, 3334, … (bn = an^2); 

Smarandache patterned perfect cube sequences
202

: 

bn = 1003303631331, 1000330036301331, 1000033000363001331, … is obtained from: 

an = 10011, 100011, 1000011, 1000011,… (bn = an^3); 

bn = 912673, 991026973, 999100269973, 999910002699973, … is obtained from: 

an = 97, 997, 9997, 99997,… (bn = an^3). 

Smarandache patterned fourth power sequences
203

: 

bn = 96059601, 996005996001, 9996000599960001, … is obtained from: 

an = 99, 999, 9999, 99999,… (bn = an^4). 

 

(103)  The Smarandache prime generator sequence
204

 

                                                 
200

 Our definition is vaque; for the original definition of these sequences see Murthy, Amarnath, Exploring some new 

ideas on Smarandache type sets, functions and sequences, Smarandache Notions Journal, vol. 11, no. 1-2-3, 2000.  
201

Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 

Smarandache sequences, Hexis, 2005, p. 110. Obviously the sequences presented here are just few examples. 

In the cited book, the authors give more examples and formulas for the general term of each from these 

sequences. 
202

Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 

Smarandache sequences, Hexis, 2005, p. 121. 
203

Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 
Smarandache sequences, Hexis, 2005, p. 140. The authors give examples for Smarandache patterned fifth 

power sequences, Smarandache patterned sixth power sequences, Smarandache patterned seventh power 

sequences and Smarandache patterned eighth power sequences also, together with formulas for the general 
term and open problems. 
204

 Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 
Smarandache sequences, Hexis, 2005, p. 143. 
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Note: 

Are considered the recursive sequences of numbers formed in the following way: T1 is a 

prime and Tn+1 = k*Tn + 1, where k is the smallest number yielding a prime.
205

 

Examples: 

 1. For T1 = 2, the sequence is (A061092 in OEIS): 

  2, 3, 7, 29, 59, 709, 2837, 22697, 590123, 1180247, … 

 2. For T1 = 5, the sequence is (A059411 in OEIS): 

  5, 11, 23, 47, 283, 1699, 20389, 244669, 7340071, …  

Definition: 

Starting with the first prime, 2, the first prime not included in the sequence which starts 

with T1 = 2 is 5. Then starting with 5, the first prime not included in the sequence which 

starts with T1 = 5 is 13. Then starting with 13 the process is repeated. The Smarandache 

prime generator sequence is constructed using the first terms of these sequences. 

The first twenty terms of the Smarandache prime generator sequence (A061303 in OEIS):  

2, 5, 13, 17, 19, 31, 37, 41, 43, 61, 67, 71, 73, 79, 89, 97, 101, 109, 113, 127. 

Conjecture: 

The Smarandache prime generator sequence is finite. 

 

(104)  The Smarandache LCM ratio sequences 
  

Definition: 

Let lcm(x1, x2, …, xt) denote the least common multiple of positive integers x1, x2, …, xt. 

Let r be a positive integer, r > 1. For any positive integer n, let T(r, n)  = lcm(n, n + 1,…, 

n + r – 1)/lcm(1, 2, …, r), then the sequences SLR(r) = {T(r, n)} is called Smarandache 

LCM ratio sequences of degree r. 

Theorems
206

: 

1. T(2, n) = n*(n + 1)/2; 

2. T(3, n) = n*(n + 1)*(n + 2)/6 if n is odd and  

T(3, n) = n*(n + 1)*(n + 2)/12 if n is even; 

3. T(4, n) = n*(n + 1)*(n + 2)*(n + 3)/24 if n is not congruent to 0(mod 3) and  

T(4, n) = n*(n + 1)*(n + 2)*(n + 3)/72 if n is congruent to 0(mod 3); 

4. T(6, n) = n*(n + 1)*…*(n + 5)/7200 if n ≡ 0, 15 mod 20; 

 T(6, n) = n*(n + 1)*…*(n + 5)/720 if n ≡ 1, 2, 6, 9, 13, 14, 17, 18 mod 20; 

  T(6, n) = n*(n + 1)*…*(n + 5)/3600 if n ≡ 5, 10 mod 20 and 

  T(6, n) = n*(n + 1)*…*(n + 5)/1440 if n ≡  3, 4, 7, 8, 11, 12, 16, 19 mod 20. 

 

 

 

 

 

 

 

 

 

 

                                                 
205

 It has been proved that for every prime p there is a prime of the form k*p + 1. 
206

 For the proof of the Theorems 1-3 see Le, Maohua, Two formulas for Smarandache LCM ratio sequences, 

Smarandache Notions Journal, vol. 14, 2004; for the proof of theorem 4 and other theorems see Ting, Wang,  

Two formulas for Smarandache LCM ratio sequences, Scientia Magna, vol. 1, no. 1, 2005. 
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PART TWO 
Smarandache type functions and constants 

 

 

Chapter I. Smarandache type functions 

 

(1) The Smarandache function
207

 

 

Definition:  

The function S(n) defined on the set of positive integers with values in the set of positive 

integers with the property that S(n) is the smallest number so that S(n)! is divisible by 

n.
208

 

Example:  

S(8) = 4 because 1!, 2!, 3! Are not divisible by 8 but 4! is divisible by 8.  

Definition:  

The numbers generated by this function are called Smarandache numbers. 

The first thirty Smarandache numbers (A002034 in OEIS)
209

:  

1, 2, 3, 4, 5, 3, 7, 4, 6, 5, 11, 4, 13, 7, 5, 6, 17, 6, 19, 5, 7, 11, 23, 4, 10, 13, 9, 7, 29, 5. 

Properties:   

1. Max {p: p prime and p divides n} ≤ S(n) ≤ n for any positive integer n. 

2. S(m*n) does not always equal S(m)*S(n): the Smarandache function is not 

multiplicative. 

Theorems
210

:   

1. A characterization of a prime number: Let p be an integer greater than 4. Then p 

is prime if and only if S(p) = p. 

2. A formula to calculate the number of primes less than or equal to n: If n is an 

integer, n ≥ 4, then π(n), the number of prime numbers less than or equal to n, is 

equal to one less than the sum, from k = 2 to k = n, of the numbers m, where m is 

the smallest integer greater than or equal to S(k)/k. 

3.  If p and q are distinct primes, then S(p*q) = max{p, q}. 

4. Let n = p1*p2*…*pk, where all pi are distinct primes; then S(n) = max{p1, p2, …, 

pk}. 

5. If p is prime, then S(p^2) = 2*p. 

6. If p is prime, then S(p^k) = n*p, where n ≤ k. 

7. Let p be an arbitrary prime and n ≥ 1. Then, it is possible to find a number k such 

that S(p^k) = n*p. 

8. For any integer n ≥ 0, it is possible to find another integer m such that S(m) = n!. 

                                                 
207

 The research paper presenting for the first time this function, A function in the number theory , was 

published by Florentin Smarandache in 1980. Since then, hundreds of articles have been written about the 

properties of the Smarandache function. For a history of this function see Dumitrescu, Constantin, A brief 
history of the Smarandache function, Smarandache Function Journal, vol. 2-3, 1993. See also Ashbacher, 

Charles, An introduction to the Smarandache function, Erhus University Press, 1995. 
208

 See also supra, Part One, Chapter II, Section (1): The Smarandache Quotient sequence. 
209

 For a computer algorithm for the calculation of S(n), see Ibstedt, Henry, Computer analysis of number 

sequences, American Research Press, 1998, Chapter III: Non-recursive sequences, Section 2: The 

Smarandache function S(n). 
210

 For the proof of the Theorems 1-2, see Ruiz, S.M. and Perez, M., Properties and problems related to the 

Smarandache type functions, Arxiv. For the proof of Theorems 3-11, see Ashbacher, Charles, An introduction 
to the Smarandache function, Erhus University Press, S(p^k) 1995, p. 8-14, 30-32. 



 62 

9. Let S
k
(n) be used to represent k iterations of the function S, i.e. S(S(…S(n)…)). 

Then: if n = 1, S
k
(n) is undefined for k > 1; if n > 1, S

k
(n) = m, where m is 4 or 

prime, for all k sufficiently large. 

10. There is no number k such that, for every number n > 1, S
k
(n) = m, where m is a 

fixed point of the function S. 

11. If m > 2 is a fixed point of the function S, then there are infinitely many n such 

that S
k
(n) = m. 

Problems
211

:   

1. Study the Dirichlet series: sum from n = 1 to n = ∞ of the numbers S(n)/n^s. 

2. Let OS(n) be the number of integers 1 ≤ k ≤ n such that S(k) is odd and ES(n) be 

the number of integers 1 ≤ k ≤ n such that S(k) is even. Determine the limit when 

n tends to ∞ of the number OS(n)/ES(n). 

Definition:  

The series defined as the sum, for n ≥ 2, of the numbers 1/S(n)^m are called 

Smarandache harmonic series.
212

 

 

(2) The Smarandache double factorial function 

 

Definition:  

The function Sdf(n) defined on the set of positive integers with values in the set of 

positive integers with the property that Sdf(n) is the smallest number so that Sdf(n)!! is 

divisible by n. 

The first twenty-five values of the function Sdf(n):  

1, 2, 3, 4, 5, 6, 7, 4, 9, 10, 11, 6, 13, 14, 5, 6, 17, 12, 19, 10, 7, 22, 23, 6, 15. 

Theorems
213

:  

1. Sdf(p) = p, where p is any prime number. 

2. For any even squarefree number n, Sdf(n) = 2*max{p1, p2 , …, pk}, where p1, p2 , 

…, pk are the prime factors of n. 

3. For any composite squarefree odd number n, Sdf(n) = max{p1, p2 , …, pk}, where 

p1, p2 , …, pk are the prime factors of n. 

4. The series defined as the sum from n = 1 to n = ∞ of the numbers 1/Sdf(n) 

diverges. 

5. The series defined as the sum from n = 1 to n = ∞ of the numbers Sdf(n)/n 

diverges. 

6. The Sdf function is not additive, that is Sdf(n + m) ≠ Sdf(m) + Sdf(n) for gcd(m, 

n) = 1. 

7. The Sdf function is not multiplicative, that is Sdf(n*m) ≠ Sdf(m)*Sdf(n) for 

gcd(m, n) = 1. 

8. Sdf(n) ≤ n. 

9. Sdf(n) ≥ 1 for n ≥ 1. 

10. 0 ≤ Sdf(n)/n ≤ 1 for n ≥ 1. 
 
Problem:   

Given any n ≥ 1, how many times does n appear in this sequence? 

                                                 
211

 Kashihara, K., Comments and topics on Smarandache notions and problems, Erhus University Press, 1996, 

p. 15. 
212

 For a study of these series see Tabirca, Sabin and Tabirca, Tatiana, The convergence of Smarandache 

harmonic series, Smarandache Notions Journal, vol. 9, no. 1-2-3, 1998 and also Luca, Florian, On the 
divergence of the Smarandache harmonic series, Smarandache Notions Journal, vol. 10, no. 1-2-3, 1999. 
213

 R., Felice, A set of new Smarandache functions, sequences and conjectures in number theory, American 

Research  Press, 2000, Chapter IV: An introduction to the Smarandache double factorial function. 
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(3) The Smarandache near-to-primorial function
214

 

 

Definition:  

The function Sntp(n) defined on the set of positive integers with values in the set of 

primes with the property that Sntp(n) is the smallest prime such that either p# – 1, p# or 

p# + 1 is divisible by n.
215

 

Note:  Sntp(n) is undefined for squareful integers. 

  

(4) The Smarandache-Kurepa function
216

 

 

Definition
217

:  

The function SK(p) defined on the set of primes with values in the set of positive integers 

with the property that SK(p) is the smallest number so that !SK(p) is divisible by p, 

where !SK(p) = 0! + 1! + 2! + … + (p – 1)!. 

The first twenty values of the function Smarandache-Kurepa (A049041 in OEIS):  

2, 4, 6, 6, 5, 7, 7, 12, 22, 16, 55, 54, 42, 24, 25, 86, 97, 133, 64, 94, 72. 

 

(5) The Smarandache-Wagstaff function
218

 

 

Definition
219

:  

The function SW(p) defined on the set of primes with values in the set of positive 

integers with the property that SW(p) is the smallest number so that W(SW(p)) is 

divisible by p, where W(p) = 1! + 2! + … + p!. 

The first twenty values of the function Smarandache-Wagstaff:  

2, 4, 5, 12, 19, 24, 32, 19, 20, 20, 7, 57, 6, 83, 15, 33, 38, 9, 23, 70. 

 

(6) The Smarandache ceil functions of n-th order 

 

Definition:  

The function Sk(n) defined on the set of positive integers with values in the set of positive 

integers with the property that Sk(n) is the smallest number so that Sk(n)^k is divisible by 

n.
220

 

The first fifteen values of the Smarandache ceil function of the second order S2(n):  

                                                 
214

 For the properties of this function see Mudge, M.R., The Smarandache near-to-primorial (SNTP) function, 

and Asbacher, Charles, A note on the Smarandache near-to-primorial function, both articles in Smarandache 

Notions Journal, vol. 7, no. 1-2-3, 1996. 
215

 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 

Xiquan Publishing House, 2000, Problem 8. 
216

 See Mudge, M.R., Introducing the Smarandache-Kurepa and the Smarandache-Wagstaff functions, 

Smarandache Notions Journal, vol. 7, no. 1-2-3, 1996. 
217

 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 

Xiquan Publishing House, 2000, Problem 4. 
218

 See Mudge, M.R., Introducing the Smarandache-Kurepa and the Smarandache-Wagstaff functions, 

Smarandache Notions Journal, vol. 7, no. 1-2-3, 1996. 
219

 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 

Xiquan Publishing House, 2000, Problem 5. 
220

 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 
Xiquan Publishing House, 2000, Problem 6. See also Ibstedt, H., Surphing on the ocean of numbers – a few 

Smarandache notions and similar topics, Erhus University Press, Vail, 1997, Chapter II: On Smarandache 
functions, Section 3: The Smarandache ceil function. 
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2, 4, 3, 6, 10, 12, 5, 9, 14, 8, 6, 20, 22, 15, 12. 

The first fifteen values of the Smarandache ceil function of the third order S3(n):  

2, 2, 3, 6, 4, 6, 10, 6, 5, 3, 14, 4, 6, 10, 22.
221

 

 

(7) The Smarandache primitive functions 

 

Definition
222

:  

The function Sp(n) defined on the set of positive integers with values in the set of positive 

integers with the property that Sp(n)! is the smallest number so that Sp(n)! is divisible by 

p^n, where p is prime.
223

 

Example:  

S3(4) = 9, because 9! is divisible by 3^4, and this is the smallest number with this 

property . 

Note:  These functions help us compute Smarandache function. 

 

(8) The Smarandache functions of the first kind 

 

Definition
224

:  

The functions Sn defined on the set of positive integers with values in the set of positive 

integers in the following way:  

(i) if n = u^r (whith u = 1 or u = p being a prime number), then Sn(a) = k, where k is 

the smallest positive integer such that k! is a multiple of u^(r*a); 

(ii) if n = p(1)^r(1)*p(1)^r(2)*…*p(t)^r(t), then Sn(a) = max {Sp(j)^r(j)(a)}, where 1 ≤ j 

≤ t. 

 

(9) The Smarandache functions of the second kind 

 

Definition
225

:  

The functions S
k
 defined on the set of positive integers with values in the set of positive 

integers in the following way: S
k
(n) = Sn(k) for k positive integer, where Sn are the 

Smarandache functions of the first kind. 

 

(10) The Smarandache functions of the third kind 

 

Definition
226

:  

The functions Sa(n)(b(n)), where Sa(n) is the Smarandache function of the first kind and the 

sequences a(n) and b(n) are different from the following situations: 

(i) a(n) = 1 and b(n) = n for n positive integer; 

(ii) a(n) = n and b(n) = n for n positive integer. 

                                                 
221

 For the first few values of the Smarandache ceil functions of fourth, fifth and sixth order see Begay, 

Anthony, Smarandache ceil functions, Smarandache Notions Journal. 
222

 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 

Xiquan Publishing House, 2000, Theorem 11. 
223

 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 

Xiquan Publishing House, 2000, Problem 6. 
224

 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 

Xiquan Publishing House, 2000, Theorem 12. 
225

 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 
Xiquan Publishing House, 2000, Theorem 13. 
226

 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 

Xiquan Publishing House, 2000, Theorem 14. 
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(11) The pseudo-Smarandache function 

 

Definition
227

:  

The function Z(n) defined on the set of positive integers with values in the set of positive 

integers with the property that Z(n) is the smallest number so that the number 1 + 2 + … 

+ Z(n) is divisible by n.  

The first thirty pseudo-Smarandache numbers (A011772 in OEIS):  

1, 3, 2, 7, 4, 3, 6, 15, 8, 4, 10, 8, 12, 7, 5, 31, 16, 8, 18, 15, 6, 11, 22, 15, 24, 12, 26, 7, 28, 

15, 30, 63, 11, 16, 14, 8, 36, 19, 12, 15. 

Properties:   

1. Z(n) ≥ 1 for any n natural. 

2. It is not always the case that Z(n) < n. 

3. Z(m + n) does not always equal Z(m) + Z(n): the pseudo-Smarandache function is 

not additive. 

4. Z(m*n) does not always equal Z(m)*Z(n): the pseudo-Smarandache function is 

not multiplicative. 

Theorems
228

: 

 1. If  p is a prime greater than 2, then Z(p) = p – 1. 

2. If x equals any natural number, p equals a prime number greater than 2, and b 

equals p^x, then Z(b) = b – 1. 

 3. If x equals 2 to any natural power, then Z(x) = 2*x – 1. 

 4. Z(p^k) = p^k – 1 for any prime p greater than 2. 

 5. If n is composite, then Z(n) = max{Z(m): m divides n}. 

6. The series defined as the sum from n = 1 to n = ∞ of the numbers 1/Z(n) is 

divergent. 

7. Abs{Z(n + 1) – Z(n)} is unbounded. 

9. Given any integer k, k ≥ 2, the equation Z(k*n) = n has an infinite number of 

solutions.  

10. Given any fixed integer k, k ≥ 2, the equation k*Z(n) = n has an infinite number 

of solutions. 

11. Given any integer k, k ≥ 2, the equation Z(n + 1)/Z(n) = k has solutions. 

12. The ratio Z(2*n)/Z(n) is unbounded above. 

 

(12) The pseudo-Smarandache function of first kind 

 

Definition
229

:  

                                                 
227

 The pseudo-Smarandache function was defined by K. Kashihara (who mentioned that he thought to a 

function analogous with the Smarandache function, with similar definition but where multiplication is replaced 

by summation). See also Ibstedt, H., Surphing on the ocean of numbers – a few Smarandache notions and 
similar topics, Erhus University Press, Vail, 1997, Chapter II: On Smarandache functions, Section 4: The 

Smarandache pseudo function Z(n). 
228

 For the proof of theorems 1-6, see K. Kashihara, Comments and topics on Smarandache notions and 

problems, Erhus University Press, 1996, Chapter 2: The pseudo-Smarandache function and also Gorski, David, 

The pseudo-Smarandache function, Smarandache Notions Journal. For the proof of theorems 7-8 see 

Ashbacher, C., Pluckings from the tree of Smarandache sequences and functions, American Research Press, 

1998, p. 55-56. For the proof of Theorems 9-10 see Majumdar, A.A.K., Wandering in the world of 

Smarandache numbers, InProQuest, 2010, Chapter 4: The pseudo Smarandache function, Section 4.4.: 
Miscellaneous topics.  
229

The pseudo-Smarandache functions of first and second kind were defined by A.S. Muktibodh and S.T. 

Rathod, Pseudo-Smarandache functions of first and second kind.  
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The function Z1(n) defined on the set of positive integers with values in the set of positive 

integers with the property that Z1(n) is the smallest number so that the number 1^2 + 2^2 

+ … + Z1(n)^2 is divisible by n. 

The first fifteen values of the function Z1(n):  

1, 3, 4, 7, 2, 4, 3, 15, 13, 4, 5, 8, 6, 3, 4. 

Properties:   

1. Z1(n) = 1 only if n = 1. 

2. Z1(n) ≥ 1 for any n natural.  

3. Z1(p) ≤ p for p prime.  

4. If Z1(p) = n and p ≠ 3, then p > n. 

Theorem
230

:  If p is prime, p ≥ 5, then Z1(p) = (p – 1)/2. 

 

(13) The pseudo-Smarandache function of second kind 

 

Definition:  

The function Z2(n) defined on the set of positive integers with values in the set of positive 

integers with the property that Z1(n) is the smallest number so that the number 1^3 + 2^3 

+ … + Z1(n)^3 is divisible by n. 

The first fifteen values of the function Z2(n):  

1, 3, 2, 3, 4, 3, 6, 7, 2, 4, 10, 3, 12, 7, 5. 

 

(14) The Smarandache multiplicative one function
231

 

 

Definition:  

The function f defined on the set of positive integers with values in the set of positive 

integers with the property that, for any a and b with gcd(a, b) = 1, f(a*b) = max{f(a), 

f(b)}, i.e. it reflects the main property of the Smarandache function. 

Examples:  

Few functions that are S-multiplicative: the Smarandache function defined as S(n) = 

min{k: n divides k!} and the Erdős function defined as f(n) = max{p: p prime, p divides 

n}. 

 

(15) The inferior and the superior f–part of x
232

 

 

Definition:  

The strictly increasing functions f defined on the set of natural numbers with values in the 

set of natural numbers defined in the following way: if x is an element of the set of real 

numbers, then the inferior f–part of x is the smallest k such that f(k) ≤ x < f(k + 1) and the 

superior f–part of x is the smallest k such that f(k) < x ≤ f(k + 1). 

                                                 
230

 For the proof of this theorem, see Mukthibodh, A.S. and Rathod, S.T., Pseudo-Smarandache functions of 

first and second kind, p. 5. 
231

 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 

Xiquan Publishing House, 2000, Definition 2. This function is also met under the name Smarandache-

multiplicative function or S-multiplicative function: see F.S., Considerations on new functions in number 
theory, Arxiv, F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 312, 

Tabirca, Sabin, About Smarandache-multiplicative functions, Smarandache Notions Journal, vol. 11, no. 1-2-3, 

2000. 
232

 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 

Xiquan Publishing House, 2000, Definition 3. See also F.S., Sequences of numbers involved in unsolved 
problems, Hexis, 2006, Sequences 36-37. 
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Note:  Particular cases of this function are: inferior/superior prime part, inferior/superior square 

part, inferior/superior factorial part etc.
233

  

 

(16) The inferior and the superior fractional f–part of x
234

 

 

Definition:  

The strictly increasing functions f defined on the set of natural numbers with values in the 

set of natural numbers defined in the following way: if x is an element of the set of real 

numbers, then the inferior fractional f–part of x is the number x – f(x), where f(x) is the 

inferior f–part of x, defined above, and the superior fractional f–part of x is the number 

f(x) – x, where f(x) is the superior f–part of x, defined above. 

Note:  Particular cases of this function are: fractional prime part, fractional square part, 

fractional cubic part, fractional factorial part etc. 

 

(17) The Smarandache complementary functions 

 

Definition
235

:  

The strictly increasing function g defined on the set A with values in the set A defined in 

the following way: let “~” be a given internal law on A. Then we say that f, where f is a 

function also defined on the set A with values in set A, is complementary with respect to 

the function g and the internal law “~” if f(x) is the smallest k such that there exists z, 

where z belongs to the set A, so that x ~ k = g(z).  

Note:  Particular cases of this function are: square complementary function, cubic 

complementary function, m-power complementary function, prime complementary 

function etc.
236

 

 

(18) The functional Smarandache iteration of first kind 

 

Definition
237

:  

Let f be a function defined on the set A with values in the set A defined in the following 

way: f(x) ≤ x for all x and min {f(x)} ≥ m0 ≠ –∞. Let f have p ≥ 1 fix points m0 ≤ x1 ≤ x2 

≤ … ≤ xp [the point x is called fix is f(x) = x]. Then SI1f(x) is the smallest number of 

iterations k such that f(f(…f(x)…)), iterated k times, is constant. 

Example:   

Let n > 1 be  an integer and τ(n) be the number of positive divisors of n. Then SI1τ(n) is 

the smallest number of iterations k such that τ(τ(...τ(n)...)), iterated k times, is equal to 2, 

because  τ(n) < n for n > 2 and the fix points of the function τ are 1 and 2. Thus SI1τ(6) =  

3, because τ(τ(τ(6))) = τ(τ(4)) = τ(3) = 2 = constant. 

 

                                                 
233

 See supra, Part One, Chapter II, the homonymous sequences.  
234

 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 

Xiquan Publishing House, 2000, Definition 4. See also F.S., Sequences of numbers involved in unsolved 
problems, Hexis, 2006, Sequences 46-51. 
235

 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 

Xiquan Publishing House, 2000, Definition 5. 
236

 See supra, Part One, Chapter II, the following sequences: The square complements sequence, The cube 

complements sequence,  The m-power complements sequence, The prime additive sequence. 
237

For the definitions of functional Smarandache iterations of the first, second and third kind see F.S., 
Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, Xiquan 

Publishing House, 2000, Definitions 6, 7, 8. See also Ruiz, S.M. and Perez, M., Properties and problems 
related to the Smarandache type functions, Arxiv. 
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(19) The functional Smarandache iteration of second kind 

 

Definition:  

Let g be a function defined on the set A with values in the set A such that g(x) > x for all 

x and let b > x. Then SI2g(x,b) is the smallest number of iterations k such that 

g(g(…g(x)…)), iterated k times, is greater than or equal to b. 

Example:   

Let n > 1 be  an integer and σ(n) be the number of positive divisors of n. Then SI2σ(n,b) 

is the smallest number of iterations k such that σ(σ(...σ(n)...)), iterated k times, is greater 

than or equal to b, because σ(n) > n for n > 1. Thus SI2σ(4,11) = 3, because σ(σ(σ(4))) = 

σ(σ(7)) = σ(8) = 15 ≥ 11. 

 

(20) The functional Smarandache iteration of third kind 

 

Definition:  

Let h be a function with values in the set A such that h(x) < x for all x and let b < x. Then 

SI3h(x,b) is the smallest number of iterations k such that h(h(…h(x)…)), iterated k times, 

is smaller than or equal to b. 

Example:   

Let n be  an integer and gd(n) be the greatest positive divisor of n less than n. Then gd(n) 

< n for n > 1. Thus SI3gd(60,3) = 4, because gd(gd(gd(gd(60)))) = gd(gd(gd(30))) = 

gd(gd(15)) = gd(5) = 1 ≤ 3. 

 

(21) The Smarandache prime function
238

 

 

Definition:  

Let P be a function defined on the set of natural numbers with values in the set {0, 1}. 

Then P(n) = 0 if p is prime and P(n) = 1 otherwise. 

Example:   

P(2) = P(3) = P(5) = P(7) = P(11) =…= 0 whereas P(0) = P(1) = P(4) = P(6) = ... = 1. 

Generalization:  

Let Pk, where k ≥ 2, be a function defined on the set of natural numbers with values in the 

set {0,1}. Then Pk(n1, n2,…, nk) = 0 if n1, n2,…, nk are all prime numbers and Pk(n1, n2,…, 

nk) = 1 otherwise. 

 

(22) The Smarandache coprime function
239

 

 

Definition:  

                                                 
238

 For a deeper study of this function and of the following one see Ruiz, S.M., Applications of Smarandache 

functions, and prime and coprime functions, American Research Press, 2002. For theorems on this function 

and on the following one, see Vassilev-Missana, Mladen and Atanassov, Krassimir, Some Smarandache 

problems, Hexis, 2004, Chapter 1: On some Smarandache’s problems, Section 11: On four prime and coprime 

functions. 
239

 This function and the previous one are met, in the paper F.S., Considerations on new functions in number 

theory, Arxiv, under the abreviations S-prime function and S-coprime function. In the book F.S., Sequences of 

numbers involved in unsolved problems, Hexis, 2006, Sequences 285-286, these two functions are analogously 
defined but called Anti-prime function and Anti-coprime function. In the book Collected Papers, vol. II, 

Moldova State University, Kishinev, 1997, p. 137, they are simply called Prime function and Anti-prime 

function. 
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Let Pk, where k ≥ 2, be a function defined on the set of natural numbers with values in the 

set {0,1}. Then Pk(n1, n2,…, nk) = 0 if n1, n2,…, nk are coprime  numbers and Pk(n1, n2,…, 

nk) = 1 otherwise. 

 

(23) The smallest power function 

 

Definition:  

SP(n) is the smallest number m such that m^k is divizible by n, where k ≥ 2 is given. 

The first twenty values of the function SP(n) for k = 2 (sequence A019554 in OEIS):  

1, 2, 3, 2, 5, 6, 7, 4, 3, 10, 11, 6, 13, 14, 15, 4, 17, 6, 19, 10. 

Properties
240

:  

1. If p is prime, then SP(p) = p. 

2. If r is squarefree, then SP(r) = r. 

3. If (p1^s1)*… *(pk^sk) and all si ≤ pi, then SP(n) = n. 

 

(24) The residual function
241

 

 

Definition:  

Let L be a function defined on the set of integers with values in the set of integers. Then 

L(x, m) = (x + C1)…(x + CF(m)), m = 2, 3, 4, …, where Ci, 1 ≤ i ≤ F(m), forms a reduced 

set of residues mod m, m ≥ 2, x is an integer, and F is Euler’s totient. 

Example:   

For x = 0 is obtained the following sequence (A001783 in OEIS): L(m) = C1…CF(m), 

where m =  2, 3, 4, …: 

1, 2, 3, 24, 5, 720, 105, 2240, 189, 3628800, 385, 479001600, 19305, 896896, 2027025... 

Property
242

:   

The following congruence is true: (x + C1)…(x + CF(m)) ≡ x^F(m) – 1 (mod m). 

Comment:   

The residual function is important because it generalizes the classical theorems by 

Wilson, Fermat, Euler, Wilson, Gauss, Lagrange, Leibnitz, Moser, and Sierpinski all 

together. 

 

(25) The Smarandacheian complements
243

 

 

Definition:  

Let g be a strictly increasing function defined on the set A and let “~” be an internal 

given law on A. Then the function f defined on the set A with values in the set A is a 

smarandacheian complement with respect to the function g and the internal law “~” if 

f(x) is the smallest k such that there exist a z in A so that x ~ k = g(z). 

 

                                                 
240

 For more properties of this function, see F.S., Considerations on new functions in number theory, Arxiv. 
241

 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 35. For lemmas and 

theorems regarding this function see F.S., A numerical function in the congruence theory, Arxiv. 
242

 For the proof of this property, see Kashihara, K., Comments and topics on Smarandache notions and 
problems, Erhus University Press, 1996, Chapter 1: Some comments and problems on Smarandache notions, p. 

11. 
243

 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 52. The Sequences 53-
57 from the same book define the following notions: The square complements sequence; The cube 

complements sequence; The m-power complements sequence; The double factorial complements sequence; The 
prime additive complements sequence, which are treated supra, Part one, Chapter II.  
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(26) The increasing repetead compositions
244

 

 

Definition:  

Let g be a function defined on the set of natural numbers with values in the set of natural 

numbers, such that g(n) > n for all natural n. An increasing repetead composition related 

to g and a given positive number m is defined in the following way: the function Fg 

defined on the set of natural numbers with values in the set of natural numbers, Fg(n) = k, 

where k is the smallest integer such that g(…g(n)…) ≥ m (where g is composed k times). 

Note:  

 F.S. suggest the study of Fs, where s is the function that associates to each positive 

integer n the sum of its positive divisors. 

 

(27) The decreasing repetead compositions 

 

Definition:  

Let g be a non-constant function defined on the set of natural numbers with values in the 

set of natural numbers, such that g(n) ≤ n for all natural n. A decreasing repetead 

composition related to g is defined in the following way: the function Fs defined on the 

set of natural numbers with values in the set of natural numbers, Fs(n) = k, where k is the 

smallest integer such that g(…g(n)…) = constant (where g is composed k times). 

Note:  

 F.S. suggest the study of Fd, where d is the function that associates to each positive 

integer n the number of its positive divisors. Same for π(n), the number of primes not 

exceeding n, p(n), the largest prime factor of n and ω(n), the number of distinct prime 

factors of n. 

 

(28) The back and forth factorials (the Smarandacheials)
245

 

 

Definition:  

Let n > k ≥ 1 be two integers. Then the Smarandacheial is defined as !n!k = Π, where Π 

is the product for 0 < abs{n – k*i} ≤ n of the numbers (n – k*i). 

Example:   

In the case k = 1 is obtained:  

!n!1 = n*(n – 1)*(n – 2)*…*1*(– 1)*( – 2)*…*(– n + 2)*( – n + 1)*( – n) = (– 1)^n*n!^2; 

Thus !5! = 5*(5 – 1)*(5 – 2)*(5 – 3)*(5 – 4)*(5 – 6)*(5 – 7)*(5 – 8)*(5 – 9)*(5 – 10) = -

14400. 

The sequence is: 4, -36, 576, -14400, 518400, -25401600, 1625702400, -131681894400, 

13168189440000, -1593350922240000, 229442532802560000 (…). 

Notes:   

In the case k = 2 is obtained !n!2 = (-1)^((n + 1)/2)*(n!!)^2 for n odd and !n!2 = (-

1)^(n/2)*(n!!)^2 for n even. The sequence is: 9, 64, -225, -2304, 11025, 147456, -

893025, -14745600, 108056025, 2123366400 (…). 

                                                 
244

 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 151.  
245

 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 290. See also Back and 

forth factorials, Arizona State University, Special Collections (article available on Vixra), where F.S. defines 

the Smarandacheial and the generalized Smarandacheial. See also F.S., Sequences of numbers involved in 
unsolved problems, Hexis, 2006, Sequences 316-325, for the definition of the back and forth summants, a 

function related to Smarandacheials and Bencze, Mihály, Smarandache summands, Smarandache Notions 

Journal. 
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In the case k = 3 is obtained the sequence: -8, 40, 324, 280, -2240, -26244, -22400, 

246400, 3779136, 3203200, -44844800 (…). 

In the case k = 4 is obtained the sequence: -15, 144, 105, 1024, 945, -14400, -10395, -

147456, -135135, 2822400, 2027025 (…). 

In the case k = 5 is obtained the sequence: -24, -42, 336, 216, 2500, 2376, 4032, -52416, -

33264, -562500, -532224, -891072, 16039296 (…). 

 

(29) The Smarandache infinite products
246

 

 

Definition:  

Let a(n) be any from the Smarandache type sequences and functions. Then the infinite 

product is defined as the product from n = 1 to n = ∞ of the numbers 1/a(n). 

Note:  Many of these infinite products lead to interesting constants. 

 

(30) The Smarandache-simple function
247

 

 

Definition:  

Sp(n) = min{m: m natural, p^n divides m!), defined for fixed primes p. 

Properties
248

:  

1. For any prime p and any positive integer k, let Sp(k) denote the smallest positive 

integer such that p^k  divides Sp(k)! Then, for any p and k, p divides Sp(k). 

2. In the conditions mentioned in the above property, k*(p – 1) < Sp(k) ≤ k*p. 

 

(31) The duals of few Smarandache type functions
249

 

 

Definition:  

József Sándor defined the dual arithmetic functions as follows: Leg g be a function 

defined on the set of positive integers with values in the set of non-null integers having 

the property that for each n ≥ 1 there exists at least a k ≥ 1 such that g(k) divides n. 

A dual of Smarandache function:  

Putting in the definition above g(k) = k! is obtained a dual of Smarandache function, 

denoted by S*; then S*(n) = max{m: m natural, m! divides n). 

A dual of pseudo-Smarandache function:  

Putting in the definition above g(k) = k*(k + 1)/2 is obtained a dual of pseudo-

Smarandache function, denoted by Z*; then Z*(n) = max{m: m natural, m*(m + 1)/2 

divides n). 

A dual of Smarandache-simple function:  

Is denoted by Sp* and Sp*(n) = max{m: m natural, m! divides p^n). 

A dual of Smarandache ceil  function
250

:  

Is denoted by Sk* and Sk*(n) = max{m: m natural, m^k divides n).
251

 

                                                 
246

 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 314.  
247

 Sándor, József, On additive analogues of certain arithmetic functions, Smarandache Notions Journal, vol. 

14, 2004. 
248

 Le, Maohua, On Smarandache simple functions, in Seleacu, V., Bălăcenoiu, I. (editors), Smarandache 

Notions (Book series), vol. 10, American Research Press, 1999. 
249

 Sándor, József, On additive analogues of certain arithmetic functions, Smarandache Notions Journal, vol. 

14, 2004, Sándor, József, On certain generalizations of the Smarandache function, Smarandache Notions 

Journal, vol. 11, no. 1-2-3, 2000, Sándor, József, On a dual of pseudo-Smarandache function, Smarandache 
Notions Journal, vol. 13, no. 1-2-3, 2002. 
250

 It was introduced by Lu Yaming, see On a dual function of the Smarandache ceil function, in Wenpeng, 

Zhang, et al. (editors), Research on  Smarandache problems in number theory (vol. 2), Hexis, 2005. 
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(32) Generalizations of Smarandache function 

 

Note:  

The Smarandache function is the well known function that gives a criterion for primality 

and is related with many other functions, i.e. the function S(n) defined on the set of 

positive integers with values in the set of positive integers with the property that S(n) is 

the smallest number so that S(n)! is divisible by n. Many mathematicians constructed 

analogously defined functions
252

: 

Definition 1
253

:   

Let f be an arithmetical function defined on the set of positive integers with values in the 

set of positive integers with the property that for each positive integer n there exist at 

least a positive integer k such that n divides f(k). Let Ff be a function defined on the set of 

positive integers with values in the set of positive integers with the property that Ff(n) = 

min{k: k natural, n divides f(k)}. Since every subset of natural numbers is well ordered, 

is clearly that  Ff(n) ≥ 1 for all n positive integers. 

Examples:   

(i) Let id(k) = k  for all k ≥ 1. Then Fid(n) = n; 

(ii) Let f(k) = k!. Then F!(n) = S(n), the Smarandache function; 

(iii) Let f(k) = k*(k + 1)/2. Then Ff(n) = Z(n), the pseudo-Smarandache function; 

(iiii) Let f(k) = pk!, where pk denotes the k-th prime number. Then Ff(n) = min{k: k 

positive integer, n divides pk!}. 

Note:  

Analogously are defined the functions Fφ and Fσ, where φ is the Euler’s totient and σ the 

divisor function. 

Definition 2:   

Let A be a nonvoid set of the set of natural numbers, having the property that for each n ≥ 

1 there exists k belonging to A such that n divides k!. Then is introduced the following 

function: SA(n) = min{k: k belongs to A, n divides k!}. 

Examples:   

(i) Let A be equal to the set of positive integers; then SN(n) ≡ S(n), the Smarandache 

function; 

(ii) Let A be equal to the set of odd positive integers; it’s obtained a new 

Smarandache type function; 

(iii) Let A be equal to the set of even positive integers; it’s obtained a new 

Smarandache type function; 

(iiii) Let A be equal to the set of prime numbers P; then SP(n) = min{k: k belongs to P, 

n divides k!}.
254

 

 

(33) The Smarandache counter
255

 

                                                                                                                                                             
251

 See supra, this chapter, Section (6) for the definition of Smarandache ceil functions of n-th order. 
252

 We present here just few of them. See also Hungenbühler, Norbert and Specker, Ernst, A generalization of 
the Smarandahe function to several variables, Integers: Electronic Journal of Combinatorial Number Theory, 

6(2006).    
253

 See Sándor, József, On certain generalizations of the Smarandache function, Smarandache Notions Journal, 

vol. 11, no. 1-2-3, 2000, for the functions defined here by Definitions 1 and 2. 
254

 For more about this function, see infra, Part four, Chapter I: Theorems on the Smarandache type function 

P(n).  
255

 Ashbacher, C., Pluckings from the tree of Smarandache sequences and functions, American Research Press, 

1998, p. 8-9. See also Kashihara, K., Comments and topics on Smarandache notions and problems, Erhus 

University Press, 1996, p. 24. 
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Definition:  

The Smarandache counter C(a, b), for any a decimal digit and b integer, is the number of 

times a appears as a digit in b. 

Note: 

 F.S. raised the following question: what is the value of C(1, n!) and C(1, n^n)? 

 

(34) The pseudoSmarandache totient function
256

 

 

Definition:  

Zt(n) is the smallest integer m such that the sum from k = 1 to k = m of the numbers φ(k) 

is divisible by n. 

Theorems:  

1. Zt(n) is not additive and not multiplicative. 

2. Zt(n) > 1 for n > 1. 

3. The series defined as the sum from n = 1 to n = ∞ of the numbers 1/Zt(n) 

diverges. 

4. The series defined as the sum from n = 1 to n = ∞ of the numbers Zt(n)/n 

diverges. 

5. The series defined as the sum from k = 1 to k = Zt(n) of the numbers φ(k) is 

greater than or equal to n. 

6. Zt(n) is greater than or equal to floor(π*(n/3)^(1/2)), where the floor function 

floor(x) designates the largest integer smaller than or equal to x. 

7. It is not always the case that Zt(n) < n. 

 

(35) The pseudoSmarandache squarefree function
257

 

 

Definition:  

Zw(n) is the smallest integer m such that m^n is divisible by n, that is the value of m such 

that m^n/n is an integer. 

Theorems:  

1. Zw(p) = p, where p is any prime number. 

2. Xw(p^a*q^b*s^c*…) = p*q*s*…, where p, q, s are distinct primes. 

3. Zw(n) = n if and only if n is squarefree. 

4. Zw(n) ≤ n. 

5. Zw(n) ≥ 1 for n ≥ 1. 

6. Zw(p^k) = p for k ≥ 1 and p any prime. 

7. The series defined as the sum from n = 1 to n = ∞ of the numbers 1/Zw(n) 

diverges. 

8. The series defined as the sum from n = 1 to n = ∞ of the numbers Zw(n)/n 

diverges. 

                                                 
256

 This function, analogous to the pseudoSmarandache function, is defined by Felice Russo: see R., Felice, A 

set of new Smarandache functions, sequences and conjectures in number theory, American Research  Press, 

2000, Chapter I: On some new Smarandache functions in number theory, Section I.1.: PseudoSmarandache 

totient function. 
257

 This function, analogous to the pseudoSmarandache function, is defined by Felice Russo: see R., Felice, A 
set of new Smarandache functions, sequences and conjectures in number theory, American Research  Press, 

2000, Chapter I: On some new Smarandache functions in number theory, Section I.2.: PseudoSmarandache 
squarefree function. 
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9. The function Zw(n) is multiplicative, that is if gcd(m, n) = 1 then Zw(m*n) = 

Zw(m)*Zw(n). 

10. The function Zw(n) is not additive, that is that Zw(m + n) ≠ Zw(m) + Zw(n). 

 

(36) The Smarandache Zeta function
258

 

 

Definition:  

Sz(s) is the sum from n = 1 to n = ∞ of the numbers 1/a(n)^s, where s natural. 

 

(37) The Smarandache sequence density 

 

Definition:  

Sδ is the limit when n tends to ∞ of the number A(n)/n, where A(n) is the number of 

terms not exceeding n in a Smarandache sequence a(n), strictly increasing and composed 

of nonnegative integers. 

 

(38) The Smarandache generating function 

 

Definition:  

Sf(x) is the sum of the numbers a(n)*x^n. 

 

(39) The Smarandache totient function 

 

Definition:  

St(n) is equal to φ(a(n)), that is the number of positive integers smaller than or equal to 

a(n) which are relatively prime to a(n). 

 

(40) The Smarandache divisor function 

 

Definition:  

Sd(n) is equal to τ(a(n)), that is the number of positive divisors of a(n), where a(n) is any 

Smarandache sequence. 

 

(41) The additive analoque of few Smarandache functions
259

 

 

Definition 1:  

The additive analogue of the Smarandache function is defined as S(x) = min{m:  m 

natural, x ≤ m!}, where x belongs to the set of real numbers, x > 1. 

Definition 2:  

                                                 
258

 The functions treated in the Sections (36)-(40) are defined by Felice Russo: see R., Felice, A set of new 
Smarandache functions, sequences and conjectures in number theory, American Research  Press, 2000, 

Chapter II: A set of new Smarandache-type notions in number theory. Here, the author defines yet many other 

functions like Smarandache continued radical, Smarandache Euler-Mascheroni sum, Smarandache-

Chebyshev function, Smarandache Gaussian sum, Smarandache Dirichlet beta function, Smarandache Mobius 

function, Smarandache Mertens function, Smarandache Dirichlet eta function, Smarandache Dirichlet lambda 
function etc. 
259

 Sándor, József, Geometric theorems, diophantine equations, and arithmetic functions, American Research 

Press, 2002, p. 171. See also Sándor, József, On an additive analoque of the function S, Notes Number Th. 
Discr. Math. 7(2001), no. 3; Sándor, József, On additive analoques of certain arithmetic functions, 

Smarandache Notions Journal, vol. 14, 2004; Yuan, Yi and Wenpeng, Zhang, Mean value of the additive 
analoque of Smarandache function, Scientia Magna, vol. 1, no. 1, 2005. 
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The additive analogue of the dual of the Smarandache function
260

 is defined as S*(x) = 

max{m:  m natural, m! ≤ x}, where x belongs to the set of real numbers, x > 1. 

Properties:  

1. S(x) = S*(x) + 1, if k! < x < (k + 1)!, where k ≥ 1 and S(x) = S*(x), if x = (k + 1)!, 

where k ≥ 1, therefore S*(x) + 1 ≥ S(x) ≥ S*(x). 

2. S*(x) is surjective and an increasing function. 

Theorem:  

S(x) is asymptotically equal to (log x)/(log log x), when x tends to ∞. 

Definition 3:  

The additive analogue of the Smarandache simple function
261

 [which is defined for fixed 

primes p as Sp(n) = min{m: m natural, p^n divides m!)}] is defined as Sp(x) = min{m:  m 

natural, p^x ≤ m!}, where x belongs to the set of real numbers, x > 1. 

Definition 4:  

The additive analogue of the dual of Smarandache simple function
262

 [which is defined 

for fixed primes p as Sp*(n) = max{m: m natural, m! divides p^n)}] is defined as Sp*(x) = 

max{m:  m natural, m! ≤ p^x}, where x belongs to the set of real numbers, x > 1. 

 

(42) The Smarandache P and S persistence of a prime
263

 

 

Definition 1:  

Let X be any n-digits prime number, X = x1x2x3…xn. Reiterating the operation X + 

x1*x2*x3*…*xn, is eventually obtained a composite number; the number of steps required 

for X to collapse into a composite number is called the Smarandache P-persistence of the 

prime X. 

Examples:  

1. For X = 43 is obtained 43 + 4*3 = 55, a composite number, so the Smarandache 

P-persistence of the prime 43 is 1 (only one step was required to obtain a 

composite number).  

2. For X = 23 is obtained 23 + 2*3 = 29, then, reiterating, 29 + 2*9 = 47 and 47 + 

4*7 = 75, a composite number, so the Smarandache P-persistence of the prime 23 

is 3 (three steps were required to obtain a composite number). 

Definition 2: 

Let X be any n-digits prime number, X = x1x2x3…xn. Reiterating the operation X +  x1 + 

x2 + x3 + …+ xn, is eventually obtained a composite number; the number of steps 

required for X to collapse into a composite number is called the Smarandache S-

persistence of the prime X. 

Example:  

For X = 277 is obtained 277 + 2 + 7 + 7 = 293, a prime number; reiterating the 

operation is obtained 293 + 2 + 9 + 3 = 307, also a prime, 307 + 3 + 0 + 7 = 317, 

also a prime, and eventually 317 + 3 + 1 + 7 = 328, finally a composite number, 

so the Smarandache S-persistence of the prime 277 is 4 (four steps were required 

to obtain a composite number). 

 

(43) Smarandache type multiplicative functions
264

 

 

                                                 
260

 See supra, this chapter, Section (31) for the definition of the dual of the Smarandache function. 
261

 See supra, this chapter, Section (30) for the definition of the Smarandache simple function. 
262

 See supra, this chapter, Section (31) for the definition of the dual of the Smarandache simple function. 
263

 Russo, Felice, The Smarandache P and S peristence of a prime, Smarandache Notions Journal. 
264

 Bottomley, Henry, Some Smarandache-type multiplicative functions, Smarandache Notions Journal. 
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Note:  

The following functions are multiplicative in the sense that, for any two coprime positive 

integers a, b, the following relation is true: f(a*b) = f(a)*f(b). 

Definitions:  

1. Am(n) is the number of solutions to the equation x^m ≡ 0(mod n); 

2. Bm(n) is the largest m-th power dividing n; 

3. Cm(n) is the m-th root of the largest m-th power dividing n; 

4. Dm(n) is the m-th power free part of n; 

5. Em(n) is the smallest number x, x > 0, such that n*x is a perfect m-th power 

(Smarandache m-th power complements); 

6. Fm(n) is the smallest m-th power divisible by n divided by the largest m-th power 

which divides n; 

7. Gm(n) is the m-th root of the smallest m-th power divisible by n divided by the 

largest m-th power which divides n; 

8. Hm(n) is the smallest m-th power divisible by n; 

9. Jm(n) is the m-th root of the smallest m-th power divisible by n (Smarandache ceil 

function of m-th order); 

10. Km(n) is the largest m-th power-free number dividing n (Smarandache m-th 

power residues); 

11. Lm(n) is the number obtained dividing n by the largest squarefree divisor of n. 

First few values, for m = 2,  of the functions above
265

:  

 Am(n):  1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 4, 1, 3, 1, 2, …  (sequence A000188); 

 Bm(n):  1, 1, 1, 4, 1, 1, 1, 4, 9, 1, 1, 4, 1, 1, 1, 16, 1, 9, 1, …   (sequence A008833); 

Cm(n):  1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 4, 1, 3, 1, 2, …  (sequence A000188); 

Dm(n): 1, 2, 3, 1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1, 17, …   (sequence A007913); 

Em(n): 1, 2, 3, 1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1, 17, …  (sequence A007913); 

Fm(n): 1, 4, 9, 1, 25, 36, 49, 4, 1, 100, 121, 9, 169, 196, …   (sequence A055491); 

Gm(n): 1, 2, 3, 1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1, 17, …  (sequence A007913); 

Hm(n): 1, 4, 9, 4, 25, 36, 49, 16, 9, 100, 121, 36, 169, 196, …  (sequence A053143); 

Jm(n): 1, 2, 3, 2, 5, 6, 7, 4, 3, 10, 11, 6, 13, 14, 15, 4, 17, 6, …  (sequence A019554); 

Km(n): 1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 11, 6, 13, 14, 15, 2, 17, 6, … (sequence A007947); 

Lm(n): 1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 11, 6, 13, 14, 15, 2, 17, 6, …  (sequence A003557). 

Comment:  

Between the functions defined above are the following relashinships: Bm(n) = Cm(n)^m; n 

= Bm(n)* Dm(n); Fm(n) = Dm(n)* Em(n); Fm(n) = Gm(n)^m; Fm(n); Hm(n) = n* Em(n); 

Hm(n) = Bm(n)* Fm(n); Hm(n) = Jm(n)^m; n = Km(n)* Lm(n). 

 

(44) The Smarandache factor partition function
266

 

 

Definition:  

Let α1, α2, …, αr be a set of natural numbers and p1, p2, …, p3 a set of arbitrary primes. 

The Smarandache factor partition (SFP) of α1, α2, …, αr, f(α1, α2, …, αr), is defined as the 

number of ways in which the number n = p1^α1* p2^α2*…* p2^α2 can be expressed as the 

product of its’ divisors. 

                                                 
265

 The first values of all these functions, for m = 2, 3 and 4, are listed in OEIS. 
266

 Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 

Smarandache sequences, Hexis, 2005, Chapter 1: Smarandache partition functions, Section 4: Generalizations 
of partition function, introduction of the Smarandache factor partition. In this book (Chapter 1) the authors 

introduced yet other Smarandache type functions like Smarandache star function and raised a lot of open 

problems and conjectures on the factor/reciprocal partition theory. 
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Example:  

For the set of primes, (2, 3), f(1, 2) = 4 as n = 2^1*3^2 = 18 and n = 18 = 2*9 = 3*6 = 

2*3*3. 

Theorem
267

:  

Definition: For a positive integer n let τ(n) and f(n) be the number of distinct divisors 

and the Smarandache factor partitions respectively. If n is the smallest number 

satisfying τ(n) = f(n) = r for some r, then n is called a Balu number. 
 Enunciation: The number 36 is the largest Balu number (in other words, the three Balu 

numbers known to date, i.e. 1, 16, 36, are the only three Balu numbers).
268

  

 

(45) Smarandache fitorial and supplementary fitorial functions269
 

 

Definition:  

 The Smarandache fitorial, denoted by FI(n), is defined as the product of all the numbers 

relatively prime to and less than n. 

Examples:  

 FI(6) = 1*5 = 5; FI(7) = 6! = 620; FI(12) = 1*5*7*11 = 385. 

Definition:  

 The Smarandache fitorial, denoted by FI(n), is defined as the product of all the numbers 

relatively prime to and less than n. 

Examples:  

 FI(6) = 1*5 = 5; FI(7) = 6! = 620; FI(12) = 1*5*7*11 = 385. 

Definition:  

 The Smarandache supplementary fitorial, denoted by SFI(n), is defined as the product of 

all the numbers less than or equal to n which are not relatively prime to n. 

Examples:  

 SFI(6) = 2*3*4*6 = 144; SFI(7) = 7; SFI(12) = 2*3*4*6*8*9*10*12 = 1244160. 

Properties:  

 1. FI(n)*SFI(n) = n!; 

 2. SFI(p) = p and Fi(p) = (p – 1)! if and only if p is prime. 

Theorem
270

:  

 For large values of n, SFI(2^n)/FI(2^n) ≈ (π/2)^(1/2). 

 

(46) The Smarandache reciprocal function271
 

 

Definition:  

 The function Sc(n) defined in the following way: Sc(n) = x, where x + 1 does not divide 

n! and, for every y < x, y divides n!. 

                                                 
267

 For the proof of the theorem see Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and 

new ideas on number theory and Smarandache sequences, Hexis, 2005, Chapter 2: Smarandache sequences, 

Section 1: On the largest Balu numberand some SFP equations. 
268

 Maohua Le proved before that there are only finitely many Balu numbers; see Le, Maohua, On the Balu 
numbers, Smarandache Notions Journal, vol. 12, no. 1-2-3, 2001. 
269

 Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 

Smarandache sequences, Hexis, 2005, Chapter 3: Miscellaneous topics, Section 8: Smarandache fitorial and 
supplementary fitorial functions.  
270

 Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 

Smarandache sequences, Hexis, 2005, p. 172. 
271

 Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 

Smarandache sequences, Hexis, 2005, Chapter 3: Miscellaneous topics, Section 10: Smarandache reciprocal 
function and an elementary inequality. 
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Theorem
272

:  

 If Sc(n) = x and n ≠ 3, then x + 1 is the smallest prime greater than n. 

 

(47) The sumatory function associated to Smarandache function
273

 

 

Definition:  

 The sumatory function F(n) associated to Smarandache function is defined as the sum of 

the numbers S(d), where S is the Smarandache function and d divides n. 

 

 

Chapter II. Constants involving the Smarandache function 

 

(1) The first constant of Smarandache
274

 

 

Definition:  

Let S(n) be the Smarandache function, i.e. the smallest integer such that S(n)! is divisible 

by n. Then the series defined as the sum from n = 2 to n = ∞ of the numbers 1/S(n)! is 

convergent to a number s1 between 0.000 and 0.717. 

Note:   

The fact that the sum is convergent is proved using the following theorem: for n > 10, 

S(n)! > n.
275

 

 

(2) The second constant of Smaraendache
276

 

 

Definition:  

Let S(n) be the Smarandache function. Then the series defined as the sum from n = 2 to n 

= ∞ of the numbers S(n)/n! is convergent to an irrational number s2. 

Theorem:   

The sum that defines the second constant of Smarandache is convergent.
277

 

 

 (3) The third constant of Smarandache
278

 

 

                                                 
272

 Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 
Smarandache sequences, Hexis, 2005, p. 175. 
273

 Andrei, M., et al., Some considerations concerning the sumatory function associated to Smarandache 

function,  

Smarandache Notions Journal, vol. 7, no. 1-2-3, 1996. 
274

 For the definitions of the first, second, third and fourth constant of Smarandache see F.S., Definitions,  
solved and unsolved problems, conjectures, and theorems in number theory and geometry, Xiquan Publishing 

House, 2000, Theorems 15, 16, 17, 18. See also Sándor, József, On the irrationality of certain constants 

related to the Smarandache function, in Seleacu, V., Bălăcenoiu, I. (editors), Smarandache Notions (Book 
series), vol. 10, American Research Press, 1999, for the comments about the proof of irrationality of few 

constants of Smarandache. See Cojocaru, Ion and Cojocaru, Sorin, The first constant of Smarandache, 

Smarandache Notions Journal, vol. 7, no. 1-2-3, 1996. 
275

 For the proof of this theorem, see Ashbacher, C., Smarandache Sequences, stereograms and series, Hexis, 

Phoenix, p. 95. 
276

 See Cojocaru, Ion and Cojocaru, Sorin, The second constant of Smarandache, Smarandache Notions 

Journal, vol. 7, no. 1-2-3, 1996. 
277

 For the proof of this theorem, see Ashbacher, C., Smarandache Sequences, stereograms and series, Hexis, 
Phoenix, p. 103. 
278

 See Cojocaru, Ion and Cojocaru, Sorin, The third and fourth constants of Smarandache, Smarandache 

Notions Journal, vol. 7, no. 1-2-3, 1996. 
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Definition:  

Let S(n) be the Smarandache function. Then the series defined as the sum from n = 2 to n 

= ∞ of the numbers  1/S(2)*S(3)*…*S(n)  is convergent to a number s3 between 0.71 

and 1.01. 

Theorem:   

The sum that defines the third constant of Smarandache is convergent.
279

 

 

(4) The fourth constant of Smarandache 

 

Definition:  

Let S(n) be the Smarandache function. Then the series defined as the sum from n = 2 to n 

= ∞ of the numbers  n^x/S(2)*S(3)*…*S(n), where x ≥ 2, is convergent to a number s4.  

Note:  

The number s4 is different for different values of x, so it designates a set of constants. 

Theorem
280

:   

The sum that defines the fourth constant of Smarandache is convergent for any value of x 

≥ 2. 

 

(5) Other Smarandache constants
281

 

 

Theorems
282

:  Let Sn be the Smarandache function. Then: 

1. The series defined as the sum from n = 2 to n = ∞ of the numbers ((–1)^(n – 

1))*(Sn/n!) is convergent to an irrational number s5. 

2. The series defined as the sum from n = 2 to n = ∞ of the numbers Sn/(n + 1)! is 

convergent to an irrational number s6 greater than e^(-3/2) and smaller than 1/2. 

3. The series defined as the sum from n = k to n = ∞ of the numbers Sn/(n + k)!, 

where k is a natural number, is convergent to a number s7. 

4. The series defined as the sum from n = k to n = ∞ of the numbers Sn/(n – k)!, 

where k is a nonzero natural number, is convergent to a number s8. 

5. The series defined as the sum from n = 2 to n = ∞ of the numbers 1/Σ, where Σ is 

the sum from i = 2 to i = n of the numbers Si!/i, is convergent to a number s9. 

6. The series defined as the sum from n = 2 to n = ∞ of the numbers 

1/(Sn*Sn!^(1/x)), where x > 1, is convergent to a number s10. 

7. The series defined as the sum from n = 2 to n = ∞ of the numbers 1/(Sn*(Sn – 

1)!^(1/x)), where x > 1, is convergent to a number s11. 

8. Let f be a function defined on the set of positive integers with values in the set of 

real numbers which satisfies the condition f(n) ≤ c/((τ(n!))*n^x – τ((n – 1)!)), 

where c and x are given constants, greater than 1, and τ(n) is the number of 

positive divisors of n. Then the series defined as the sum from 1 to ∞ of the 

numbers f(S(n)) is convergent to a number s12. 

                                                 
279

 For the proof of this theorem, see Ashbacher, C., Smarandache Sequences, stereograms and series, Hexis, 

Phoenix, p. 105. 
280

 For the proof of this theorem, see Ashbacher, C., Smarandache Sequences, stereograms and series, Hexis, 

Phoenix, p. 107. 
281

 Many Smarandache constants are defined in F.S., Definitions, solved and unsolved problems, conjectures, 

and theorems in number theory and geometry, Xiquan Publishing House, 2000, Theorems 15-30.  
282

 For the proof of these theorems see Ashbacher, C., Smarandache Sequences, stereograms and series, 

Hexis, Phoenix, p. 109-118. For even more theorems about constants involving Smarandache function see the 

same book, p. 119-132. 
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9. The series defined as the sum from n = 1 to n = ∞ of the numbers 1/Π^n, where Π 

is the product from k = 2 to k = n of the numbers Sk!, is convergent to a number 

s13. 

10. The series defined as the sum from n = 1 to n = ∞ of the numbers 

1/(Sn!*(Sn!)^(1/2)*(log Sn)^p), where p > 1, is convergent to a number s14. 

11. The series defined as the sum from n = 1 to n = ∞ of the numbers (2^n)/S(2^n)! is 

convergent to a number s15. 

12. The series defined as the sum from n = 1 to n = ∞ of the numbers Sn/(n^(p + 1)), 

where p is a real number greater than 1,  is convergent to a number s16 (when 0 ≤ 

n ≤ 1, the series diverges). 
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PART THREE 
Conjectures on Smarandache notions and conjectures on number theory due 

to Florentin Smarandache 
 

 

Chapter I. Conjectures on Smarandache notions  

 

(1) Conjectures on Smarandache function 
 

Conjecture 1 (Tutescu’s Conjecture
283

): 

The diophantine equation S(n) = S(n + 1) has no solutions. This conjecture was checked 

up to n = 10^9.
284

 

Conjecture 2 (Radu’s Conjecture): 

The diophantine equation S(n) + S(n + 1) = S(n + 2) has infinitely many solutions. 

Conjecture 3
285

:
 
 

There are infinitely many pairs of Fibonacci numbers (Fi, Fj) such that S(Fi) = Fj. 

Note: If Fi is prime, then clearly (Fi, Fi) is a solution but it is not known if there are 

infinitely many Fibonacci numbers that are also primes.  

 

(2) Conjectures on pseudo-Smarandache function
286

 

 

Conjecture 1: 

The diophantine equation Z(x) = Z(x + 1) has no solutions. 

Conjecture 2: 

For any given positive number r there exists an integer s, such that the absolute value of 

Z(s) – Z(s + 1) is greater than r.  

Conjecture 3: 

Abs{Z(n + 1)/Z(n)} is unbounded. 

Conjecture 4: 

There are infinitely many integers n such that Z(τ(n)) = τ(Z(n)), where τ(n) is the number 

of positive divisors of n. 

Conjecture 5: 
Let Z

k
(n) represent the repeated application of the pseudo-Smarandache function k times 

Z(Z(…Z(n)…)); question: are there any integers n such that there is not some k for which Z
k
(n) = 

3? Conjecture: there is no value of n for which the repeated application of the pseudo-

Smarandache does not lead to 3. 

 

(3) Conjectures on Smarandache double factorial function
287

 

 

                                                 
283

 Tutescu, L., On a conjecture concerning the Smarandache function, Abstracts of Papers presented to the 

Amer. Math. Soc., 17, 583, 1996. For Conjectures 1-2 see also Ruiz, S.M. and Perez, M., Properties and 

problems related to the Smarandache type functions, Arxiv. 
284

According to article Smarandache function  from the on-line math encyclopedia Wolfram Math World.  
285

 Ashbacher, Charles, An introduction to the Smarandache function, Erhus University Press, 1995, p. 41. 
286

 For the first two conjectures, see F.S., Definitions, solved and unsolved problems, conjectures, and 

theorems in number theory and geometry, Xiquan Publishing House, 2000, Problem 29. For Conjectures 3-5, 

see Ashbacher, C., Pluckings from the tree of Smarandache sequences and functions, American Research 
Press, 1998, p. 55, 76, 78. 
287

 See Russo, Felice, A set of new Smarandache functions, sequences and conjectures in number theory, 

American Research  Press, 2000, Chapter IV: An introduction to the Smarandache double factorial function. 
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Conjecture 1: 

The sum from n = 1 to n = ∞ of the numbers Sdf(n) is asymptotically equal to a*n^b 

where a and b are close to 0.8834… and 1.759… respectively. 

Conjecture 2: 

The sum from n = 1 to n = ∞ of the numbers 1/Sdf(n) is asymptotically equal to a*n^b 

where a and b are close to 0.9411… and 0.49… respectively. 

Conjecture 3: 

The function Sdf(n)/n is not distributed uniformly in the interval [0, 1]. 

Conjecture 4: 

For any arbitrary real number r > 0, there is some number n ≥ 1 such that Sdf(n)/n < r. 

Conjecture 5: 

The equations Sdf(n + 1)/Sdf(n) = k respectively Sdf(n)/Sdf(n + 1) = k , where k is any 

positive integer and n > 1 for the first equation don’t admit solutions. 

 

(4) Conjecture involving irrational and transcendental numbers 

 

Enunciation:   

Let a(n) be a Smarandache sequence, different from u(n) = 1…1, where 1 is repetead pn 

times, where pn is the n-th prime. Then the concatenation 0.a(1)a(2) …a(n)… is an 

irrational number and, even more, 0.a(1)a(2) …a(n)… is a transcendental number.
288

 

 

(5) Conjecture on Smarandache function average
289

 

 

Enunciation:   

Let SA be the Smarandache function average. Then SA(n) = 2*n/ln n, for n > 1. 

Note:   S. Tabirca and T. Tabirca proved that SA(n) ≤ 3*n/8 + 1/4 + 2/n for n > 5 and SA(n) ≤  

21*n/72 + 1/12 – 2/n for n > 23.  

 

(6) Conjecture on pseudo-Smarandache function and palindromes
290

 

 

Enunciation:   

Let Z(n) be the pseudo-Smarandache function.
291

 There are some palindromic numbers n 

such that Z(n) is also palindromic: Z(909) = 404, Z(2222) = 1111. Let Z
k
(n) = 

Z(Z(Z(…(n)…))), where function Z is executed k times and Z
0
(n) is, by convention, n. 

What is the largest value of Z(n) such that, for some n,  Z
k
(n) is a palindrome for all k = 

0, 1, 2, …, m? 

Note:   A number is called palindromic number or palindrome if it reads the same forwards and 

 backwards. 

Conjecture:    

                                                 
288

 See infra, Part Four, Chapter 1, Section (11): Theorem on the Smarandache concatenated power decimals, 

for the proof of irrationality of few such numbers. See also Luca, Florian, On the Smarandache irrationality 
conjecture, Smarandache Notions Journal, vol. 11, no. 1-2-3, 2000, for the proof of irrationality of other such 

types of numbers. 
289

 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 

Xiquan Publishing House, 2000, Problem 28. See also Finch, Steven R., The average value of the 

Smarandache function, in Seleacu, V., Bălăcenoiu, I. (editors), Smarandache Notions (Book series), vol. 10, 

American Research Press, 1999. 
290

 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 

Xiquan Publishing House, 2000, Theorem 1. 
291

 The smallest number Z(n) such that 1 + 2 + 3 + …+ Z(n) is divisible by n.  
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Charles Ashbacher conjectured that there is no a largest value of Z(n) such that, for some 

n, Z
k
(n) is a palindrome for all k = 0, 1, 2, …, m. 

 

(7) Conjecture on Smarandache deconstructive sequence
292

 

 

Enunciation:   

The Smarandache deconstructive sequence contains infinitely many primes. 

 

(8) Conjectures on Smarandache odd sequence
293

 

 

Conjecture 1:   

Except for the trivial case of n = 1, there are no numbers in the Smarandache odd 

sequence that are also Fibonacci numbers. 

Conjecture 2:   

Except for the trivial case of n = 1, there are no numbers in the Smarandache odd 

sequence that are also Lucas numbers. 

 

(9) Conjectures on Smarandache even sequence
294

 

 

Note:   

Up through the number 2468101214161820222426283032, just one element of even 

sequence (ES) was found to be twice a prime (2468101214 = 2*1234050607). 

Conjecture 1:   

There are other values of n such that ES(n) = 2*p for p a prime. 

Conjecture 2:   

The only number in the Smarandache even sequence and a Fibonacci number is the 

trivial case of n = 2. 

Conjecture 3:   

The only number in the Smarandache even sequence and a Lucas number is the trivial 

case of n = 2. 

 

 

Chapter II. Conjectures on primes due to Smarandache 

 

(1) Generalizations of Andrica’s Conjecture
295

 

 

Enunciation:  
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294

 Ashbacher, C., Pluckings from the tree of Smarandache sequences and functions, American Research Press, 
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 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 

Xiquan Publishing House, 2000, Problem 1. F.S., Six conjectures which generalize or are related to Andrica’s 
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The equation pn+1^x – pn^x = 1, where pn is the n-th prime, has a unique solution between 

0.5 and 1; the maximum solution occurs for n = 1, i.e. 3^x – 2^x = 1 when x = 1 and the 

minimum solution occurs for n = 31, i.e. 127^x – 113^x = 1 when x = 0.567148… = a0. 

Thus, Andrica’s conjecture An = pn+1^(1/2) – pn^(1/2) < 1 is generalised to: 

(i)  Bn = pn+1^a – pn^a < 1, where a < a0; 

(ii)   Cn = pn+1^(1/k) – pn^(1/k) < 2/k, where k ≥ 2; 

(iii) Dn = pn+1^a – pn^a < 1/n, where a < a0 and n big enough, n = n(a), holds for 

infinitely many consecutive primes. Questions: is this still available for a < a0 < 

1? Is there any rank n0 depending on a and n such that this relation is verified for 

all n ≥ n0? 

(iiii) pn+1/pn ≤ 5/3, and the maximum occurs at n = 2.
296

 

Note: The number 0.567148130202017714646846875533482564586790249388… is called the 

Smarandache constant.
297

 

 

(2) Generalizations of Goldbach’s and de Polignac’s Conjectures
298

 

 

A.Odd numbers 

1. Any odd integer n can be expressed as a combination of three primes as follows: 

(i)  As a sum of two primes minus another prime: n = p + q – r, where p, q, r are all 

prime numbers (do not include the trivial solution: p = p + q – q when p is prime. 

Questions: Is this conjecture equivalent with Goldbach's Conjecture (any odd 

integer greater than or equal to 9 is the sum of three primes)? Is the conjecture 

true when all three prime numbers are different? In how many ways can each odd 

integer be expressed as above? 

(ii) As a prime minus another prime and minus again another prime: n = p – q – r, 

where p, q, r are all prime numbers. Questions: Is this conjecture equivalent with 

Goldbach's Conjecture? Is the conjecture true when all three prime numbers are 

different? In how many ways can each odd integer be expressed as above? 

(Vinogradov proved in 1937 that every sufficiently large odd number k is the sum 

of three odd primes). 

2. Any odd integer n can be expressed as a combination of five primes as follows: 

(i)  As a sum of four primes minus another prime: n = p + q + r + t – u, where p, q, r, 

t, u are all prime numbers (do not include the solution u equal to one of other four 

primes). Questions: Is the conjecture true when all five prime numbers are 

different? In how many ways can each odd integer be expressed as above? 

(ii) As a sum of three primes minus another two primes: n = p + q + r – t – u, where p, 

q, r, t, u are all prime numbers (do not include the solutions t or u equal to one of 

                                                 
296
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 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 

Xiquan Publishing House, 2000, Problem 2. Also see Perez, M.L., More Smarandache conjectures on primes' 
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other three primes). Questions: Is the conjecture true when all five prime numbers 

are different? In how many ways can each odd integer be expressed as above? 

(iii) As a sum of two primes minus another three primes: n = p + q – r – t – u, where p, 

q, r, t, u are all prime numbers (do not include the solutions r, t or u equal to one 

of other two primes). Questions: Is the conjecture true when all five prime 

numbers are different? In how many ways can each odd integer be expressed as 

above? 

(iiii) As a prime minus another four primes: n = p – q – r – t – u, where p, q, r, t, u are 

all prime numbers (do not include the solution p equal to one of other four 

primes). Questions: Is the conjecture true when all five prime numbers are 

different? In how many ways can each odd integer be expressed as above? 

 

B. Even numbers 

1. Any even integer n can be expressed as a combination of two primes as follows: 

(i)  As a difference of two primes: n = p – q, where p, q are both prime numbers. 

Questions: Is it equivalent with Goldbach conjecture that every even number 

greater than 4 is the sum of two odd primes? In how many ways can each even 

integer be expressed as above? 

2. Any even integer n can be expressed as a combination of four primes as follows: 

(i)  As a sum of three primes minus another prime: n = p + q + r – t, where p, q, r, t 

are all primes. Questions: Is the conjecture true when all four prime numbers are 

different? In how many ways can each odd integer be expressed as above? 

(ii)  As a sum of two primes minus another two primes: n = p + q – r – t, where p, q, r, 

t are all primes. Questions: Is the conjecture true when all four prime numbers are 

different? In how many ways can each odd integer be expressed as above? 

(iii)  As a prime minus a sum of three primes: n = p – q – r – t, where p, q, r, t are all 

primes. Questions: Is the conjecture true when all four prime numbers are 

different? In how many ways can each odd integer be expressed as above? 

 

  C. General conjecture 

  Let k ≥ 3, and 1 ≤ s < k, be integers.  Then: 

(i)  If k is odd, any odd integer can be expressed as a sum of k – s primes (first set) 

minus a sum of s primes (second set), such that the primes of the first set is 

different from the primes of the second set. Questions: Is the conjecture true when 

all k prime numbers are different? In how many ways can each odd integer be 

expressed as above?  

(ii) If k is even, any even integer can be expressed as a sum of k – s primes (first set) 

minus a sum of s primes (second set), such that the primes of the first set is 

different from the primes of the second set. Questions: Is the conjecture true when 

all k prime numbers are different? In how many ways can each even integer be 

expressed as above? 

 

(3) Conjecture on Gaussian primes
299

 

 

Definition:  

Let ω numbers be a + b*ω, where ω is a complex n-th root of unity, ω^(n – 1) + ω^(n – 

2)+...+ 1 = 0, which enjoy unique factorization. The units are: ±1, ±ω, ±ω^2,…, ±ω^(n – 

1). 
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Conjecture: 

The configurations of ω primes are symmetric of the 2n regular polygon. 

Note: 

This is a generalization of Einstein's integers. 

 

(4) Conjecture on the difference between two primes
300

 

 

Enunciation:   

There are not, for any even integer n, two primes those difference is equal to n. 

 

(5) Conjecture on a  Silverman problem
301

 

 

Notes:  

1. Daniel Silverman raised the problem if the product from n = 1 to n = m of the numbers 

(pn + 1)/(pn – 1), where pn is the n-th prime, is an integer for any other value of m beside 

the values 1, 2, 3, 4, 8. 

2. F.S. conjectured that the number Rm, where Rm is the product from n = 1 to n = m of the 

numbers (pn + k)/(pn – k), is an integer for a finite number of values of m and there is an 

infinite number of values of k for which no Rm is an integer. 
 

(6) Conjecture on twin primes involving the pseudo-twin primes
302

 

 

Enunciation:   

Let p be a positive integer. Then p and p + 2 are twin primes if and only if (p – 1)!*((1/p 

+ 2/(p + 2)) + 1/p + 1/(p + 2) is an integer. 

Definition:   

Let p be a positive integer. Then p and p + 2 are pseudo-twin primes if and only if ((p – 

1)! + 1)/p + ((p + 1)! + 1)/(p + 2) is an integer. 

Note:   

If p and p + 2 are classic twin primes, then they are also pseudo-twin primes, for by 

Wilson's Theorem, both the first and second terms are integers. 

Problem:   

Are there pseudo-twin primes that are not classic twin primes? 

 

 

Chapter III. Conjectures on Diophantine equations due to Smarandache 

 

(1) Generalization of Catalan’s Conjecture
303

 

 

Enunciation:  
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Let k be a non-zero integer. There are only a finite number of solutions in integers p, q, x, 

y, each greater than 1, of the equation x^p – y^q = k. 

Notes:  

1. Eugène Charles Catalan conjectured in nineteenth century that the only solution 

of the diophantine equation x^p – y^q = 1 is the solution [x, y, p, q] = [3, 2, 2, 3]. 

2. J.W.S. Cassels conjectured in 1953 that, if exist, there are only a finite number of 

solutions in integers of the equation x^p – y^q = 1. Robert Tijdeman proved this 

in 1976. 

3. Preda Mihăilescu proved the Catalan’s Conjecture in 2002.   

 

(2) Conjecture proved by Florian Luca
304

 

 

Enunciation:   

Let a, b, c be three integers with a*b ≠ 0. Then the equation a*x^y + b*y^x = c*z^n, with 

x, y, z ≥ 2 and gcd(x, y) ≥ 1, has finitely many solutions [x, y, z, n]. 

 

(3) Conjecture on diophantine equation y = 2*x1*x2*…*xn + 1 

 

Enunciation
305

:    

Let n be integer, n ≥ 2. The diophantine equation y = 2*x1*x2*…*xn + 1 has an infinity 

of solutions of primes. 

Examples:  691 = 2*3*5*23 + 1, where k = 4 or 647 = 2*17*19 + 1, where k = 3. 

Problems
306

:  

1. Find all n such that pm = p1*p2*...*pn + 1, where all are prime and m > n. 

2. Is there a solution for the m = 2*n, m = n^2  and m = n*(n + 1)/2 cases? 

3. Find the solution of y = 2*x1*x2*…*xk + 1 for all k such that the product 

x1*x2*…*xk is the smallest. Does this equation have a solution for all k natural 

numbers? 

 

 

Chapter IV. Other conjectures due to Smarandache 

 

(1) Conjecture on an Erdős’ open problem
 307

 

 

Description:  

In one of his books, Paul Erdős proposed the following problem: “The integer n is called 

a barrier for an arithmetic function f if m + f(m) ≤ n for all m < n. Question: are there 

infinitely many barriers for x*ω(n), for some x greater than 0 (where ω(n) is the number 
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of distinct prime factors of n)?”. Based on some results regarding this question (four 

lemmas), F.S. conjectured that there is a finite number of barriers, for all x > 0. 

Lemma 1:  

If x > 1, there are two barriers only: n = 1 and n = 2 (trivial barriers). 

Lemma 2:  

There is an infinity of numbers which can not be barriers for x*ω(n), for any x > 0. 

Lemma 3:  

For all x between 0 (exclusive) and 1 (inclusive) there are nontrivial barriers for x*ω(n). 

Lemma 4:  

Let n be a number between 1 (inclusive) and p1*…*pr*pr+1 (inclusive) and x between 0 

(exclusive) and 1 (inclusive). Then n is a barrier if and only if R(n) is verified for m 

belonging to the set {n – 1, n – 2, …, n – r + 1}. 

 

(2) Conjecture on the difference between a cube and a square
308

 

 

Enunciation:   

There are infinitely many numbers that cannot be expressed as the difference between a 

cube and a square (in absolute value). These numbers are called Smarandache bad 

numbers. 

Examples:   

1. The following numbers can be written as the difference between a cube and a 

square (so they are not Smarandache bad numbers): 1 = abs{2^3 – 3^2}; 2 = 

abs{3^3 – 5^2}; 3 = abs{1^3 – 2^2}; 4 = abs{5^3 – 11^2}; 8 = {1^3 – 3^2} etc. 

2. The following numbers are probable Smarandache bad numbers: 5, 6, 7, 10, 13, 

14 etc. 
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PART FOUR 
Theorems on Smarandache notions and theorems on number theory due to 

Florentin Smarandache 
 

 

Chapter I. Theorems on Smarandache type notions  

 

(1) Theorems on Smarandache function 

 

Theorem 1
309

:  

Let NS(k), k ≥ 1, be a generic expression for sequences of integers expressed in 

functional form.
310

 Let NS(k) = k*(k + 1)/2, the k-th triangular number. Then, there are 

infinitely many integers k such that S(SN(k)) = k. 

Theorem 2
311

:  

There is no composite number k such that S(k*(k + 1)/2) = k. 

Theorem 3
312

:  
It is not possible to find a number n such that S(n)*S(n + 1) = n. 

Theorem 4
313

:  

Given the values of the Smarandache function S(1) = 0, S(2) = 2, S(3) = 3, S(4) = 4, S(5) 

= 5,…, construct the number r by concatenating the values in the following way: 

0.02345…The number r is irrational. 

Theorem 5
314

:  

 Let p be any prime number; then S((p^p)^n) = p^(n + 1) – p^n + p. 

Theorem 6
315

:  

 The following inequalities are true for a, b, n positive integers: 

(i) S(a*b) ≤ S(a) + S(b); 

(ii) S(a*b) ≤ a*S(b); 

(iii) S(n^2) ≤ 2*S(n) ≤ n for n > 4, n even. 

Theorem 7
316

:  

The series defined as the sum from n ≥ 1 of the numbers x^n/S(1)*S(2)*…*S(n) 

converges absolutely for every x. 

Theorem 8
317

:  

Let S(m) = min{k: k natural, m divides k!} be the Smarandache function,  let k = 1, 2, …, 

n and ak and bk belonging to set of non-null natural numbers. Then we have the following 
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inequality: S(Π) ≤ Σ, where Π is the product from k = 1 to k = n of the numbers (ak!)^bk 

and Σ is the sum from k = 1 to k = n of the numbers ak*bk. 

Theorem 8
318

:  

Let S(m) = min{k: k natural, m divides k!} be the Smarandache function. Then we have 

the following inequality: S(Π) ≤ Σ, where Π is the product from k = 1 to k = m of the 

numbers mk and Σ is the sum from k = 1 to k = m of the numbers S(mk). 

Theorem 9
319

:  

The following inequality is true, for p prime and n natural: (p – 1)*n + 1 ≤ S(p^n) ≤ p*n. 

Theorem 10:  

The following statement is true, for p prime and n natural: S(p^n) = p*(n – m) for a 

particular m, where 0 ≤ m ≤ [(n – 1)/p]. 

Theorem 11
320

:  

The following inequality is true: S(p^a) ≤ S(q^a) for p ≤ q primes and a nonnegative 

integer. 

Theorem 12:  

The following inequality is true: S(n) ≤ S(n – S(n)). 

Theorem 13:  

The following inequality is true: S(p^x) ≤ S(p^y), for p prime and x ≤ y, where x, y, 

nonnegative integers. 

Theorem 14:  

The following inequality is true: S(p^a)/(p^a) ≤ S(p^(a + 1))/((p^(a + 1)), for a 

nonegative integer. 

Theorem 15:  

The following inequality is true: S(m*n) ≤ m*S(n) for all positive integers m, n. 

Theorem 16:  

The following inequality is true: max{S(m), S(n)} ≤ m*S(n) for all positive integers m, n. 

Theorem 17:  

The following inequality is true: S(m*n) ≥ max{S(m), S(n)} for all positive integers m, n. 

Theorem 18:  

The following inequality is true: S((m!)^n)) ≤ m*n for all positive integers m, n. 

Theorem 19:  

The following inequality is true: S(p! ± 1) > S(p!) for p prime. 

Theorem 20:  

The inferior limit, when n tends to ∞, from S(n)/n is equal to 0 and the superior limit, 

when n tends to ∞, from S(n)/n is equal to 1. 

Theorem 21:  

The inferior limit, when n tends to ∞, from S(n + 1)/S(n) is equal to 0 and the superior 

limit, when n tends to ∞, from S(n + 1)/S(n) is equal to +∞. 

Theorem 22:  

The inferior limit, when n tends to ∞, from [S(n + 1) – S(n)] is equal to -∞ and the 

superior limit, when n tends to ∞, from [S(n + 1) – S(n)] is equal to +∞. 

Theorem 23:  

The inferior limit, when n tends to ∞, from S(σ(n))/n, where σ(n) is the divisor function, 

is equal to 0.  
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Theorem 24:  

The inferior limit, when n tends to ∞, from S(φ(n))/n, where φ(n) is the Euler’s totient, is 

equal to 0.  

Theorem 25:  

The inferior limit, when n tends to ∞, from S(S(n))/n is equal to 0 and max{S(S(n))/n: n 

natural} is equal to 1. 

Theorem 26
321

:  

The positive integer n is a solution of equation S(n)^2 + S(n) = k*n, where k is a fixed 

positive integer, if and only if one of the following conditions is satisfied: 

(i) n = 1 for k = 2; 

(ii) n = 4 for k = 5; 

(iii) n = p*(p + 1) for k = 1, where p is a prime with p > 3; 

(iiii) n = p*(p + 1)/k for k > 1, where p is a prime with p ≡ -1(mod k). 

 

Theorem 27
322

:  

For any positive nitger k, k ≥ 1, the equation S(m1) + S(m2) +…+S(m) = S(m1 + m2 

+…+mk) has an infinity of positive integer solutions. 

 

(2) Theorems on Smarandache function of a set 

 

Definition
323

:  

Let A be a nonvoid set of positive integers having the following property: for each n ≥ 1, 

there exist at least a k belonging to A such that n divides k!. Then the Smarandache 

function of a set is defined as SA(n) = min{k: k belongs to A, n divides k!}. When A = P 

= set of prime numbers, the arithmetic function obtained is P(n) = min{p: p prime, n 

divides p!}.
324

 When A = Q = set of squares, the arithmetic function obtained is Q(n) = 

min{m^2: n divides (m^2)!}. 

Theorem 1
325

: 

 Let p be prime such that m^2 < p < (m + 1)^2. Then Q(p) = (m + 1)^2. 

Theorem 2: 

 Let p be prime and k positive integer. Then Q(p^k) = ([(k*p)^(1/2)] + 1)^2 for p > k. 

Theorem 3: 

 If p < q are primes, then Q(p*q) = ([q^(1/2)] + 1)^2. 

 

(3) Theorems on pseudo-Smarandache function 

 

Theorem 1
326

:  

Given the values of the pseudo-Smarandache function Z(1) = 1, Z(2) = 3, Z(3) = 2, Z(4) 

= 7, Z(5) = 4,…, construct the number r by concatenating the values in the following 

way: 0.13274…The number r is irrational. 
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Theorem 2: 

 There are infinitely many solutions to the equation Z(n) = S(n). 

Theorem 3: 

The series defined as the sum from k = 1 to k = ∞ of the numbers 1/(Z(n) +S(n)) is 

divergent. 

Theorem 4: 

 There are infinitely many integers n such that Z(n) = φ(n), where φ is Euler’s totient. 

Theorem 5: 

There are infinitely many composite integers n such that Z(n) = φ(n). 

Theorem 6: 

There are infinitely many solutions to the expression Z(n) + φ(n) = n. 

Theorem 7: 

The only solutions to the equation Z(n) + τ(n) = n, where n > 0 and τ(n) is the number of 

positive divisors of n, are 1, 8 and 9. 

Theorem 8
327

: 

The alternating iteration Z(…(φ(Z(φ(n)))…) ultimately leads to one of the following five 

2-cycles: 2 - 3, 8 - 15, 128 - 255, 32768 - 65535, 2147483648 - 4294967295.  

Theorem 9
328

: 

The following inequality is true: Z(n) > τ(n) for all integers n > 120. 

Theorem 10: 

The equation Z(n) + φ(n) = τ(n) has no solution. 

Theorem 11: 

The following inequality is true: Z(n) + φ(n) > τ(n) for any integer n, n ≥ 1. 

Theorem 12: 

The equation Z(n) + τ (n) = n has the only solution n = 56. 

Theorem 13: 

The only solutions of the equation Z(n) = σ(n) are n = 2^k, where k ≥ 1 and σ(n) is the 

divisor function. 

Theorem 14: 

The equation Z(S(n)) = Z(n) has an infinite number of solutions. 

Theorem 15: 

The equation S(Z(n)) = S(n) has an infinite number of solutions. 

Theorem 16: 

The equation S(Z(n)) = Z(n) has an infinite number of solutions. 

Theorem 17: 

The equation Z(S(n)) = S(n) has no solution. 

Theorem 18
329

: 

If we note with ΔS,Z(n) the absolute value of the number S(Z(n)) – Z(S(n)), then the 

following statements are true: the inferior limit, when n tends to ∞, of the number ΔS,Z(n) 

is smaller than or equal to 1;  the superior limit, when n tends to ∞, of the number ΔS,Z(n) 

is equal to +∞. 

 

(4) Theorems on Smarandache double factorial function 

                                                 
327

 Ibstedt, H., Mainly natural numbers – a few elementary studies on Smarandache sequences and other 
number problems, American Research Press, 2003, Chapter IV: The alternating iteration of the Euler φ 

function followed by the Smarandache Z function. 
328

 For the proof of the Theorems 9-17 see Majumdar, A.A.K., Wandering in the world of Smarandache 
numbers, InProQuest, 2010, Chapter 4: The pseudo Smarandache function, Section 4.4.: Miscellaneous topics. 
329

 Sándor, József, Geometric theorems, diophantine equations, and arithmetic functions, American Research 

Press, 2002, p. 156. 
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Theorem 1
330

:  

The equation Sdf(n)/n = 1has an infinite number of solutions. 

Theorem 2:  

The even (odd respectively) numbers are invariant under the application of Sdf function, 

namely Sdf(even) = even and Sdf(odd) = odd. 

Theorem 3:  

The diophantine equation Sdf(n) = Sdf(n + 1) doesn’t admit solutions. 

Theorem 4
331

:  

The equation Sdf(n) + φ(n) = n, where φ is Euler’s totient, has only four positive integer 

solutions, they are 8, 18, 27 and 125. 

 

(5) Theorems on Smarandache type function P(n)
332

 

 

Definition:  

P(n) is the function defined analogously with Smarandache function in the following 

way: let P be equal to the set of prime numbers; then P(n) = min{k: k belongs to P, n 

divides k!} 

Theorem 1:  

For each prime p one has P(p) = p, and, if n is squarefree, then P(n) is equal to the 

greatest prime divisor of n. 

Theorem 2:  

One has the inequality P(p^2) ≥ 2*p + 1. If q = 2*p + 1 is prime, then P(p^2) = q. More 

generally, P(p^m) ≥ m*p + 1 for all primes p and all integers m. there is equality, if m*p 

+ 1 is prime. 

Theorem 3:  

One has, for all n, m ≥ 1, S(n) ≤ P(n) ≤ 2*S(n) – 1 and P(n*m) ≤ 2*(P(n) + P(m)) – 1, 

where S(n) is the Smarandache function. 

 

(6) Theorem on Smarandache type function C(n)
333

 

 

Definition:  

C(n) is the function defined analogously with Smarandache function in the following 

way: let C(n, k) be the binomial coefficient, i.e. C(n, k) = n*(n – 1)*…*(n – k + 

1)/1*2*…*k = n!/(k!*(n – k)!)) for 1 ≤ k ≤ n; then C(n) = max{k: 1 ≤ k < n – 1, n divides 

C(n, k)} 

Theorem:  

C(n) is the greatest totient
334

 of n which is less then or equal to n – 2. 

 

                                                 
330

 See, for Theorems 1-3, Russo, Felice, A set of new Smarandache functions, sequences and conjectures in 
number theory, American Research  Press, 2000, Chapter IV: An introduction to the Smarandache double 

factorial function. 
331

 Yuan, Xia, On the Smarandache double factorial function, in Wenpeng, Zhang (editor), Research on number 

theory and Smarandache notions (Proceedings of the sixth international conference on number theory and 

Smarandache notions), Hexis, 2010. 
332

 See Sándor, József, On certain generalizations of the Smarandache function, Smarandache Notions Journal, 

vol. 11, no. 1-2-3, 2000, where this function is defined; also see supra, Part Two, Chapter I, Section (32): 

Generalizations of Smarandache function. 
333

 Sándor, József, Geometric theorems, diophantine equations, and arithmetic functions, American Research 

Press, 2002, p. 169. 
334

 A totient of n is a number k such  that gcd(k, n) = 1. 



 94 

(7) Theorems on a dual of Smarandache function
335

 

 

Definition:  

The dual of the Smarandache function S*(n) is defined as S*(n) = max{m: m natural, m! 

divides n). 

Theorem 1
336

:  

 For any integer n, n ≥ 1, the following inequality is true: 1 ≤ S*(n) ≤ S(n) ≤ n. 

Theorem 2:  

For any integer n, n ≥ p, where p is any prime, p > 2, the following equality is true: S*(n! 

+ (p – 1)!) = p – 1. 

Theorem 3:  

For any integer n and a, where 1 ≤ a ≤ n, the following inequality is true: S*(n*(n – 

1)*…*(n – a + 1) ≥ a. 

Theorem 4:  

For any integer n, n ≥ 1, the following statement is true: S*((2*n)!*(2*n + 2)!) is equal to 

2*n + 2, if 2*n + 3 is a prime and is greater than or equal to 2*n + 3, if 2*n + 3 is not a 

prime. 

Theorem 5:  

 For any integer n, n ≥ 1, the following inequality is true: S*((2*n + 1)!*(2*n + 3)!) ≥ 2*(n 

 + 2). 

 

(8) Theorems on a dual of pseudo-Smarandache function
337

 

 

Definition:  

A dual of the pseudo-Smarandache function, Z*(n), is the function defined in the 

following way: Z*(n) = max{m: m natural, m*(m + 1)/2 divides n). 

Theorem 1
338

:  

Let q be a prime such that p = 2*q – 1 is a prime too. Then Z*(p*q) = p. 

Theorem 2:  

For all n ≥ 1 the following inequality is true: 1 ≤ Z*(n) ≤ Z(n). 

Theorem 3:  

All solutions of equation Z*(n) = Z(n) can be written in the form n = r*(r + 1)/2, where r 

is a non-null natural number. 

Theorem 4:  

For all n the following inequality is true: Z*(n) ≤ ((8*n + 1)^(1/2) – 1)/2. 

Theorem 5:  

For all a, b ≥ 1 the following inequality is true: Z*(a*b) ≥ max{Z*(a), Z*(b)}. 

Theorem 6:  

For any integer k, k ≥ 1, the following equality is true: Z*(k*(k + 1)/2)) = k. 

Theorem 7:  

                                                 
335

 See supra, Part Two, Chapter I, Section (31) for the definitions of the duals of few Smarandache type 
functions. 
336

 For the proof of Theorems 1-5 see Majumdar, A.A.K., Wandering in the world of Smarandache numbers, 

InProQuest, 2010, Chapter 3: The Smarandache function, Section 3.2.1: The Smarandache dual function. 
337

 See supra, Part Two, Chapter I, Section (31) for the definitions of the duals of few Smarandache type 

functions. 
338

 For the proof of the Theorems 1-7 see Sándor, József, On a dual of pseudo-Smarandache function, 
Smarandache Notions Journal, vol. 13, no. 1-2-3, 2002 and Majumdar, A.A.K., Wandering in the world of 

Smarandache numbers, InProQuest, 2010, Chapter 4: The pseudo Smarandache function, Section 4.3.1: The 
pseudo Smarandache dual function. 
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For any p prime, p ≥ 3, and k integer, k ≥ 1, the following statement is true: Z*(p^k) is 

equal to 2 if p = 3 and is equal to 1 if p ≠ 3. 

 

(9) Theorems on Smarandache ceil function
339

 

 

Definition:  

The ceil function, denoted Sk(n), is the function defined on the set of positive integers 

with values in the set of positive integers with the property that Sk(n) is the smallest 

number so that Sk(n)^k is divisible by n. 

Theorem 1:  

Sk(n) is a multiplicative function. 

Theorem 2:  

Sk+1(n) divides Sk(n). 

Theorem 3:  

There exists k so that Sk(n!) = p#, where p is the largest prime dividing n and p# denotes 

the product all of primes less than or equal to p. 

 

(10) Theorems on Smarandache sequences 

 

Theorem 1
340

:  

There are no integers m, n and k such that SPS(n) = m^k.
341

 

Theorem 2
342

:  

The fixed points of SSC(n) are 1 and all numbers where every prime factor is to the first 

power.
343

 

Theorem 3
344

:  

There is no quadruple (m, m + 1, m + 2, m + 3) such that all four are fixed points of 

SSC(n). 

Theorem 4
345

:  

If the number p = 123456…k belongs to SCS, where p is prime, then k ≡ 1(mod 3).
346

 

Theorem 5
347

:  

For any positive integer n, n > 1, Sn (where Sn denotes the Smarandache n-ary sieve) 

contains infinitely many composite numbers. 

Theorem 6
348

:  

                                                 
339

 See, for the enunciation and proof of the Theorems 1-3, Ibstedt, H., Surphing on the ocean of numbers – a 
few Smarandache notions and similar topics, Erhus University Press, Vail, 1997, Chapter II: On Smarandache 

functions, Section 3: The Smarandache ceil function. See also supra, Part Two, Chapter I, Section (6): The 
Smarandache ceil functions of n-th order. 
340

 Ashbacher, C., Collection of problems on Smarandache notions, Erhus University Press, 1996, p. 8. 
341

 SPS is an acronym for Smarandache permutation sequence, i.e. the sequence 12, 1342, 135642, 

13578642…; see supra, Part One, Chapter I, Section (14). 
342

 Ashbacher, C., Collection of problems on Smarandache notions, Erhus University Press, 1996, p. 10. 
343

 SSC is an acronym for Smarandache square complements, i.e. the sequence 1, 2, 3, 1, 5, 6, 7…; see supra, 

Part One, Chapter II, Section (10). 
344

 Ashbacher, C., Collection of problems on Smarandache notions, Erhus University Press, 1996, p. 11. 
345

 Ashbacher, C., Collection of problems on Smarandache notions, Erhus University Press, 1996, p. 56. 
346

 SCS is an acronym for Smarandache consecutive sequence, i.e. the sequence 1, 12, 123, 1234…; see supra, 

Part One, Chapter I, Section (1). 
347

 Le, Maohua, On the Smarandache n-ary sieve, in Seleacu, V., Bălăcenoiu, I. (editors), Smarandache 

Notions (Book series), vol. 10, American Research Press, 1999. For the definition of the Smarandache n-ary 
sieve sequence see supra, Part one, Chapter II, Section (29).  
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For any positive integer m, m > 1, there exist infinitely many m-powers which are 

Smarandache pseudo-m-powers of third kind. 

Theorem 7
349

:  

The density of GSPs in positive integers is approximatively 0.11. 

Theorem 8
350

:  

There are no numbers in the Smarandache odd sequence there are also Fibonacci or 

Lucas numbers, except for the cases OS(1) = F(1) = F(2) = L(1) = 1, OS(2) = F(7) = 13. 

Theorem 10
351

:  

There are no numbers in the Smarandache even sequence that are also Fibonacci  or 

Lucas numbers, except for the case ES(1) = F(3) = 2. 

Theorem 11
352

:  

There are no terms in the Smarandache prime product sequence that are squares or higher 

powers of an integer greater than 1.  

Theorem 12:  

There are no numbers in the Smarandache prime product sequence there are also 

Fibonacci  or Lucas numbers, except for the cases PPS(1) = F(4) = L(2) = 3 and PPS(2) = 

L(4) = 7. 

Theorem 13
353

:  

There are no terms in the Smarandache square product sequence that are squares, cubes 

or higher powers of an integer greater than 1.  

Theorem 14:  

There are no numbers in the Smarandache square product of the first kind and of the 

second kind sequences there are also Fibonacci  or Lucas numbers, except for the cases 

SPS1(1) = F(3) = 2, SPS1(2) = F(5) = 5, respectively SPS2(2) = F(4) = L(2) = 3. 

Theorem 15
354

:  

There are no terms in the Smarandache higher power product sequences that are squares 

of an integer greater than 1.  

Theorem 16:  

If we define with 1^m*2*m*…*n^m + 1 the Smarandache higher power product 

sequence of the first kind, then: if m is not a number of the form m = 2^k for some 

integer k ≥ 1, then the sequence HPPS1(n) contains only one prime, namely HPPS1(1) = 

2. 

Theorem 17:  

If we define with 1^m*2*m*…*n^m – 1 the Smarandache higher power product 

sequence of the second kind, then: if both m and 2^m – 1 are primes, then the sequence 

HPPS2(n) contains only one prime, namely HPPS2(2) = 2^m – 1; otherwise, the sequence 

contains no prime. 

                                                                                                                                                             
348

 Le, Maohua, On Smarandache pseudo-powers of third kind, in Seleacu, V., Bălăcenoiu, I. (editors), 

Smarandache Notions (Book series), vol. 10, American Research Press, 1999. For the definition of the 

Smarandache pseudo-m-powers of the third kind see supra, Part one, Chapter II, Section (63).  
349

 Ashbacher, Charles and Neirynck Lori, The density of generalized Smarandache palindromes, 

Smarandache Notions Journal. For the definition of Generalized Smarandache Palindromes (GSPs) see supra, 

Part One, Chapter I, Section (22). 
350

 For the proof of the Theorems 8-19 see Majumdar, A.A.K., Wandering in the world of Smarandache 

numbers, InProQuest, 2010, Chapter 1: Some Smarandache sequences. 
351

 For the definitons of Smarandache odd and even sequences, see supra, Part One, Chapter I, Sections (3)-

(4). 
352

 For the definition of Smarandache prime product sequence, see supra, Part One, Chapter II, Section (33). 
353

 For the definition of Smarandache square product sequence, see supra, Part One, Chapter II, Section (51). 
354

 For the definition of Smarandache higher power  product sequences, see supra, Part One, Chapter II, 

Section (52). 
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Theorem 18
355

:  

There are no terms in the Smarandache consecutive sequence CS(n) and Smarandache 

reverse sequence RS(n) that are Fibonacci and Lucas numbers, except for the cases CS(1) 

= F(1) = F(2) = L(1) = 1 and CS(3) = L(10) = 123 respectively RS(1) = F(1) = F(2) = 

L(1) = 1 and RS(2) = F(8) = 21. 

Theorem 19
356

:  

There are no terms in the Smarandache symmetric sequence SS(n) that are Fibonacci and 

Lucas numbers, except for the cases SS(1) = F(1) = F(2) = L(1) = 1 and SS(2) = L(5) = 

11. 

Theorem 20
357

:  

The series defined as the sum from n = 1 to n = ∞ of the numbers CS(n)/RS(n) is 

divergent. 

Theorem 21
358

:  

If we note with a(n) the inferior factorial part of the positive integer n and with b(n) the 

superior factorial part of n
359

, the the following statement is true: the series I, defined as 

the sum from n = 1 to n = ∞ of the numbers 1/a(n)^α, and S, defined as the sum from n = 

1 to n = ∞ of the numbers 1/b(n)^α, for α any positive real number, are convergent if α > 

1 and divergent if α ≤ 1. 

Theorem 22
360

:  

If we note with a(n) the square complements (of n) sequence
361

, then the equation Σ = 

a(n*(n + 1)/2), where Σ is the sum from k = 1 to k = n of the numbers a(k), has only three 

solutions, they are 1, 2 and 3. 

 

(11) Theorem on the Smarandache concatenated power decimals362
 

 

Definition:  

For any positive integer k is defined the Smarandache concatenated k-power decimal αk 

as follows: α1 = 0.12345678910111213…, α2 = 0.149162536496481100…, α3 = 

0.182764125216343…  

Enunciation:  

For any positive integer k, αk is an irrational number. 

 

(12) Theorem on Smarandache function and perf 
ect numbers

363
 

 

Enunciation:  

                                                 
355

 For the definitons of Smarandache consecutive and reverse sequences, see supra, Part One, Chapter I, 

Sections (1)-(2). 
356

 For the definiton of Smarandache symmetric sequence, see supra, Part One, Chapter I, Section (10). 
357

 Majumdar, A.A.K., Wandering in the world of Smarandache numbers, InProQuest, 2010, Chapter 1: Some 
Smarandache sequences, Section 1.12: Series involving Smarandache sequences. 
358

 Jie, Li, On the inferior and superior factorial part sequences, in Wenpeng, Zhang (editor), Research on  
Smarandache problems in number theory (Collected papers), Hexis, 2004. 
359

 See supra, Part One, Chapter 2, Sections (25)-(26) for the definitions of inferior/superior factorial part of 

n. 
360

 Zhanhu, Li, On an equation for the square complements, Scientia Magna, vol. 2, no. 1, 2006. 
361

 See supra, Part One, Chapter 2, Section (10) for the definition of square complements sequence. 
362

 Guo, Yongdong and Le, Maohua, Smarandache concatenated power decimals and their irrationality, 
Smarandache Notions Journal, vol. 9, no. 1-2-3, 1998. 
363

 Ruiz, Sebastian Martin, Smarandache’s function applied to perfect numbers, Smarandache Notions Journal, 

vol. 10, no. 1-2-3, 1999. 
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If n is a perfect number of the form n = (2^(k – 1))*(2^k – 1), where k positive integer, 

and 2^k – 1 = p prime, then S(n) = p. 

 

(13) Theorem on Smarandache function and the Dirichlet divisor function364
 

 

Enunciation:  

For any positive integer n, the equation S(n) = τ(n) holds if and only if n = 2^(2^n – 1), 

where n is non-negative integer, and n = m*p^α, where m > 0 and m divides ((α1 + 

1)*(α2 + 1)*…*(αs + 1))!/(p^α), if α ≠ 1, p divides α + 1, 1 < s < 2^(α*p/α + 1)). 
 

(14) Theorems on Smarandache primitive numbers of power p365
 

 

Definition:  

Let p be a prime, n be any fixed positive integer, then Sp(n) denotes the smallest positive 

integer such that Sp(n)! is divisible by p^n.
366

 

Theorem 1:  

Let p be an odd prime, mi be positive integer.  Then the following inequality is true: 

Sp(Σ1) ≤ Σ2, where Σ1 is the sum from i = 1 to i = k of the numbers mi and Σ2 is the sum 

from i = 1 to i = k of the numbers Sp(mi). 

Theorem 2:  

There are infinite integers mi (i = 1, 2, …, k) satisfying the following equality: 

Sp(Σ1) = Σ2, where Σ1 is the sum from i = 1 to i = k of the numbers mi and Σ2 is the sum 

from i = 1 to i = k of the numbers Sp(mi). 

 

 

Chapter II. Theorems due to Smarandache 

 

(1) A generalization of Euler’s Theorem on congruences
367

 

  

Enunciation:   

Let a, m be integers and m ≠ 0. Then a^(φ(ms) + s) ≡ a^s (mod m), where φ is Euler’s 

totient and ms and s are obtained by the following algorithm: 

(0): {a = a0d0; gcd(a0, m0) = 1 and m = m0d0; d = 1}; 

(1):  {d0 = d1
0 d1; gcd(d1

0, m1) = 1 and m0 = m1d1; d1 = 1}; 

……………………………………………………………... 

(s-1):  {ds-2 = d
1

s-2 ds-1; gcd(d1
s-2, ms-1) = 1 and ms-2 = ms-1ds-1; ds-1 = 1}; 

(s):  {ds-1 = d
1

s-1 ds; gcd(d1
s-1, ms) = 1 and ms-1 = msds; ds = 1}; 

 

(2) Theorem on an inequality involving factorials
368

 

 

Enunciation:   

                                                 
364

 Wang, Chunping and Zhao, Yanlin, On an equation involving the Smarandache function and the Dirichlet 

divisor function, in Wenpeng, Zhang (editor), Research on number theory and Smarandache notions 

(Proceedings of the fifth international conference on number theory and Smarandache notions), Hexis, 2009. 
365

 Liping, Ding, On the primitive numbers of power p and its triangle inequality, in Wenpeng, Zhang (editor), 

Research on  Smarandache problems in number theory (Collected papers), Hexis, 2004. 
366

 See supra, Part One, Chapter Two, Sections (16)-(18). 
367

 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 135. For the proof of the 

theorem see F.S., A generalization of Euler’s Theorem on congruences, Arxiv. 
368

 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 141. 
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Let n and k be positive integers. Then n! is greater than k^(n – k + 1)*Π, where Π is the 

sum from i = 0 to i = k – 1 of the numbers ((n – 1)/k)! 

Example:   

For k = 2 it is obtained n! > (2^(n – 1))*((n – 1)/2)!*(n/2)! 

 

(3) Theorem on divisibility involving factorials
369

 

 

Enunciation:   

Let a and m be integers, m > 0. Then (a^m – a)*(m – 1)! is divisible by m. 

 

(4) Theorem on an infinity of a set of primes
370

 

 

Enunciation:   

There exist an infinite number of primes which contain given digits, a1, a2, …, am, in the 

positions i1, i2, …, im, with i1, i2, …, im ≥ 0, where the “i-th position” is the (10^i)-th digit.  

Note:   

If im = 0, then am must be odd and different from 5. 

 

(5) General theorem of characterization of n primes simultaneously
371

 

 

Enunciation:   

Let pij ,where 1 ≤ i ≤ n and 1 ≤ j ≤ mi, be coprime integers two by two and let r1, …, rn 

and a1, …an be integers such that ai and ri are coprime for all i. Under certain 

conditions
372

 the following statements are equivalent: 

(i) The numbers pij, where 1 ≤ i ≤ n and 1 ≤ j ≤ mi, are simultaneously prime. 

(ii) (R/D)*Σ ≡ 0 (mod R/D), where R is the product from i = 1 to i = n of the numbers 

ri, D is a divisor of R and  Σ is the sum from i = 1 to i = n of the numbers ai*ci/ri. 

 

(6) Theorems on Carmichael’s totient function conjecture
373

 

 

Theorem 1:   

The equation φ(x) = n, where φ is Euler’s totient and n is a natural number, admits a 

finite number of solutions. 

Theorem 2:   

If the equation φ(x) = n has, for a n natural, an unique solution x0, then x0 is a multiple of 

the number 2^2*3^2*7^2*43^2 (note also that, if a counterexemple x0 to the 

Carmichael’s totient function exists, it has to be greater than 10^10000)
374

. 

Theorem 3:   

                                                 
369

 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 142. See also Le, 

Maohua, An improvement on the Smarandache divisibility theorem, in Seleacu, V., Bălăcenoiu, I. (editors), 

Smarandache Notions (Book series), vol. 10, American Research Press, 1999. 
370

 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 155. 
371

 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 313. 
372

 See, for these conditions and more about this theorem, F.S., A general theorem for the characterization of n 
prime numbers simultaneously, Arxiv. 
373

 For the proof of these theorems see F.S., On Carmichael’s conjecture, Arxiv. Carmichael’s totient function 

conjecture asserts that, if there is any x such that φ(x) = n, then there are at least two solutions x. For more 
about this conjecture see the article Carmichael’s totient function conjecture from the on-line math 

encyclopedia Wolfram Math World. 
374

 P. Masai and A. Vallette, A lower bound for a counterexample to Carmichael's conjecture. 
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If n is a counterexample to Carmichael’s totient function conjecture, then n is a multiple 

of a product of a very large number of primes (but F.S. also conjectures that  there is no 

such a counterexample).
375

 

 

(7) Theorem inspired by Crittenden and Vanden Eynden’s Conjecture
376

 

 

Enunciation:   

It is not posible to cover all positive integers with n geometrical progressions of integers.  

Note:   

Crittenden and Vanden Eynden’s Conjecture refers to arithmetical proggresions and 

asserts that, if n arithmetic progressions, each having modulus at least k, include all 

integers from 1 to k*2^(n – k + 1), then they include all the integers.
377

 

 

(8) Theorem which generalizes Wilson’s Theorem
378

 

 

Description:   

In 1770, Wilson found the following result in number theory: “If p is prime, then (p – 1)! 

≡ -1 (mod p)”. Smarandache provided the following generalization of this theorem: 

Enunciation:   

Let m be a whole number and A be the set of the numbers of the form ±p^n, ±2*p^n, 

±2^r, or 0, where p is odd prime, n natural and r belongs to the set {0, 1, 2}. Let c1, c2, 

…, cφ(n) be a reduced system of residues modulo m. Then c1*c2*…*cφ(n) ≡ -1 (mod m) if 

m belongs to the set A, respectively +1 if m doesn’t belong to the set A, where φ is 

Euler’s totient. 

 

9) Theorems on arithmetic and geometric progressions
379

 

 

Theorem 1:   

It does not matter the way in which one partitions the set of the terms of an arithmetic 

progression (respectively geometric) in subsets: in at least one of these subsets there will 

be at least 3 terms in arithmetic progression (respectively geometric).  

Theorem 2:   

A set M , which contains an arithmetic progression (respectively geometric) infinite, not 

constant, preserves the property of the theorem 1. Indeed, this directly results from the 

fact that any partition of M implies the partition of the terms of the progression. 

 

10) Theorem on the number of natural solutions of a linear equation
380

 

 

Definition:   

                                                 
375

 F.S., A property for a counterexample to Carmichael’s Conjecture, in Collected Papers, vol. I (second 

edition), InfoLearnQuest, 2007. 
376

 F.S., Only problems, not solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 85. F.S., 

Thirty-six unsolved problems in number theory, Arxiv. 
377

 R.J. Simpson, On a conjecture of Crittenden and Vanden Eynden concerning coverings by arithmetic 
progressions. 
378

 F.S., On a Theorem of Wilson, in Collected Papers, vol. I (second edition), InfoLearnQuest, 2007. 
379

 F.S., About some progressions, in Collected Papers, vol. I (second edition), InfoLearnQuest, 2007. 
380

 F.S., On solving general linear equations in the set of natural numbers, in Collected Papers, vol. I (second 

edition), InfoLearnQuest, 2007. This article, beside proving this theorem, also gives a method for solving 

general linear equations on the set of natural numbers. 
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The equation a1*x1 +…+ ai*xi +… + an*xn = b, with all ai and b integers, ai ≠ 0, and gcd 

(a1, …, an) = d, has variations of sign if there are at least two coefficients ai, aj with 1 ≤ i, 

j ≤ n, such that sign (ai*aj) = -1. 

Theorem:   

The equation from the definition above admits an infinity of natural solutions if and only 

if has variations of sign. 

 

11) Theorems on the solutions of diophantine quadratic equations
381

 

 

Theorem 1:   

The equation x^2 – y^2 = c admits integer solutions if and only if c is integer and is a 

multiple of number 4. 

Theorem 2:   

The equation x^2 – d*y^2 = c^2, where d is not a perfect square,  admits an infinity of 

natural solutions. 

Theorem 3
382

:   

The equation a*x^2 – b*y^2 = c, where c ≠ 0 and a*b = k^2 (k integer),  admits a finite 

number of natural solutions. 

Theorem 4:   

If the equation a*x^2 – b*y^2 = c, where a*b ≠  k^2 (k integer),  admits a particular 

nontrivial natural solution, then it admits an infinity of natural solutions. 

 

12) Theorems on linear congruences
383

 

 

Theorem 1:   

The linear congruence a1*x1 + ... + an*xn ≡ b (mod m) has solutions if and only if gcd (a1, 

…, an, m) divides b. 

Theorem 2:   

The congruence a*x ≡ b (mod m), m ≠ 0, with gcd (a, m) = d and d divides b, has d 

distinct solutions. 

Theorem 3:   

The congruence a1*x1 + ... + an*xn ≡ b (mod m), m1 ≠ 0, with gcd (a1, …, an, m) = d and d 

divides b, has d*m^(n – 1) distinct solutions. 

 

13) Theorem on very perfect numbers
384

 

 

Definition:   

A natural number n is named very perfect number if σ(σ(n)) = 2*n, were σ(n) is the sum 

of the positive divisors of n (including 1 and n).
385

 

                                                 
381

 F.S., Existence and number of solutions of diophantine quadratic equations with two unknows in Z and N, 

in Collected Papers, vol. I (second edition), InfoLearnQuest, 2007.  
382

 For Theorems 3-4 see also F.S., A method of solving a diophantine equation of second degree with n 
variables, Arxiv. 
383

 F.S., Algorithms for solving linear congruences and systems of linear congruences, in Collected Papers, 

vol. I (second edition), InfoLearnQuest, 2007. Beside proving these theorems, this article gives also a method 

for solving linear congruences and systems of linear congruences. 
384

 F.S., About very perfect numbers, in  Collected Papers, vol. III, Abaddaba, Oradea, 2000. 
385

 A natural number is called a perfect number if  σ(n) = 2*n; there are known in present 47 such numbers, as 
much as Mersenne primes known, because between the two sets is a biunivocal correspondence. It is not 

known yet if there exist a perfect number which is odd; it is also not known if the set of perfect numbers 

(implicitly the set of Mersenne primes) is infinite. 
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Theorem:   

The square of an odd prime number can’t be very perfect number. 

 

14) Theorems on inequalities for the integer part function
 386

 

 

Theorem 1:   

For any x, y > 0, we have the inequality (we note with [x], [y] etc. the integer part of the 

numbers x, y etc.): [5*x] + [5*y] ≥ [3*x + y] + [3*y + x]. 

Theorem 2:   

If x, y, z ≥ 0, then we have the inequality [3*x] + [3*y] + [3*z] ≥ [x] + [y] + [z] + [x + y] 

+ [x + z] + [y + z]. 

Theorem 3:   

If x, y, z ≥ 0, then we have the inequality [2*x] + [2*y] + [2*z] ≤ [x] + [y] + [z] + [x + y 

+ z].  

Theorem 4:   

If x, y ≥ 0 and n, k are integers such that n ≥ k ≥ 0, then we have the inequality [n*x + 

n*y] ≥ k*[x] + k*[y] + (n – k)*[x + y]. 

Note:  

From the theorems above, Smarandache found the following applications concerning 

factorial function and divisibility: 

Application  1:   

For any m, n naturals, (5*m)!*(5*n)! is divisible by m!*n!*(3*m + n)!*(3*n + m)!. 

Application  2:   

For any a, b, c naturals, (3*a)!*(3*b)!*(3*c)! is divisible by a!*b!*c!*(a + b)!*(a + c)!*(b 

+ c)!. 

Application  3:   

For any a, b, c naturals, a!*b!*c!*(a + b + c)! is divisible by (2*a)!*(2*b)!*(2*c)!. 

Application  4:   

For any a, b, n, k naturals with n ≥ k, (n*a)!*(n*b)! is divisible by a!^k*b!^k*(a + 

b)!^(n*k). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
386

 F.S., Inequalities for the integer part function, in  Collected Papers, vol. III, Abaddaba, Oradea, 2000. In 

this article are presented more theorems and applications (than the ones presented here). 
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PART FIVE 
Criteria, formulas and algorithms for computing due to Florentin 

Smarandache 
 

 

(1) Criterion for coprimes involving Euler’s totient
387

 

 

Enunciation:   

If a, b are strictly positive coprime integers, then a^(φ(b) + 1) + b^(φ(a) + 1) ≡ a + b (mod 

a*b), where φ is Euler’s totient. 

 

(2) Criteria of simultaneous primality 

 

A. Characterization of twin primes
388

:   

Let p and p + 2 be positive odd integers; then the following statements are equivalent: 

1.  p and p + 2 are both primes; 

2. (p – 1)!(3*p + 2) + 2*p + 2 is congruent to 0 (mod p*(p + 2)); 

3. (p – 1)!(p – 2) – 2 is congruent to 0 (mod p*(p + 2)); 

4. ((p – 1)! + 1)/p + (2*(p – 1)! + 1)/(p + 2) is an integer. 

B. Characterization of a pair of primes
389

:   

Let p and p + k be positive integers, with the property that gcd (p, p + k) = 1; then p and p 

+ k are both primes if and only if (p – 1)!*(p + k) + (p + k – 1)!*p + 2*p + k is congruent 

to 0 (mod p*(p + k)). 

C. Characterization of a triplet of primes
390

:   

Let p – 2, p and p + 4 be positive integers, coprime two by two; then p – 2, p and p + 4 

are all primes if and only if (p – 1)! + p*((p – 3)! + 1)/(p – 2) + p*((p + 3)! + 1)/(p + 4) is 

congruent to -1 (mod p). 

D. Characterization of a quadruple of primes
391

:   

Let, p p + 2, p + 6 and p + 8 be positive integers, coprime two by two; then p, p + 2, p + 6 

and p + 8 are all primes if and only if p*((p – 1)! + 1)/p + 2!*((p – 1)! + 1)/(p + 2) + 

6!*((p – 1)! + 1)/(p + 6) + 8!*((p – 1)! + 1)/(p + 8) is an integer. 

 

(3) Criteria of primality derived from Wilson’s Theorem
392

 

 

Enunciations
393

:   

                                                 
387

 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 133. 
388

 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 

Xiquan Publishing House, 2000, Theorem 6. 
389

 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 

Xiquan Publishing House, 2000, Theorem 7. 
390

 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 

Xiquan Publishing House, 2000, Theorem 8. 
391

 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 

Xiquan Publishing House, 2000, Theorem 9. 
392

 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 

Xiquan Publishing House, 2000, from Theorem 2 to Theorem 5. For more about the conjecture named after 

mathematician John Wilson [which states that (p – 1)! + 1 is a multiple of p if and only if p is a prime] see the 
article Wilson’s Theorem from the on-line math encyclopedia Wolfram Math World. 
393

 For a study of these criteria, see Vassilev-Missana, Mladen and Atanassov, Krassimir, Some Smarandache 
problems, Hexis, 2004, Chapter 1: On some Smarandache’s problems, Section 10: On four Smarandache’s 
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1.  Let p be an integer, p ≥ 3; then p is prime if and only if (p – 3)! is congruent to ((p 

– 1)/2) (mod p); 

2. Let p be an integer, p ≥ 1; then p is prime if and only if (p – 4)! is congruent to (–

1)^(h + 1)*r (mod p), where h is the smallest integer greater than or equal to p/3 

and r is the smallest integer greater than or equal to (p + 1)/6; 

3. Let p be an integer, p ≥ 5; then p is prime if and only if (p – 5)! is congruent to 

r*h + ((r^2 – 1)/24) (mod p), where h the smallest integer greater than or equal to 

p/24 and r = p – 24*h; 

4. Let p = (k – 1)!*h + 1 be a positive integer, k > 5, h being a natural number. Then 

p is prime if and only if (p – k)! is congruent to (–1)^t*h (mod p), where t = h + q 

+ 1 and q the smallest integer greater than or equal to p/h. 

 

(4) A formula to calculate the number of primes
394

 

 

Enunciation:   

If π(x) is the number of primes less than or equal to x, then π(x) = -1 + Σ, where Σ is the 

sum from k = 2 to k = x of the numbers n, where n is the  smallest integer greater than or 

equal to S(k)/k and S(k) is the Smarandache function. 

 

(5) A closed expression for the generalized Pells’s equation
 395

 

 

Description:   

The equation a*x^2 – b*y^2 + c = 0, where a and b are pozitive integers, different from 

0, and c is an integer different from 0, is a generalization of Pell’s equation x^2 – D*y^2 

= 1. Smarandache showed that, if the equation has an integer solution and a*b is not a 

perfect square, then it has an infinitude of integer solutions and found a closed expression 

for these solutions. 

Example: 

For equation x^2 – 3*y^2 – 4 = 0, the general solution in positive integers is: xn = (2 + 

3^(1/2))^n + (2 – 3^(1/2))^n and yn = (1/3^(1/2))*(2 + 3^(1/2))^n + (2 – 3^(1/2))^n, for 

all n natural, that is (2, 0), (4, 2), (14, 8), (52, 30) etc. 

 

(5) The Romanian multiplication
396

 

 

Description:   

It is an algorithm to multiply two integers, A and B. Let k be an integer greater than or 

equal to 2; write A and B on two different vertical columns: c(A), respectively c(B); 

multiply A by k, and write the product A1 on the column c(A); divide B by k, and write 

the integer part of the quotient B1 on the column c(B) and so on with the new numbers A1 

and B1, until we get a Bi < k on the column c(B). Then: write another column c(r), on the 

right side of c(B), such that: for each number of column c(B), which may be a multiple of 

k plus the rest r (where r = 0, 1, 2, ..., k – 1), the corresponding number on c(r) will be r; 

multiply each number of column A by its corresponding r of c(r), and put the new 

                                                                                                                                                             
problems. For the proof of these theorems, see F.S., Criteria of primality, in Collected Papers, vol. I (second 

edition), InfoLearnQuest, 2007. 
394

 Seagull, L., The Smarandache Function and the number of primes up to x, Mathematical Spectrum, 

University of Shielfield, vol. 28, no. 3, 1995/6, p. 53. 
395

 F.S., A method to solve the diophantine equation a*x^2 – b*y^2 + c = 0, in Collected Papers, vol. I (second 

edition), InfoLearnQuest, 2007. 
396

 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 127. 
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products on another column c(P) on the right side of c(r); finally add all numbers of 

column c(P). It is obtained A*B which is equal to the sum of all numbers of c(P). 

Comments:   

1. Remark that any multiplication of integer numbers can be done only by 

multiplication with 2, 3, …, k, divisions by k, and additions. 

2. This is a generalization of Russian multiplication (the case k = 2, known since 

Egyptian time), called by F.S. Romanian multiplication. 

3. This multiplication is useful when k is very small, the best values being for k = 2 

or k = 3; if k is greater than or equal to min{10, B}, this multiplication is trivial. 

 

(6) Algorithm for division by k^n 
 

Description
397

:   

It is an algorithm to divide an integer A by k^n, where k and n are integers greater than or 

equal to 2. Write A and k^n on two different vertical columns: c(A), respectively c(k^n); 

divide A by k, and write the integer quotient A1 on the column c(A); divide k^n by k, and 

write the quotient q1 = k^(n – 1) on the column c(k^n) and so on with the new members 

A1 and q1, until we get qn = 1 (= k^0) on the column c(k^n). Then: write another column 

c(r), on the left side of c(A), such that for each number of column c(A), which may be a 

multiple of k plus the rest r (where r = 0, 1, 2, ..., k – 1), the corresponding number on 

c(r) will be r; write another column c(P), on the left side of c(r), in the following way: the 

element on line i (except the last line which is 0) will be k^(n – 1); multiply each number 

of column c(P) by its corresponding r of c(r), and put the new products on another 

column c(R) on the left side of c(P); finally add all numbers of column c(R) to get the 

final rest Rn, while the final quotient will be stated in front of c(k^n)'s 1. Therefore, 

A/(k^n) = An and rest Rn. 

Comments:   

1. Remark that any division of an integer number by k can be done only by divisions 

to k, calculations of powers of k, multiplications with 1, 2, …, k – 1 and 

additions. 

2. This division is useful when k is small, the best values being when k is an one-

digit number and n large. If k is very big an n is very small, this division becomes 

useless. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
397

 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequence 128. 
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PART SIX 
Unsolved problems regarding Smarandache notions and open problems on 

number theory due to Florentin Smarandache 
 

 

Chapter I. Problems regarding sequences  

 

(1)  
Enunciation

398
:   

Find the sequences an defined in the following way: for any i positive integer, there exist 

j, k positive integers, with the property that i ≠ j ≠ k ≠ i, so that ai ≡ aj (mod ak).  

Find the sequences an defined in the following way: for any i positive integer, there exist 

j, k positive integers, with the property that i ≠ j ≠ k ≠ i, so that aj ≡ ak (mod ai). 

 

(2)  
Enunciation

399
:   

Let N(n) be the number of terms not greater than n of the sequence a1, a2, …, where this 

is a strictly increasing sequence of positive integers. Find the smallest k such that 

N(N(…N(n)…)) is constant, for a given n. 

 

(3)  
Enunciation

400
:   

Let 1 ≤ a1 < a2 < … be an infinite sequence of integers such that any three members do 

not constitute an arithmetical progression. 

Example:   

Let be an = p^(n – 1), n ≥ 1, p is an integer greater than 1; then an has the property of the 

assumption and the sum from n ≥ 1 of the numbers 1/an is equal to a number smaller than 

or equal to 2, i.e. the number 1 + 1/(n – 1). 

Questions:   

1.  Is it always the sum from n ≥ 1 of the numbers 1/an smaller than or equal to 2?
401

 

2.  Is the function S({an}n≥1) representing the sum from n ≥ 1 of the numbers 1/an 

bijective (biunivocal)? 

3. Analogously for geometrical progressions. 

 

(4)  
Enunciation

402
:   

                                                 
398

 F.S., Only problems, not solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 1. See also 

Kashihara, K., Comments and topics on Smarandache notions and problems, Erhus University Press, 1996, p. 

24-25. 
399

 F.S., Only problems, not solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 53. See also 

Kashihara, K., Comments and topics on Smarandache notions and problems, Erhus University Press, 1996, p. 

28.  
400

 F.S., Only problems, not solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 62. See also 

Kashihara, K., Comments and topics on Smarandache notions and problems, Erhus University Press, 1996, p. 

30-31. 
401

 Hristo Aladjov and Krassimir Atanassov showed that there is an infinite number of such sequences for which this 

sum is greater than 2; see Remark on the 62-th Smarandache’s problem, Smarandache Notions Journal, vol. 11, no. 

1-2-3, 2000. 
402

 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 

Xiquan Publishing House, 2000, Problem 20. 
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We consider the consecutive sequence (1, 12, 123, 1234, …) and we form the simple 

continued fraction 1 + (1/(12 + 1/(123 + 1/(1234 + 1/12345 + …)))). We also consider 

the reverse sequence (1, 21, 321, 4321, …) and we form the general continued fraction 

(1/(12 + 21/(123 + 321/(1234 + 4321/12345 + …)))). Calculate each of these two 

continued fractions. The first continued fraction is known as convergent.
403

 

 

(5)  
Enunciation

404
:   

It is considered the sequence constructed by concatenating in the same manner with the 

Smarandache consecutive numbers sequence the terms of the sequence of happy 

numbers.
405

 

Questions: 

 1. How many terms of Smarandache H-sequence are primes? 

 2. How many terms of Smarandache H-sequence belongs to the sequence of happy  

numbers? 

 

(6)  
Enunciation

406
:   

We denote with SDS the Smarandache deconstructive sequence.
407

 

Questions: 

1. Does every element of the Smarandache deconstructive sequence ending with a 6 

contain at least 3 instances of the prime 2 as a factor? 

2. If we form a sequence from the elements of SDS(n) that end in 6, do the powers 

of 2 that divide them form a monotonically increasing sequence? 

3. Let k be the largest integer such that 3^k divides n and j the largest integer such 

that 3^j divides SDS(n). Is it true that k is always equal to j? 

 

(7)  
Enunciation

408
:   

What is the maximum value of k such that n, n + 1, n + 2, …, n + k are all Smarandache 

pseudo-primes of the first kind?
409

 

                                                 
403

 For the definition and study of Smarandache continued fractions see Castillo, Jose, Other Smarandache 

type functions, Smarandache Notions Journal, vol. 9, no. 1-2-3, 1998. See also Ibstedt, H., Mainly natural 
numbers – a few elementary studies on Smarandache sequences and other number problems, American 

Research Press, 2003, Chapter VI: Smarandache continued fractions. For the proof that the continued fraction 

1 + (1/(12 + 1/(123 + 1/(1234 + 1/12345 + …)))) is convergent see Ashbacher, Charles and Le, Maohua, On 
the Smarandache simple continued fractions, in Seleacu, V., Bălăcenoiu, I. (editors), Smarandache Notions 

(Book series), vol. 10, American Research Press, 1999. 
404

 The definition of Smarandache sequence of happy numbers, or Smarandache H-sequence, belongs to 

Shyam Sunder Gupta hwo also proposed the problems presented here; see Smarandache sequence of happy 

numbers, Smarandache Notions Journal, vol. 13, no. 1-2-3, 2002. 
405

 The happy numbers are the numbers with the following property: if you iterate the process of summing the 

squares of their digits this process ends in number 1. By doing this process of iteration with any integer, finally 

the process ends in number 1 (in the case of happy numbers) or into a loop (in the case of unhappy numbers) 

formed by only few possible numbers: {4, 16, 20, 37, 42, 58, 89, 145}. For  the first terms of the sequence of 

happy numbers see the sequence A035497 in OEIS. 
406

 Ashbacher, C., Pluckings from the tree of Smarandache sequences and functions, American Research Press, 

1998, p. 11. 
407

 For the definition of Smarandache deconstructive sequence, see supra, Part one, Chapter II, Section (3). 
408

 For the problems (7)-(9) from this chapter, see Kashihara, K., Comments and topics on Smarandache 

notions and problems, Erhus University Press, 1996, Chapter 1: Some comments and problems on 
Smarandache notions, p. 15-18. 
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(8)  
Enunciation

410
:   

Let SPPFK(n) be the n-th member of the sequence of Smarandache pseudo-primes of the 

first kind. What is the largest possible difference between succesive terms, i.e. what is the 

upper bound of SPPFK(n + 1) – SPPFK(n)? 

 

(9)  
Enunciation:   

Let SPP(n) be the number of integers k ≤ n such that k is a Smarandache pseudo-prime of 

the first kind. Determine the limit when n tends to ∞ of the numbers SPP(n)/n. 

 

(10)  
Enunciation

411
:  Study the sequences defined in the following way: 

1.  For k, ni belonging to natural set, k < ni, n0 = n, ni+1 = max{p: p divides ni – k; p is 

prime}; 

2. For k, ni belonging to natural set, k < ni, n0 = n, ni+1 = max{p: p divides ni/k; p is 

prime}; 

3. For k, ni belonging to natural set, 1 ≤ k ≤ ni, n0 = n, ni+1 = max{p: p divides ni + k; 

p is prime}; 

4. For k, ni belonging to natural set, 1 ≤ k ≤ ni, n0 = n, ni+1 = max{p: p divides ni*k; p 

is prime}. 

 

(11)  
Enunciation

412
:  Let ep(n) be the largest exponent of p which divides n; for example, if p = 3, the  

values of ep(n) are: {0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0,…}. 

1.  What is the expectation of ep(n), for any n belonging to natural set? 

2. What is the value of em(n) expressed using ep(n), eq(n), …, where m = p*q*…? 

 

(12)  
Enunciation

413
:   

Prove that in the infinite Smarandache prime base sequence 1, 2, 3, 5, 7, 11, … (defined 

as all prime numbers proceeded by 1) any positive integer can be uniquely written with 

only two digits: 0 and 1 (a linear combination of distinct primes and integer 1, whose 

coefficients are 0 and 1 only). 

 

 

Chapter II. Problems regarding Smarandache function  

 

 (1)  
Enunciation

414
:   

                                                                                                                                                             
409

 For the definition of Smarandache pseudo-primes, see supra, Part one, Chapter II, Section (62). 
410

 Kashihara conjectured that there is no such an upper bound. 
411

 Kashihara, K., Comments and topics on Smarandache notions and problems, Erhus University Press, 1996, 

p. 26-27. 
412

 Kashihara, K., Comments and topics on Smarandache notions and problems, Erhus University Press, 1996, 
p. 31. 
413

 This problem has been solved; see Perez, M (editor), On some Smarandache problems, Notes on Number 

Theory and Discrete Mathematics, vol. 9, Number 2, 2003, Proposed problem 2. 
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Given any pair of integers (m, n) where both are greater than 1 and m ≠ n, is it always 

possible to find another pair of integers (p, q) such that S(m) + S(m + 1) + ... + S(m + p) 

= S(n) + S(n + 1) + ...+ S(n + q)?
415

 

 

(2)  
Enunciation

416
:   

Are there integers m, n, p, k with m ≠ n and p > 0 such that (S(m)^2 + S(m + 1)^2 +…+ 

S(m + p)^2)/(S(n)^2 + S(n + 1)^2 +…+ S(n + p)^2) = k?
417

 

 

(3)  
Enunciation

418
:   

How many primes have the form S(n)S(n + 1)S(n + 2)…S(n + k) for a fixed integer k? 

 

(4)  
Enunciation

419
:   

Is the set of integers {n: S(n)S(n + 1) prime} an infinite set?  

 

(5)  
Enunciation

420
:   

Are there n, m positive integers, n ≠ 1 ≠ m for which S(n*m) = S(n)*m^k? 

 

(6)  
Enunciation

421
:   

Let A be a set of consecutive positive integers. Find the largest set of numbers {n, n + 1, 

n + 2,…} such that {S(n), S(n + 1), S(n + 2),…} is monotonic. 

 

(7)  
Enunciation

422
:   

What is the smallest value of r such that  1/(S(n))^r is convergent? 

 

(8)  
Enunciation

423
:   

How many quadruplets satisfy the relation S(n) + S(n + 1) = S(n + 2) + S(n + 3)? 

                                                                                                                                                             
414

 Ashbacher, C., Pluckings from the tree of Smarandache sequences and functions, American Research Press, 

1998, p. 29. 
415

 Charles Ashbacher conjectured that the answer to this question is yes. 
416

 Ashbacher, C., Pluckings from the tree of Smarandache sequences and functions, American Research Press, 

1998, p. 30. 
417

 Charles Ashbacher conjectured that the answer to this question is yes. 
418

 Ashbacher, C., Pluckings from the tree of Smarandache sequences and functions, American Research Press, 

1998, p. 31. 
419

 Ashbacher, C., Pluckings from the tree of Smarandache sequences and functions, American Research Press, 

1998, p. 32. 
420

 Ashbacher, C., Pluckings from the tree of Smarandache sequences and functions, American Research Press, 

1998, p. 33. 
421

 See Ashbacher, C., Pluckings from the tree of Smarandache sequences and functions, American Research 

Press, 1998, p. 36-37, for a study of this problem. 
422

 Ashbacher, C., Pluckings from the tree of Smarandache sequences and functions, American Research Press, 
1998, p. 57. 
423

 Ashbacher, Charles, An introduction to the Smarandache function, Erhus University Press, 1995, p. 42. The 

author conjectured that there are infinitely many such quadruplets. 
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(9)  
Enunciation

424
:   

How many quadruplets satisfy the relation S(n) – S(n + 1) = S(n + 2) – S(n + 3)? 

 

(10)  
Note

425
:   

The value of the number S(2^k – 1) (mod k) is equal to 1 for all integers from k = 2 to k 

= 97, with just four exceptions, for k = 28, k = 52, k = 68 and k = 92. 

Enunciation: 

One can obtain a formula that gives in function of k the value S(2^k – 1) (mod k) for all 

positive integer values of k? 

 

(11)  
Enunciation

426
:   

 Let p be a positive prime and S(n) the Smarandache function. Prove that S(p^p) = p^2. 

 

(12)  
Enunciation

427
:   

 Prove that in between n and S(n) there exists at least a prime number. 

 

(13)  
Enunciation

428
:   

 Solve the following diophantine equations: 

 (i) x^S(x) = S(x)^x; 

 (ii) x^S(y) = S(y)^x; 

 (iii) x^S(x) + S(x) = S(x)^x + x; 

 (iiii) x^S(y) + S(y) = S(y)^x + x. 

 

(14)  
Enunciation

429
:   

For what triplets n, n – 1, n – 2 does the Smarandache function satisfy the Fibonacci 

recurrence S(n) = S(n – 1) + S(n – 2)? Is there a pattern that would lead to the proof that 

there is an infinite family of solutions? 

Note:   

Solutions have been found for n = 11, 121, 4902, 26245, 32112, 64010, 368140, 415664. 

 

(15)  

                                                 
424

 Ashbacher, Charles, An introduction to the Smarandache function, Erhus University Press, 1995, p. 43. The 

author conjectured that there are infinitely many such quadruplets. 
425

 Ruiz, S.M., Applications of Smarandache function, and prime and coprime functions, American Research 

Press, 2002, p. 11-14. 
426

 This problem has been solved; see Perez, M (editor), On some Smarandache problems, Notes on Number 

Theory and Discrete Mathematics, vol. 9, Number 2, 2003, Proposed problem 3. 
427

 This problem has been solved; see Perez, M (editor), On some problems related to Smarandache notions, 

Notes on Number Theory and Discrete Mathematics, vol. 9, Number 2, 2003, Proposed problem 1. 
428

 Tutescu, Lucian and Burton, Emil, On some diophantine equations, Smarandache Notions Journal, vol. 7, 

no. 1-2-3, 1996. In this article the equation (i) is solved and there are few more proposed diophantine equations 
concerning Smarandache function. 
429

 Ibstedt, H., Base solution (the Smarandache function), Smarandache Notions Journal, vol. 7, no. 1-2-3, 

1996. The author name this problem “Asbacher’s problem”. 
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Enunciation
430

:   

Prove the following: 

(i) S(n) = S(n + 2) for only finitely many n; 

(ii) S(n) = S(n + 3) for only finitely many n. 

 

 

Chapter III. Problems regarding pseudoSmarandache function 

 

(1)  
Enunciation

431
:   

Let Z(n) be the pseudo-Smarandache function
432

 and Z
k
(n) = Z(Z(Z(…(n)…))), where the 

function is composed k times. For a given pair of natural numbers (k, m), find all integers 

n such that Z
k
(n) = m. 

 

(2)  
Enunciation:   

Let Z(n) be the pseudo-Smarandache function. Is the absolute value of the numbers Z(n + 

1) – Z(n) bounded or ubounded? The same question for the numbers Z(n + 1)/Z(n).  

 

(3)  
Enunciation:   

Try to find the relationships between Z(m + n) and Z(m), Z(n) and also between Z(m*n) 

and Z(m), Z(n). 

 

(4)  
Enunciation:   

Find all values of n such that: Z(n) = Z(n + 1); Z(n) divides Z(n + 1); Z(n + 1) divides 

Z(n). 

 

(5)  
Enunciation:   

For a given natural number m, how many n are there such that Z(n) = m? 

 

(6)  
Enunciation

433
: 

The sum from k = 1 to k = n of the numbers 1/Z(k) is an integer for n = 1. Is it an integer 

for any other value of n?  

 

(7)  
Enunciation:   

Is it the series defined as the sum from k = 1 to k = ∞ of the numbers 1/(Z(n))^2 

convergent or divergent? 

                                                 
430

 Mullin, Albert A., On the Smarandache function and the fixed-point theory of numbers, Smarandache 

Notions Journal, vol. 7, no. 1-2-3, 1996. 
431

 The problems (1)-(5) from this Chapter are raised by K. Kashihara; see Comments and topics on 

Smarandache notions and problems, Erhus University Press, 1996, Chapter 2: The pseudo-Smarandache 

function.  
432

 Z(n) is the smallest number such that 1 + 2 + 3 +…+ Z(n) is divisible by n. 
433

 The problems (6)-(12) from this Chapter are raised by C. Ashbacher; see Pluckings from the tree of 
Smarandache sequences and functions, American Research Press, 1998, p. 56-68. 
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(8)  
Enunciation:   

What is the smallest value of r such that the series defined as the sum from k = 1 to k = ∞ 

of the numbers 1/(Z(n))^r is convergent? 

 

(9)  
Enunciation:   

Is there a value for k where there are only a finite number of solutions to the equation 

k*Z(n) = n? 

 

(10)  
Enunciation:   

What is the smallest value of r such that the series defined as the sum from k = 1 to k = ∞ 

of the numbers 1/(Z(k) + S(k))^r is convergent? 

 

(11)  
Enunciation:   

Is the series defined as the sum from k = 1 to k = ∞ of the numbers 1/(Z(k)*S(k)) 

convergent or divergent? 

 

(12)  
Enunciation:   

Is there an infinite number of solutions to the equation Z(σ(n)) = σ(Z(n)), where σ(n) is the 

divisor function? 

 

 

Chapter IV. Problems regarding Smarandache double factorial function  

 

(1)  
Enunciation

434
:   

We note with Sdf(n) the double factorial function. Is the difference abs{Sdf(n + 1) – 

Sdf(n)} bounded or unbounded? 

 

(2)  
Enunciation:   

For each value of n, which iteration of Sdf(n) produces always a fixed point or a cycle? 

For iteration is intended the repetead application of Sdf(n). 

 

(3)  
Enunciation:   

Find the smallest k such that between Sdf(n) and Sdf(k + n), for n > 1, there is at least a 

prime. 

 

(4)  
Enunciation:   

                                                 
434

 The problems (1)-(9) from this Chapter are raised by Felice Russo; see A set of new Smarandache 

functions, sequences and conjectures in number theory, American Research  Press, 2000, Chapter IV: An 
introduction to the Smarandache double factorial function. 
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Is the number 0.1232567491011…, where the sequence of digits is Sdf(n) for n ≥ 1 an 

irrational or trascendental number?  

 

(5)  
Enunciation:   

Are there k, n, m nonnull positive integers for which Sdf(n*m) = m^k*Sdf(n)? 

 

(6)  
Enunciation:   

Are there k, n nonnull positive integers for which (Sdf(n))^k = k*Sdf(n*k)? 

 

(7)  
Enunciation:   

Find all the solution for the equation Sdf(n)! = Sdf(n!). 

 

(8)  
Enunciation:   

Find all the solution for the equation Sdf(n^k) = k*Sdf(n), for k > 1, n > 1. 

 

(9)  
Enunciation:   

Find all the solution for the equation Sdf(n^k) = n*Sdf(k), for k > 1. 

 

(10)  
Enunciation

435
:   

Let p be prime and Sdf(x) Smarandache double factorial function. Solve the diophantine 

equation Sdf(x) = p. How many solutions are there? 

 

 

Chapter V. Problems regarding other functions  

 

(1)  
Enunciation

436
:   

Let M be a number in a base b. All distinct digits of M are named generalized period of 

M (for example, if M = 104001144, its generalized period is g(M) = {0, 1, 4}). Of course, 

g(M) is included in {0, 1, 2, ..., b – 1}. The number of generalized periods of M is equal 

to the number of the groups of M such that each group contains all distinct digits of M 

(for example, ng(M) = 2 if M = 104001144 because both groups of digits 104 respectively 

001144 contain all distinct digits of M). Length of generalized period is equal to the 

number of its distinct digits (for example, lg(M) = 3). Questions: 

(i) Find ng and lg for pn, n!, n^n, n^(1/n). 

(ii) For a given k ≥ 1, is there an infinite number of primes pn or n! or n^n or n^(1/n) 

which have a generalized period of length k? Same question such that the number 

of generalized periods be equal to k. 

(iii) Let a1, a2, …, ah be distinct digits. Is there an infinite number of primes pn or n! or 

n^n or n^(1/n) which have as a generalized period the set {a1, a2, …, ah}? 

 

                                                 
435

 This problem has been solved; see Perez, M (editor), On some Smarandache problems, Notes on Number 

Theory and Discrete Mathematics, vol. 9, Number 2, 2003, Proposed problem 5. 
436

 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006, Sequences 129-131. 
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(2)  
Enunciation

437
:   

Is it possible to construct a function which obtains all irrational numbers? How about all 

transcendental numbers? 

 

(3)  
Enunciation

438
:   

Let FI(n) and SFI(n) be the Smarandache fitorial and supplementary fitorial functions. 

Find the values of n for the following relationships to be true:  

(i) FI(n) < SFI(n) and FI(n) > SFI(n); 

 (iii) τ(F(n)) > τ(SFI(n)) and τ(F(n)) > τ(SFI(n)); 

 (iiii) σ(F(n)) > σ(SFI(n)) and σ(F(n)) > σ(SFI(n)). 
 

 

Chapter VI. Problems regarding equations  

 

(1)   

Enunciation
439

:   

Let q be a rational number, q different from {-1, 0, 1}. Solve the equation:  

x*q^(1/x) + (1/x)*q^x = 2*q. 

 

(2)   

Enunciation
440

:   

The equation x^3 + y^3 + z^3 = 1 has as solutions (9, l0, -12) and (-6, -8, 9). How many 

other nontrivial integer solutions are there?
 
 

 

(3)   

Enunciation
441

:   

Consider the following equation: (a – b*n^(1/m))
 
*x + c*n^(1/m)*y + q^(1/p)*z + (d + 

e*w)*s^(1/r) = 0, where a, b, c, d are constant integers and the m-th, p-th and r-th roots 

are irrational distinct numbers. What conditions must the parameters  m, n, p, q, r and s 

accomplish such that the equation admits integer solutions (x, y, z and w being 

variables)? 

 

(4)   

Enunciation
442

:   

                                                 
437

 Kashihara, K., Comments and topics on Smarandache notions and problems, Erhus University Press, 1996, 

p. 25. 
438

 Murthy, Amarnath and Ashbacher, Charles, Generalized partitions and new ideas on number theory and 
Smarandache sequences, Hexis, 2005, p. 172-173. See supra, Part Two, Chapter 1, Section (45) for the 

definitions of the Smarandache fitorial and supplementary fitorial functions. 
439

 F.S., Only problems, not solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 50. See also, 

for a discussion on this equation, Kashihara, K., Comments and topics on Smarandache notions and problems, 

Erhus University Press, 1996, p. 27-28. 
440

 F.S., Only problems, not solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 60. 
441

 F.S., Only problems, not solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 86. 
442

 F.S., Only problems, not solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 88. The 
problem is inspired by a equation from a William Lowell Putnam Mathematical Competition, i.e. x^3 – z = 3, 

where z is the greater integer less then or equal to x. See also, for a discussion on this equation, Kashihara, K., 

Comments and topics on Smarandache notions and problems, Erhus University Press, 1996, p. 32. 
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Find all real solutions (x, y) of the equation x^y – z = y, where z is the greater integer less 

than or equal to x. 

 

(5)   

Enunciation
443

:   

Solve the diophantine equation 2*x^2 – 3*y^2 = 5. 

 

(6)   

Enunciation
444

:   

Solve the diophantine equation ISPP(x) + SSPP(x) = k, where ISPP(x) is the Inferior 

Smarandache Prime Part (the largest prime less than or equal to n) and SSPP(x) is the 

Superior Smarandache Prime Part (the smallest prime greater than or equal to n). 

 

 

Chapter VII. Problems regarding prime numbers 

 

(1)  

Enunciation
445

:   

Find the number of primes which can be formed from the digits a1, a2, …, an, where a1, 

a2, …, an are distinct digits of the set {0, 1, …, 9}, for a certain n, 1 ≤ n ≤ 9. Generalizing, 

the same question is raised in the case when n is positive integer and a1, a2, …, an are 

distinct positive integers.  

Comment:   

The problem “can be solved quickly on a modern computer”.
446

 

Conjecture
447

:   

Can be formed an infinity of such primes (obviously, if is allowed the repetition of the  

digits a1, a2, …, an). 

 

(2)   
Enunciation

448
:   

Find the number of the digits of a, where a is a certain digit between 0 and 9, contained 

by the n-th prime number Pn; the same question is raised for n! or for n^n and, 

generalizing, for a non-negative integer a. 

Comment:  

“The sizes  Pn, n! and n^n have jumps when n → n + 1, hence the analytical expressions 

are approximate only. Moreover, the results depend on the exact (and not approximate) 

value of these sizes”.
449

 

 

                                                 
443

 This equation has been solved; see Vassilev-Missana, Mladen and Atanassov, Krassimir, Some 

Smarandache problems, Hexis, 2004, Chapter 1: On some Smarandache’s problems, Section 9: On the 78-th 
Smarandache’s problem. 
444

 This equation has been solved; see Perez, M (editor), On some Smarandache problems, Notes on Number 

Theory and Discrete Mathematics, vol. 9, Number 2, 2003, Proposed problem 1. 
445

 F.S., Only problems, not solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 3, F.S., 

Sequences of numbers involved in unsolved problems, Hexis, 2006, Problem 154. 
446

 R.K. Guy, Calgary University, Alberta, Canada, Letter to F.S., 15 november 1985, cited by F.S., Only 

Problems, not solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 3. 
447

 F.S., Sequences of numbers involved in unsolved problems, Hexis, 2006. 
448

 F.S., Only problems, not solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 3. 
449

 E. Grosswald, Pennsylvania University, Philadelphia, SUA, Letter to F.S., 3 august 1985, cited by F.S., 

Only Problems, not solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 3. 
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(3)   

Enunciation
450

:   

Are there, for any set of digits a1, a2, …,an, primes to contain in their writing the 

concatenated group a1a2 … an of these digits? The problem is raised for other bases of 

numeration beside 10 too, also for n! and for n^n. 

Example:  

For a1 = 0 and a2 = 9 we have the primes 109, 409, 709, 809 etc. 

 

(4)   

Enunciation
451

:   

Does the sequence of numbers dn = (1/2)*(pn+1 – pn), where pn and pn+1 are two 

consecutive primes, contain an infinite number of primes? Does dn contain an infinity of 

numbers of the form n! or of the form n^n? 

 

(5)   

Enunciation
452

:   

If gcd (a, b) = 1, how many primes does the progression a*pn + b, where n = 1, 2, …, and 

pn is the n-th prime, contain? But numbers of the form n! or of the form n^n? Same 

questions for a^n + b, where a different from {-1, 0, 1}. Same questions for k^k + 1 and 

k^k – 1, where k is positive integer. 

Notes on progression a*pn + b 
453

:   

1. For a = 1 and b = 2, we have the classical unsolved problem: “are there infinitely 

many twin primes?”  

2. For a = 2 and b = 1, we have again a classical unsolved problem: “are there 

infinitely many Sophie-Germain primes?” 

3. Henry Ibstedt conjectured that there are infinitely many primes in the progression 

a*pn + b, if gcd (a, b) = 1. 

Notes on progression a^n + b:   

1. For a = 2 and b = -1, we have the classical unsolved problem: “are there infinitely 

many Mersenne primes?”  

2. Kenichiro Kashihara conjectured that each element of the family of sequences  

a^n + b contains an infinite number of prime numbers, for gcd (a, b) = 1 and a 

different from {-1, 0, 1}, if  a + b is odd.
454

 

 

(6)   

Enunciation
455

:   

How many primes are there in the expression x^y + y^x, where gcd (x, y) = 1? 

Notes:   

1. This problem is called “Smarandache expression”. 

                                                 
450

 F.S., Only problems, not solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 33. 
451

 F.S., Only problems, not solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 35. See also 

Kashihara, K., Comments and topics on Smarandache notions and problems, Erhus University Press, 1996, p. 

25-26. 
452

 F.S., Only problems, not solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 51. 
453

 For a study of how the function a*pn + b behaves see Ibstedt, H., Surphing on the ocean of numbers – a few 

Smarandache notions and similar topics, Erhus University Press, Vail, 1997, Chapter I: On prime numbers. 
454

 Kashihara, K., Comments and topics on Smarandache notions and problems, Erhus University Press, 1996, 
p. 24. 
455

 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 

Xiquan Publishing House, 2000, Problem 20. 
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2. Kenichiro Kashihara announced that there are only finitely many numbers of this 

form which are products of factorials. 

3. Florian Luca announced a lower bound for the size of the largest prime divisor of 

an expression of type a*x^y + b*y^x, where a*b ≠ 0, x, y ≥ 2 and gcd (x, y) = 1. 

 

 

Chapter VIII. Other unsolved problems 

 

(1)  
Enunciation

456
:   

Let τ(n) be the number of positive divisors of n, where n is positive integer. Find the 

smallest k such that τ(τ(…τ(n)…)) = 2, where the function τ is applied repeatedly k times. 

 

(2)  
Enunciation

457
:   

Find the maximum r such that the set {1, 2,…, r} can be partitioned into n classes such 

that no class contains integers x, y, z with x*y = z. Same question when x^y = z. Same 

question when no integer can be the sum of another integers of its class. 

 

(3)  
Enunciation

458
:   

Let N = {1, 2, ..., n}. Find the maxim number of elements extracted from N such that any 

m from these be not an arithmetic progression (n > m > 2). Same question when the m 

elements must not be a geometrical progression.
 
 

 

(4)  
Enunciation

459
:   

Let f be an arithmetic function and R a k-relation among numbers. How many times can 

n be expressed as a sum of non-null squares, or cubes, or m-powers? How many times 

can n be expressed as R(f(n1), f(n2), …, f(nk)) for some k  and n1, n2, …, nk so that n1+ n2 

+…+ nk = n?
 
 

 

(5)  
Enunciation

460
:   

Let σ(n) be the sum of divisors of n, π(x) the number of primes not exceeding x, ω(n) the  

number of distinct prime factors of n, τ(n) the number of positive divisors of n and p(n) 

the largest prime factor of n. Let f
(k)

 be the function f composed k times, for any function 

f. Find the smallest k for which: 

(i) For fixed n and m, we have σ
(k)

(n) > m; 

(ii) For a fixed real number x, x ≥ 2, we have π
(k)

(x) = 1; 

(iii) For a fixed n, we have ω
(k)

(n) = 1; 

(iiii) For fixed n and m, we have d
(k)

(n) > m; 

(iiiii) For a fixed n, we have p(p(…(p(n) – 1)…) – 1) – 1 = 1, where the operation p(n) 

– 1 is repetead k times. 

                                                 
456

 F.S., Only problems, not solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 52. 
457

 F.S., Only problems, not solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 57. 
458

 F.S., Only problems, not solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 58. 
459

 F.S., Definitions, solved and unsolved problems, conjectures, and theorems in number theory and geometry, 

Xiquan Publishing House, 2000, Definition 49 and Problem 17. 
460

 F.S., Only problems, not solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 83. 
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(6)  
Enunciation

461
:   

For any integers m and n, n ≥ 1, m ≥ 3, find the maximum number S(n, m) such that the 

set {1, 2, 3, …, n} has a subset A of cardinality S(n, m) with the property that A contains 

no m-term arithmetic progression. S(n, m) is called the cardinality number. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
461

 F.S., Only problems, not solutions!, Xiquan Publishing House, fourth edition, 1993, Problem 156. 



 119 

AFTERWORD 

An infinity of problems concerning the Smarandache function 

 

 

 In the Abstract to the paper An infinity of unsolved problems concerning a function in the 

number theory
462

, F.S. says: “W. Sierpinski has asserted to an international conference that if 

mankind lasted for ever and numbered the unsolved problems, then in the long run all these 

unsolved problems would be solved. The purpose of our paper is that making an infinite number 

of unsolved problems to prove his supposition is not true. Moreover, the author considers the 

unsolved problems proposed in this paper can never be all solved!” 

Indeed, can be formulated an infinity of problems starting from a simple question raised 

by F.S. in the above mentioned paper: are there non-null and non-prime integers a1, a2, …, an in 

the  relation P, so that S(a1), S(a2), …, S(an) are in the relation R? Where each P, R can represent 

one of the following number sequences: Abundant numbers, Almost perfect numbers, Amicable 

numbers, Bell numbers, Bernoulli numbers, Catalan numbers, Carmichael numbers, Congruent 

numbers, Cullen numbers,  Deficient numbers, Euler numbers, Fermat numbers, Fibonacci 

numbers, Genocchi numbers, Harmonic numbers, Heteromenous numbers, K-hyperperfect 

numbers, Kurepa numbers, Lucas numbers, Lucky numbers, Mersenne numbers, Multiply 

perfect numbers, Perfect numbers, Polygonal numbers, Pseudoperfect numbers, Pseudoprime 

numbers, Pyramidal numbers, Pythagorian numbers, Stirling numbers, Superperfect numbers, 

Untouchable numbers, Ulam numbers, Weird numbers etc. 

As the list of the sequences of numbers related by special properties is potentially 

infinite, here’s how can you construct with just one question an infinity of unsolved problems.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
462

F.S., Collected Papers, vol. III, Abaddaba, Oradea, 2000. In this paper, F.S. raised hundreds of questions 

concerning the Smarandache function. Some of them were given an answer but many of them still await a 

solution. 
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ANNEX A 

List of twenty types of numbers named after Florentin Smarandache 
 

 

 

(1) 

Smarandache numbers 

 

Definition: 

The numbers generated by the Smarandache function, i.e. the least positive integers k 

with the property that k! is divisible by n.  

The first thirty Smarandache numbers (sequence A002034 in OEIS):  

1, 2, 3, 4, 5, 3, 7, 4, 6, 5, 11, 4, 13, 7, 5, 6, 17, 6, 19, 5, 7, 11, 23, 4, 10, 13, 9, 7, 29, 5. 

Reference: 

 Part Two, Chapter 1, Section (1). 

 

(2) 

Smarandache consecutive numbers 

 

Definition: 

 The numbers obtained through the concatenation of first n positive integers. 

The first ten such numbers (sequence A007908 in OEIS):  

1, 12, 123, 1234, 12345, 123456, 1234567, 12345678, 123456789, 12345678910. 

Reference: 

 Part One, Chapter 1, Section (1). 

 
(3) 

Smarandache-Wellin numbers 

 

Definition: 

 The numbers obtained through the concatenation of first n primes. 

The first ten such numbers (sequence A019518 in OEIS):  

2, 23, 235, 2357, 235711, 23571113, 2357111317, 235711131719, 23571113171923, 

2357111317192329. 

Reference: 

 Part One, Chapter 1, Section (5). 

 
(4) 

Smarandache-Fibonacci numbers 

 

Definition: 

The positive integers n with the property that S(n) = S(n – 1) + S(n – 2), where S(k) is the 

Smarandache function.  

The first fifteen such numbers (sequence A015047 in OEIS):  

11, 121, 4902, 26245, 32112, 64010, 368140, 415664, 2091206, 2519648, 4573053, 

7783364, 79269727, 136193976, 321022289.  

Reference: 

 Part One, Chapter 2, Section (31). 

 

(5) 
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Smarandache-Radu numbers 

 

Definition: 

The positive integers n with the property that between S(n) and S(n + 1) there is no 

prime, where S(n) and S(n +1) are included, where S(k) is the Smarandache function.  

The first fifteen such numbers (sequence A015048 in OEIS):  

224, 2057, 265225, 843637, 6530355, 24652435, 35558770, 40201975, 45388758, 

46297822, 67697937, 138852445, 157906534, 171531580, 299441785. 

Reference: 

 Part One, Chapter 2, Section (32). 

 
(6) 

Smarandache friendly numbers 

 

Definition: 

The pairs of natural numbers [m, n], where m < n, with the property that the product m*n 

is equal to the sum of all natural numbers from m to n (m and n are included).  

The first four such pairs of numbers:  

[1, 1], [3, 6], [15, 35], [85, 204]. 

Reference: 

 Part One, Chapter 2, Section (34). 

 
(7) 

Smarandache friendly primes 

 

Definition: 

The pairs of Smarandache friendly numbers with the property that are also primes.  

The five known such pairs of numbers (sequence A176914 in OEIS): 

[2, 5], [3, 13], [5, 31], [7, 53], [3536123, 128541727]. 

Reference: 

 Part One, Chapter 2, Section (35). 

 
(8) 

Pseudo-Smarandache numbers 

 

Definition: 

The least positive integers k with the property that 1 + 2 +…+ k is divisible by n, which 

is equivalent to n divides k*(k + 1)/2.  

The first thirty such numbers (sequence A011772 in OEIS):  

1, 3, 2, 7, 4, 3, 6, 15, 8, 4, 10, 8, 12, 7, 5, 31, 16, 8, 18, 15, 6, 11, 22, 15, 24, 12, 26, 7, 28, 

15, 30, 63, 11, 16, 14, 8, 36, 19, 12, 15. 

Reference: 

 Part Two, Chapter 1, Section (11). 

 
(9) 
Pseudo-Smarandache numbers of first kind 

 

Definition: 

The least positive integers k with the property that 1^2 + 2^2 +…+ k^2 is divisible by n, 

which is equivalent to n divides k*(k + 1)*(2*k + 1)/6. 
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The first fifteen such numbers:  

1, 3, 4, 7, 2, 4, 3, 15, 13, 4, 5, 8, 6, 3, 4. 

Reference: 

 Part Two, Chapter 1, Section (12). 

 
(10) 
Pseudo-Smarandache numbers of second kind 

 

Definition: 

The least positive integers k with the property that 1^3 + 2^3 +…+ k^3 is divisible by n, 

which is equivalent to n divides k^2*(k + 1)^2/4. 

The first fifteen such numbers:  

1, 3, 2, 3, 4, 3, 6, 7, 2, 4, 10, 3, 12, 7, 5. 

Reference: 

 Part Two, Chapter 1, Section (13). 

 
(11) 

Smarandache wrong numbers 

 

Definition: 

The positive integers n, where n = a1a2…ak, consisted of at least two digits, with the 

property that the sequence a1, a2, …, ak, bk+1, bk+2, …(where bk+i is the product of the 

previous k terms, for any i ≥ 1), contains n as its term. 

Reference: 

 Part One, Chapter 2, Section (48). 

 
(12) 

Smarandache impotent numbers 

 

Definition: 

The positive integers n with the property that its proper divisors product is less than n. 

The first twenty such numbers (sequence A000430 in OEIS): 

2, 3, 4, 5, 7, 9, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 49, 53, 59. 

Reference: 

 Part One, Chapter 2, Section (49). 

 
(13) 

Smarandache simple numbers 

 

Definition: 

The positive integers n with the property that its proper divisors product is less than or 

equal to n. 

The first twenty such numbers (sequence A007964 in OEIS): 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25. 

Reference: 

 Part One, Chapter 2, Section (50). 

 

(14) 

Smarandache bad numbers 
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Definition: 

The positive integers n with the property that cannot be expressed as the difference 

between a cube and a square (in absolute value). 

Reference: 

 Part Three, Chapter 4, Section (2). 

 

(15) 

Smarandache primitive numbers 

 

Definition: 

The least positive integers k with the property that p^n divides k!, where p is prime. The 

least positive integers k for which 2^n divides k! are called Smarandache primitive 

numbers of power two, the least positive integers k for which 3^n divides k! are called 

Smarandache primitive numbers of power three etc.  

The first forty primitive numbers of power two (sequence A007843 in OEIS):  

1, 2, 4, 4, 6, 8, 8, 8, 10, 12, 12, 14, 16, 16, 16, 16, 18, 20, 20, 22, 24, 24, 24, 26, 28, 28, 

30, 32, 32, 32, 32, 32, 34, 36, 36, 38, 40, 40, 40, 42. 

The first forty primitive numbers of power three (sequence A007844 in OEIS):  

1, 3, 6, 9, 9, 12, 15, 18, 18, 21, 24, 27, 27, 27, 30, 33, 36, 36, 39, 42, 45, 45, 48, 51, 54, 

54, 54, 57, 60, 63, 63, 66, 69, 72, 72, 75, 78, 81, 81, 81, 81. 

Reference: 

 Part One, Chapter 2, Sections (16)-(18). 

 

(16) 
Erdős-Smarandache numbers 

 

Definition: 

The numbers n which are solutions of the diophantine equation P(n) = S(n), where P(n) is 

the largest prime factor which divides n, and S(n) is the Smarandache function. 

The first twenty-five such numbers: 

2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 26, 28, 29, 30, 31, 33, 34, 35, 37. 

Reference: 

 Part One, Chapter 2, Section (75). 

 

(17) 
Goldbach-Smarandache numbers 

 

Definition: 

The numbers n with the property that n is the largest even number such that any other 

even number not exceeding it is the sum of two of the first n odd primes. 

The first twenty such numbers (sequence A007944 in OEIS): 

6, 10, 14, 18, 26, 30, 38, 42, 42, 54, 62, 74, 74, 90, 90, 90, 108, 114, 114, 134. 

Reference: 

 Part One, Chapter 2, Section (76). 

 

(18) 
Smarandache-Vinogradov numbers 

 

Definition: 
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The numbers n with the property that n is the largest odd number such that any odd 

number greater than or equal to 9 not exceeding it is the sum of three of the first n odd 

primes. 

The first twenty such numbers (sequence A007962 in OEIS): 

9, 15, 21, 29, 39, 47, 57, 65, 71, 93, 99, 115, 129, 137, 143, 149, 183, 189, 205, 219. 

Reference: 

 Part One, Chapter 2, Section (77). 

 
(19) 
Smarandache perfect and completely perfect numbers

463
 

 

Definition 1: 

An integer n, n ≥ 1, is called Smarandache perfect (or S-perfect) if and only if n is equal 

to te sum from i = 1 to i = k of the numbers S(di), where S is the Smarandache function 

and d1 = 1, d2, …, di = dk are the proper divisors of n. 
Definition 2: 

An integer n, n ≥ 1, is called Smarandache completely perfect (or completely S-perfect) if 

and only if n is equal to te sum from i = 1 to i = n of the numbers S(di), where S is the 

Smarandache function and d1 = 1, d2, …, di = n are the divisors of n. 
Note: 

In the same way, considering beside the Smarandache function the pseudo-Smarandache 

function, are defined the Z-perfect and the completely Z-perfect numbers.
464 

 

(20) 
Smarandache Ulam numbers

465
 

 

Definition: 

The numbers obtained concatenating the Ulam numbers.
466

 The first few Smarandache 

Ulam numbers (or, in other words, the first terms of the Smarandache U-sequence) are: 

1, 12, 123, 1234, 12346, 123468, 12346811, 1234681113, 123468111316, … 

Comment: 

There are only two primes known in the first 3200 terms of this sequence, i.e. SU(22) and 

SU(237), where SU(n) is the n-th element of the sequence. 

 

 

 

                                                 
463

 Introduced by A.A.K. Majumdar, see S-perfect and completely S-perfect numbers, in Wenpeng, Zhang 

(editor), Research on number theory and Smarandache notions (Proceedings of the fifth international 

conference on number theory and Smarandache notions), Hexis, 2009. The author proved that the only S-

perfect numbers are 1 and 6 and the only completely perfect S-numbers are 1 and 28. 
464

 To find the all Z-perfect and completely Z-perfect numbers is still an open problem. The only known Z-

perfect numbers less than 10^6 are 4 and 6. 
465

 Introduced by Shyam Sunder Gupta, see Smarandache sequence of Ulam numbers, in Wenpeng, Zhang 

(editor), Research on number theory and Smarandache notions (Proceedings of the fifth international 
conference on number theory and Smarandache notions), Hexis, 2009.  
466

 An (m, n) - Ulam number is said to be a term of the sequence defined in the following way: the first term of 

the sequence is equal to m, the second is equal to n and the following terms are the least integers that can be 
expressed in an unique way as the sum of two distinct earlier terms. Here is considered the standard Ulam 

sequence, where m = 1 and n = 2: the first terms of this sequence are: 1, 2, 3, 4, 6, 8, 11, 13, 16, 18, 26, 28, 36, 

38, 47, … (sequence A002858 in OEIS). 
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ANNEX B 

A proposal for a new Smarandache type notion 
 

 

  

Definition 1: 

We call the set of Smarandache-Coman divisors of order 1 of a composite positive 

integer n with m prime factors, n = d1*d2*…*dm, where the least prime factor of n, d1, is 

greater than or equal to 2, the set of numbers defined in the following way: 

SCD1(n) = {S(d1 – 1), S(d2 – 1), …, S(dm – 1)}, where S is the Smarandache function. 

Examples:  

1. The set of SC divisors of order 1 of the number 6 is {S(2 – 1), S(3 – 1)} = {S(1), 

S(2)} = {1, 2}, because 6 = 2*3; 

2. SCD1(429) = {S(3 – 1), S(11 – 1), S(13 – 1)} = {S(2), S(10), S(12)} = {2, 5, 4}, 

because 429 = 3*11*13. 

 
Definition 2: 

We call the set of Smarandache-Coman divisors of order 2 of a composite positive 

integer n with m prime factors, n = d1*d2*…*dm, where the least prime factor of n, d1, is 

greater than or equal to 3, the set of numbers defined in the following way: 

SCD2(n) = {S(d1 – 2), S(d2 – 2), …, S(dm – 2)}, where S is the Smarandache function. 

Examples:  

1. The set of SC divisors of order 2 of the number 21 is {S(3 – 2), S(7 – 2)} = {S(1), 

S(5)} = {1, 5}, because 21 = 3*7; 

2. SCD2(2429) = {S(7 – 2), S(347 – 2)} = {S(5), S(345)} = {5, 23}, because 2429 = 

7*347. 

 
Definition 3: 

We call the set of Smarandache-Coman divisors of order k of a composite positive 

integer n with m prime factors, n = d1*d2*…*dm, where the least prime factor of n, d1, is 

greater than or equal to k + 1, the set of numbers defined in the following way: 

SCDk(n) = {S(d1 – k), S(d2 – k), …, S(dm – k)}, where S is the Smarandache function. 

Examples:  

1. The set of SC divisors of order 5 of the number 539 is {S(7 – 5), S(11 – 5)} = 

{S(2), S(6)} = {2, 3}, because 539 = 7^2*11; 

2. SCD6(221) = {S(13 – 6), S(17 – 6)} = {S(7), S(11)} = {7, 11}, because 221 = 

13*17. 

 
Comment: 

We obviously defined the sets of numbers above because we believe that they can have 

interesting applications, in fact we believe that they can even make us re-think and re-

consider the Smarandache function as an instrument to operate in the world of number 

theory: while at the beginning its value was considered to consist essentially in that to be 

a criterion for primality, afterwards the Smarandache function crossed a normal process 

of substantiation, so it was constrained to evolve in a relatively closed (even large) circle 

of equalities, inequalities, conjectures and theorems concerning, most of them, more or 

less related concepts. We strongly believe that some of the most important applications of 

the Smarandache function are still undiscovered. We were inspired in defining the 

Smarandache-Coman divisors by the passion for Fermat pseudoprimes, especially for 
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Carmichael numbers and Poulet numbers, by the Korselt’s criterion, one of the very few 

(and the most important from them) instruments that allow us to comprehend Carmichael 

numbers, and by the encouraging results we easily obtained, even from the first attempts 

to relate these two types of numbers, Fermat pseudoprimes and Smarandache numbers. 

 

Smarandache-Coman divisors of order 1 of the 2-Poulet numbers: 

(See the sequence A214305 in OEIS, posted by us, for a list with Poulet numbers with 

two prime factors) 

 

SCD1(341)  = SCD1(11*31) = {S(11 – 1), S(31 – 1)} = {S(10), S(30)}  = {5, 5}; 

SCD1(1387)  = SCD1(19*73) = {S(19 – 1), S(73 – 1)} = {S(18), S(72)}  = {6, 6}; 

SCD1(2047)  = SCD1(23*89) = {S(23 – 1), S(89 – 1)} = {S(22), S(88)}  = {11, 11}; 

SCD1(2701)  = SCD1(37*73) = {S(37 – 1), S(73 – 1)} = {S(36), S(72)}  = {6, 6}; 

SCD1(3277)  = SCD1(29*113) = {S(29 – 1), S(113 – 1)} = {S(28), S(112)} = {7, 7}; 

SCD1(4033)  = SCD1(37*109) = {S(37 – 1), S(109 – 1)} = {S(36), S(108)} = {6, 9}; 

SCD1(4369)  = SCD1(17*257) = {S(17 – 1), S(257 – 1)} = {S(16), S(256)} = {6, 10}; 

SCD1(4681)  = SCD1(31*151) = {S(31 – 1), S(151 – 1)} = {S(30), S(150)} = {5, 10}; 

SCD1(5461)  = SCD1(43*127) = {S(43 – 1), S(127 – 1)} = {S(42), S(126)} = {7, 7}; 

SCD1(7957)  = SCD1(73*109) = {S(73 – 1), S(109 – 1)} = {S(72), S(108)} = {6, 9}; 

SCD1(8321)  = SCD1(53*157) = {S(53 – 1), S(157 – 1)} = {S(52), S(156)} = {13, 13}. 

 

Comment: 

It is notable how easily are obtained interesting results: from the first 11 terms of the 2-

Poulet numbers sequence checked there are already foreseen few patterns. 

 

Open problems:  

1. Is for the majority of the 2-Poulet numbers the case that the two Smarandache-

Coman divisors of order 1 are equal, as for the seven from the eleven numbers 

checked above? 

2. Is there an infinity of 2-Poulet numbers for which the set of SCD of order 1 is 

equal to {6, 6}, the case of Poulet numbers 1387 and 2701, or with {6, 9}, the 

case of Poulet numbers 4033 and 7957? 

 

Smarandache-Coman divisors of order 2 of the 2-Poulet numbers: 

 

SCD2(341)  = SCD2(11*31) = {S(11 – 2), S(31 – 2)} = {S(9), S(29)}  = {6, 29}; 

SCD2(1387)  = SCD2(19*73) = {S(19 – 2), S(73 – 2)} = {S(17), S(71)}  = {17, 71}; 

SCD2(2047)  = SCD2(23*89) = {S(23 – 2), S(89 – 2)} = {S(21), S(87)}  = {7, 29}; 

SCD2(2701)  = SCD2(37*73) = {S(37 – 2), S(73 – 2)} = {S(35), S(71)}  = {7, 71}; 

SCD2(3277)  = SCD2(29*113) = {S(29 – 2), S(113 – 2)} = {S(27), S(111)} = {9, 37}; 

SCD2(4033)  = SCD2(37*109) = {S(37 – 2), S(109 – 2)} = {S(35), S(107)} = {7, 107}; 

SCD2(4369)  = SCD2(17*257) = {S(17 – 2), S(257 – 2)} = {S(15), S(255)} = {5, 17}; 

SCD2(4681)  = SCD2(31*151) = {S(31 – 2), S(151 – 2)} ={S(29), S(149)} = {29, 149}; 

SCD2(5461)  = SCD2(43*127) = {S(43 – 2), S(127 – 2)} = {S(41), S(125)} = {41, 15}; 

SCD2(7957)  = SCD2(73*109) = {S(73 – 2), S(109 – 2)} ={S(71), S(107)} = {71, 107}; 

SCD2(8321)  = SCD2(53*157) = {S(53 – 2), S(157 – 2)} = {S(52), S(156)} = {17, 31}. 

 

Comment: 

In the case of SCD of order 2 of the 2-Poulet numbers there are too foreseen few patterns. 
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Open problems:  

1. Is for the majority of the 2-Poulet numbers the case that the two Smarandache-

Coman divisors of order 2 are both primes, as for the eight from the eleven 

numbers checked above? 

2. Is there an infinity of 2-Poulet numbers for which the set of SCD of order 2 is 

equal to {p, p + 20*k}, where p prime and k positive integer, the case of Poulet 

numbers 4033 and 4681? 

 

Smarandache-Coman divisors of order 1 of the 3-Poulet numbers: 

(See the sequence A215672 in OEIS, posted by us, for a list with Poulet numbers with 

two prime factors) 

 

SCD1(561)  = SCD1(3*11*17) = {S(2), S(10), S(16)} = {2, 5, 6}; 

SCD1(645)  = SCD1(3*5*43) = {S(2), S(4), S(42)}  = {2, 4, 7}; 

SCD1(1105)  = SCD1(5*13*17) = {S(4), S(12), S(16)}  = {4, 4, 6}; 

SCD1(1729)  = SCD1(7*13*19) = {S(6), S(12), S(18)}  = {3, 4, 6}; 

SCD1(1905)  = SCD1(3*5*127) = {S(2), S(4), S(126)}  = {2, 4, 7}; 

SCD1(2465)  = SCD1(5*17*29) = {S(4), S(16), S(28)}  = {4, 6, 7}; 

SCD1(2821)  = SCD1(7*13*31) = {S(6), S(12), S(30)}  = {3, 4, 5}; 

SCD1(4371)  = SCD1(3*31*47) = {S(2), S(30), S(46)}  = {2, 5, 23}; 

SCD1(6601)  = SCD1(7*23*41) = {S(6), S(22), S(40)}  = {3, 11, 5}; 

SCD1(8481)  = SCD1(3*11*257) = {S(2), S(10), S(256)}  = {2, 5, 10}; 

SCD1(8911)  = SCD1(7*19*67) = {S(6), S(18), S(66)}  = {3, 19, 67}. 

 

Open problems:  

1. Is there an infinity of 3-Poulet numbers for which the set of SCD of order 1 is 

equal to {2, 4, 7}, the case of Poulet numbers 645 and 1905? 

2. Is there an infinity of 3-Poulet numbers for which the sum of SCD of order 1 is 

equal to 13, the case of Poulet numbers 561 (2 + 5 + 6 = 13), 645 (2 + 4 + 7 = 13), 

1729 (3 + 4 + 6 = 13), 1905 (2 + 4 + 7 = 13) or is equal to 17, the case of Poulet 

numbers 2465 (4 + 6 + 7 = 17) and 8481 (2 + 5 + 10 = 17)? 

3. Is there an infinity of Poulet numbers for which the sum of SCD of order 1 is 

prime, which is the case of the eight from the eleven numbers checked above? 

What about the sum of SCD of order 1 plus 1, the case of Poulet numbers 2821 (3 

+ 4 + 5 + 1 = 13) and 4371 (2 + 5 + 23 + 1 = 31) or the sum of SCD of order 1 

minus 1, the case of Poulet numbers 1105 (4 + 4 + 6 – 1 = 13), 2821 (3 + 4 + 5 – 

1 = 11) and 4371 (2 + 5 + 23 – 1 = 29)? 

 

Note: We stop here for now, because the purpose of this book is not to substantiate new 

concepts but to show the richness and the potential of the already largely known 

Smarandache notions. 
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