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Abstract

We present a simple introduction to a manifestly gauge-invariant perturbative
development for quantum electrodynamics in the effective action formalism,
and in the divergence-free framework. The system involves the interaction of
the photon field with a Dirac fermionic spinor field. Detailed computations are
exhibited, and divergence-free expressions for one and two-loop contributions
are provided.

1 Introduction

The interaction of a Dirac fermionic spinor field Ψ, having Dirac conjugate Ψ̄, with the
bosonic photon field Aµ, a 4-dimensional vector, is described by the Lagrangian density

L = Ψ̄ (iγ · ∇ −m) Ψ +
1

2
Aµ∆µνAν (1)

where we have
iγ · ∇ = iγ · ∂ + eγ · A ∆µν = ∂2ηµν − ∂µ∂ν (2)

Here, e is the electromagnetic coupling constant, and γµ are the four Dirac matrices in
4-dimensional spacetime that satisfy the anticommutators:

{γµ, γν} = 2ηµν µ, ν = 0, 1, 2, 3 (3)

where ηµν is the constant metric of Minkowski spacetime with {1,−1,−1,−1} as the
respective diagonal elements. In most of this article, we shall suppress the constant e.
However, we shall reinstate it when needed.

From our general formalism[1], [2] dealing with similar Fermi-Bose systems, the one-loop
corrections are given by

i
2
tr ln

(
∆µν − Ψ̄γµ(iγ · ∇ −m)−1γνΨ− Ψ̄γν(iγ · ∇ −m)−1γµΨ

)
−i tr ln(iγ · ∇ −m)

(4)

The first term describes an effective photon loop with implicit electron insertions, via
the terms containing the fermionic fields Ψ and Ψ̄. Notice that the latter insertions have
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other insertions, with respect to the photon field, contained in the covariant derivative.
The second term describes an effective electron loop, however, with implicit photon
insertions. The effective photon loop and the effective electron loop are represented by
the following respective diagrams:

The two-loop contribution is given[1], [2] by −
1
2

{
∆µν − Ψ̄γµ(iγ · ∇ −m)−1γνΨ− Ψ̄γν(iγ · ∇ −m)−1γµΨ

}−1×

tr {(iγ · ∇ −m)−1γµ(iγ · ∇ −m)−1γν}
(5)

This describes an effective electron loop whose effective propagators contain photon
insertions, being traversed by an effective photon propagator which contains electron
insertions. The following diagram depicts this contribution:

Notice that we use thick lines to indicate effective propagators with implicit insertions;
a continuous line with charge arrows for the electron, and a discontinuous line for the
photon. Later on when we show the expansions with respect to the implicit insertions,
thin lines will be used.

Our strategy is to expand the above contributions with respect to the effective fields
Ψ, Ψ̄, and A, and compute the resulting terms of the series, all in a manner preserving
effective gauge invariance, and in a divergence-free framework.

In the following section, we shall deal with the one-loop contributions, going into the
details of regularizing, expanding, and computing the various terms. We shall compute
the vacuum, bilinear, cubic, and quartic contrributions, and show how the results are
gauge invariant, as well as, divergence free.

Subsequently, we shall move to present the manner of regularizing the two-loop contri-
bution, and the manner of expanding it with respect to the effective photonic insertions.
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2 One-Loop Contributions

Let us begin by expanding the one-loop contributions with respect to the effective
fermion field insertions that are implicit in the effective photon propagator. The ex-
pansion to fourth order gives for the one-loop contributions:

(1) i
2
tr ln(∆µν)

(2) −i∆−1
µν Ψ̄γµ(γ · ∇ −m)−1γνΨ

(3) − i
2
∆−1
µν Ψ̄γν(γ · ∇ −m)−1γλΨ∆−1

λρ Ψ̄γρ(γ · ∇ −m)−1γµΨ

(4) − i
2
∆−1
µν Ψ̄γν(γ · ∇ −m)−1γλΨ∆−1

λρ Ψ̄γµ(γ · ∇ −m)−1γρΨ

(5) −i tr ln(iγ · ∇ −m)

(6)

The above contributions are shown respectively in the following diagrams:

Notice that the bare photon and fermion propagators and insertions are shown with thin
lines, while the effective fermion propagators that include implicit photon insertions are
shown with thick lines.

The above terms are formally gauge invariant with respect to the effective photon field,
implicit in the covariant operator i∇ = i∂ + A. It is important to preserve this gauge
invariance in any attempt to expand the above with respect to the effective photon field,
while at the same time regularizing, or rather evading the divergences of the Feynman
integrals involved. We shall see that a proper definition of the above expressions will
produce the desired results.

Our regularization (or divergence-evasion) technique[1] is based on replacing operators
that appear in the form of propagators in such a way that for any such operator Ω,

ln(Ω)→ %ε

(
−1

ε
Ω−ε

)
Ω−1 → %ε Ω−(1+ε) (7)

where we have the regularizing (or pole-removing) prescription:

%εX(ε) = lim
ε→0

(
∂

∂ε
ε

)
X(ε) (8)
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and ε is a limiting parameter, taken to zero after differentiation, and X(ε) is any regu-
larized expression. It is important that in applying this technique that each covariant
propagator must have its own limiting parameter ε and associated prescription %ε, and
that integration over loop momenta must be done before applying these prescriptions
and taking the limits.

In applying this technique to the operators occurring in the covariant quantum contri-
butions such as displayed above, we shall first put the vector and spinor propagators
in convenient gauge-covariant forms, then apply the regularizing definitions, and then
proceed to expand with respect to the effective photon field.

For the logarithmic bosonic vacuum contribution i
2
tr ln(∆µν), we have the following

prescription:

i

2
tr

{(
ηµν −

∂µ∂ν
∂2

)
ln(∂2)

}
⇒ i

2
tr

{(
ηµν −

∂µ∂ν
∂2

)
%ε

(
−1

ε

1

(∂2 + µ2)ε

)}
(9)

Here we have given a small mass µ to the photon which would be taken to zero in the
end; in fact, the above contribution will be seen to yield zero.

For the logarithmic fermionic contribution −i tr ln(iγ · ∇ − m), it is clear that it is
equivalent to −i tr ln(−iγ · ∇−m). Hence taking the average of the two, we write and
regularize as follows:

− i

2
tr ln

{
(γ · ∇)2 +m2

}
⇒ i

2
%ε tr

{
1

ε

1

{(γ · ∇)2 +m2}ε
}

(10)

For the photon propagator, we shall write

∆−1
µν = 1

∂2
(ηµν − ∂µ∂ν

∂2
)

⇒ %ε
1

(∂2)1+ε (ηµν − ∂µ∂ν
∂2

)

 (11)

For the fermion propagator, we shall write

1
iγ·∇−m = − 1

(γ·∇)2+m2 (iγ · ∇+m)

⇒ −%ε 1
{(γ·∇)2+m2}1+ε (iγ · ∇+m)

 (12)

Notice that the above replacements still exhibit the results in a manifestly gauge in-
variant manner. Now, using methods for expanding the above expressions with regard
to the effective photon field, performing loop integration, and then taking the proper
limits, we are guaranteed gauge invariant results. We shall also see that our results are
always finite.
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2.1 Vacuum Photonic Contribution

Let us begin, for illustration, by computing the rather trivial vacuum contribution of
the photon. As we have seen this is given by

i

2
tr

{(
ηµν −

∂µ∂ν
∂2

)
%ε

(
−1

ε

1

(∂2 + µ2)ε

)}
(13)

In momentum space we have

3i

2
%ε

1

ε

∫
d4p

(2π)4

1

(−p2 + µ2)ε
(14)

where a factor of 3 has resulted from the trace over the vector projection operator.1

This integral is Minkowskian, which may be evaluated by using the Feynman technique
of adding a small imaginary part to µ2 and choosing an appropriate contour for energy.
Equivalently we can choose a contour along the imaginary energy axis and integrate in
a corresponding Euclidean space. This is simply done by replacing p0 by ip4 and we
are left with the Euclidean integral

− 3

2
%ε

1

ε

∫
d4p

(2π)4

1

(p2 + µ2)ε
(15)

This is easily evaluated and we have the result

− 3

2

1

16π2
%ε

1

ε

Γ(−2 + ε)

Γ(ε)
(µ2)2−ε (16)

Simplifying, then executing the operation described by %ε, we are left with the finite
result:

− 3

4

µ4

16π2

(
3

2
− ln(µ2)

)
(17)

Notice that in the limit µ2 → 0, the above result is vanishing. However, the above
result does illustrate the case for massive bosons as well.

2.2 Fermionic Loop Contribution

Let us consider our regularized fermionic loop contribution

i

2
%ε tr

{
1

ε

1

{(γ · ∇)2 +m2}ε
}

(18)

Using γ · ∇ = γ · ∂ − i γ · A, we shall write (γ · ∇)2 +m2 = ∆− Y where ∆ = ∂2 +m2

Y = i(γ · ∂ γ · A+ γ · Aγ · ∂) + A2
(19)

1As a matter of fact, we can define our effective action framework for gauge fields (like the photon field in the present
case) in a gauge-invariant manner where we can get rid of the non-diagonal part of the projection operator. In our case,
this would replace (ηµν − pµpν/p2) by ηµν . This would give a great computational advantage especially for non-Abelian
gauge theories[5].
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Notice that Y is expressed in the operator sense. Hence our contribution is written in
the form

i

2
%ε tr

{
1

ε

1

(∆− Y )ε

}
(20)

and we need to expand with respect to field-dependent part Y . For that purpose, we
have the series

tr

{
1

ε

1

(∆− Y )ε

}
= tr


1

ε

1

∆ε
+

1

∆1+ε
Y +

1

2

Γ(2 + ε)

Γ(1 + ε)

1

∆
Y

1

∆︸ ︷︷ ︸
2+ε

Y + · · ·

 (21)

The underbraced term is the above is understood[1], [2], [3] such that the two propagators,
when going to momentum space, are to be combined via a Feynman parameter in the
form 1/(∆ + · · · )2+ε.

The vacuum contribution, or the term independent of Y , resulting from the above is

i

2
%ε tr

{
1

ε

1

(∂2 +m2)ε

}
(22)

This gives in Euclidean momentum space,

− 2%ε
1

ε

∫
d4p

(2π)4

1

(p2 +m2)ε
(23)

where a factor of 4 has resulted from the trace over spinor matrices. Comparing with
our computation of the preceding section, the above integral is easily done to obtain

− m4

16π2

(
3

2
− ln(m2)

)
(24)

A contribution that is linear in the photon field is clearly zero. The bilinear contribution
comes from:

i

2
%ε tr


1

∆1+ε
Y +

1

2

Γ(2 + ε)

Γ(1 + ε)

1

∆
Y

1

∆︸ ︷︷ ︸
2+ε

Y

 (25)

Now from Y = i(γ · ∂ γ · A+ γ · Aγ · ∂) + A2, we obtain to order A2,

i

2
%ε tr


1/(∂2 +m2)1+ε+

1
2

Γ(2+ε)
Γ(1+ε)

1

(∂2 +m2)
i(γ · ∂ γ ·A+ γ ·Aγ · ∂)

1

(∂2 +m2)︸ ︷︷ ︸
2+ε

i(γ · ∂ γ ·A+ γ ·Aγ · ∂)

 (26)

Translating to momentum space, we obtain the bilinear term∫
d4r

(2π)4

1

2
Aµ(r)Aν(−r)Xµν(r) (27)
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where r is the external photon momentum, and the one-loop kernel Xµν(r) is given by

i%ε tr

∫
d4p

(2π)4


1/(−p2 +m2)1+εηµν+

1
2

Γ(2+ε)
Γ(1+ε)

∫ 1

0
dx 1
{(1−x)(−p2+m2)+x[−(p+r)2+m2]}2+ε×

{γ · p γµ + γµ γ · (p+ r)} {γ · (p+ r) γν + γν γ · p}

 (28)

Here we have shown the necessary combination of propagators via a Feynman parameter
x. Now the numerator involving the gamma matrices gives

(2pµ + γµγ · r)(2pν + γ · rγν) (29)

Taking the trace over gamma matrices, we obtain

4(4pµpν + 2pµrν + 2pνrµ + r2ηµν) (30)

Hence, we obtain

4i %ε

∫
d4p

(2π)4


1/(−p2 +m2)1+εηµν+

1
2

Γ(2+ε)
Γ(1+ε)

∫ 1

0
dx 1
{−(p+xr)2−x(1−x)r2+m2}2+ε×

(4pµpν + 2pµrν + 2pνrµ + r2ηµν)

 (31)

We have to make a shift in the momentum integrand of the second term p→ (p− xr).
The numerator becomes under this shift and symmetrization:

4(pµ − xrµ)(pν − xrν) + 2(pµ − xrµ)rν + 2(pν − xrν)rµ + r2ηµν

⇒ p2ηµν − 4x(1− x)rµrν + r2ηµν

 (32)

Hence we obtain

4i %ε

∫
d4p

(2π)4


1/(−p2 +m2)1+εηµν+

1
2

Γ(2+ε)
Γ(1+ε)

∫ 1

0
dx 1
{−p2−x(1−x)r2+m2}2+ε×

(p2ηµν − 4x(1− x)rµrν + r2ηµν)

 (33)

Transforming to Euclidean loop momentum, we have

− 4 %ε

∫
d4p

(2π)4


1/(p2 +m2)1+εηµν+

1
2

Γ(2+ε)
Γ(1+ε)

∫ 1

0
dx 1
{p2−x(1−x)r2+m2}2+ε×

(−p2ηµν − 4x(1− x)rµrν + r2ηµν)

 (34)
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Now integrating over p, we obtain

− 1

4π2
%ε



Γ(−1+ε)
Γ(1+ε) (m2)1−εηµν

− 1
2

∫ 1

0
dx

 2Γ(−1+ε)
Γ(1+ε)

{
−x(1− x)r2 +m2

}1−ε
ηµν+

Γ(ε)
Γ(1+ε)

{
−x(1− x)r2 +m2

}−ε (
4x(1− x)rµrν − r2ηµν

)



(35)

Simplifying and executing the %ε prescription, we obtain

1

4π2


m2
(
1− ln(m2)

)
ηµν

− 1
2

∫ 1

0
dx

 2
{
−x(1− x)r2 +m2

}{
1− ln

[
−x(1− x)r2 +m2

]}
ηµν

+
(
4x(1− x)rµrν − r2ηµν

)
ln
[
−x(1− x)r2 +m2

]

 (36)

Expanding to 4th order in the external photon momentum r, integrating over the
Feynman parameter x, and simplifying, we obtain the gauge invariant result:

1

12π2

(
r2 − rµrν

){
ln(m2)− 1

5

r2

m2
+ · · ·

}
(37)

2.3 Fermion Self-Energy

The one-loop contribution to the fermion self-energy is represented by the term

− i∆−1
µν Ψ̄γµ(iγ · ∇ −m)−1γνΨ (38)

According to our gauge-invariant regularization prescription, this should take the form

i %a %b tr

{
1

(∂2)1+a

(
ηµν −

∂µ∂ν
∂2

)
Ψ̄γµ

1

{(γ · ∇)2 +m2}1+b
(iγ · ∇+m)γνΨ

}
(39)

where a, b are two independent limiting parameters. As a matter of fact, the number of
limiting parameters needed to guarantee the finiteness of an L-loop contribution does
not have to be greater that L. In our one-loop calculation, we do not need both a, b,
and we shall dispense with one of them, b, and call the remaining one ε (otherwise, we
could proceed including both of them till the very end, when we shall discover that one
of them is not necessary). Hence we shall work with the expression:

− i %ε tr

{
1

(∂2)1+ε

(
ηµν −

∂µ∂ν
∂2

)
Ψ̄γµ

1

(iγ · ∇ −m)
γνΨ

}
(40)

We shall expand the effective fermion propagator to first order in the photon field,
hence, together with the fermion self-energy, we shall obtain the correction to the
minimal coupling and the magnetic moment. For that purpose we have

1

(iγ · ∇ −m)
=

1

(iγ · ∂ −m)
− 1

(iγ · ∂ −m)
γ · A 1

(iγ · ∂ −m)
+ · · · (41)
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Hence we have the two terms:
i %ε tr

{
1

(∂2)2+ε

(
ηµν∂

2 − ∂µ∂ν
)

Ψ̄γµ
1

∂2+m2 (iγ · ∂ +m)γνΨ
}

+

i %ε tr
{

1
(∂2)2+ε

(
ηµν∂

2 − ∂µ∂ν
)

Ψ̄γµ
1

∂2+m2 (iγ · ∂ +m)γ ·A 1
∂2+m2 (iγ · ∂ +m)γνΨ

}
+ · · ·

(42)

The first term describes the one-loop correction to the fermion self-energy. The second
term describes the correction to the vertex with a photon insertion. These two terms
correspond to the familiar two following graphs, respectively,

We shall convert these expressions to momentum space and compute them.

The self-energy term takes the following form in momentum space:

− i %ε
∫

d4p

(2π)4

1

(−p2)2+ε
(ηµνp

2 − pµpν)× Ψ̄(r)γµ

{
1

−(p+ r)2 +m2

}
{γ · (p+ r) +m} γνΨ(r) (43)

We shall simplify the factor involving the projection operator and the Dirac matrices:

(ηµνp
2 − pµpν)γµ {γ · (p+ r) +m} γν

⇒ −p2(3γ · p+ γ · r)− 2(p · r)(γ · p) + 3p2m

 (44)

Hence we have Ψ̄(r){· · · }Ψ(r), where the kernel is given by

− i %ε
∫

d4p

(2π)4

1

(−p2)2+ε

1

−(p+ r)2 +m2

{
−p2(3γ · p+ γ · r)− 2(p · r)(γ · p) + 3p2m

}
(45)

The propagators will be combined using a Feynman parameter x to give

− i %ε
∫

d4p

(2π)4

Γ(3 + ε)

Γ(2 + ε)

1∫
0

dx (1− x)1+ε

{
−p2(3γ · p+ γ · r)− 2(p · r)(γ · p) + 3p2m

}
{−(p+ xr)2 − x(1− x)r2 + xm2}3+ε (46)

We now need to make a shift in the loop momentum p → (p − xr). Under this shift
and under loop-momentum symmetrization, the numerator becomes

3

{
p2

(
1

2
(−1 + 3x)(γ · r) +m

)
+ x2mr2 + (−1 + x)x2r2(γ · r)

}
(47)

Hence, after transforming to Euclidean loop momentum, we have

3 %ε

∫
d4p

(2π)4
Γ(3 + ε)

Γ(2 + ε)

1∫
0

dx (1− x)1+ε

{
p2
(
1
2
(1− 3x)(γ · r)−m

)
+ x2mr2 + (−1 + x)x2r2(γ · r)

}
{p2 − x(1− x)r2 + xm2}3+ε (48)
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Now integrating over momentum p, executing the prescription %ε, and integrating over
the Feynman parameter x, we obtain the finite result:

3

32π2

{
(γ · r)− 2m(1− lnm2) + 2m

(
1− m2

r2

)
ln

(
1− r2

m2

)}
(49)

Notice that to second order in r, we have

3

32π2

{
(γ · r) + 3m ln(m2)− r2

m
+ . . .

}
(50)

The corresponding correction to the effective quantum action is

3e2

32π2
Ψ̄

{
i(γ · ∂) +

1

m
∂2 + · · ·+ 2m ln(m2)

}
Ψ (51)

Here we have included the electromagnetic coupling constant e2 that was suppressed
throughout the computation. Notice that the first term contributes to the renormal-
ization of the fermion field, the second term is a correction to the propagator, and the
last term contributes to mass renormalization.

2.4 Vertex Correction

From the preceding section, the one-loop vertex correction takes the form

i %ε tr

{
1

(∂2)2+ε

(
ηµν∂

2 − ∂µ∂ν
)

Ψ̄γµ
1

∂2 +m2
(iγ · ∂ +m)γ ·A 1

∂2 +m2
(iγ · ∂ +m)γνΨ

}
(52)

Translating this to momentum space we obtain

−i%ε
∫

d4p
(2π)4

1
(−p2)2+ε (ηµνp

2 − pµpν) 1
−(p+r+s)2+m2

1
−(p+r)2+m2 × {· · · }

{· · · } = Ψ̄(r + s)γµ {γ · (p+ r + s) +m} γ · A(s) {γ · (p+ r) +m} γνΨ(r)

 (53)

In the above, we suppress integrations over external momenta carried by the effective
fields. The propagators will be combined using two Feynman parameters x and y. First
we have

(1− x) {−(p+ r)2 +m2}+ x {−(p+ r + s)2 +m2}

⇒ −p2 − 2(p · r)− r2 − 2x(p · s)− xs2 − 2x(r · s) +m2

 (54)

Then we have

(1− y) {−p2}+ y {−p2 − 2(p · r)− r2 − 2x(p · s)− xs2 − 2x(r · s) +m2}

⇒ −p2 − 2y(p · r)− yr2 − 2yx(p · s)− yxs2 − 2yx(r · s) + ym2

 (55)

This may be written in the form

− (p+ yr + yxs)2 − y(1− y)r2 − yx(1− yx)s2 − 2xy(1− y)r · s+ ym2 (56)
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Hence our integral becomes
−i%ε Γ(4+ε)

Γ(2+ε)

∫ 1

0
dx
∫ 1

0
dy(1− y)1+εy ×

∫
d4p

(2π)4
×

1
{−(p+yr+yxs)2−y(1−y)r2−yx(1−yx)s2−2xy(1−y)r·s+ym2}4+ε

 Ψ̄(r + s){· · · }Ψ(r) (57)

where

{· · · } =

 p2γµ[γ · (p+ r + s) +m]γ · A(s)[γ · (p+ r) +m]γµ

−γ · p[γ · (p+ r + s) +m]γ · A(s)[γ · (p+ r) +m]γ · p
(58)

We must make a shift in the loop momentum p → (p − yr − yxs). Under this shift,
and upon symmetrizing with respect to loop momentum, the fermion kernel becomes
an expression of the form (p2M + N). Our integral, after going to Euclidean loop
momentum, takes the form

%ε
Γ(4+ε)
Γ(2+ε)

∫ 1

0
dx
∫ 1

0
dy(1− y)1+εy ×

∫
d4p

(2π)4
×

1
{−p2−y(1−y)r2−yx(1−yx)s2−2xy(1−y)r·s+ym2}4+ε

 Ψ̄(r + s){−p2M +N}Ψ(r) (59)

For the correction to the minimal coupling, a term of the integral independent of r, s,
we find

3e2

32π2
Ψ̄γ · AΨ (60)

Comparing to the result for the bare self-energy, of the preceding section, this shows
that the fermion self energy is gauge invariant with a correction of the form

3e2

32π2
Ψ̄iγ · ∇Ψ (61)

Investigating terms of the integral that are linear in the external momenta r, s, we are
led to the action term

− 3e2

32π2

1

m
i
{

Ψ̄∂µΨ− (∂µΨ̄)Ψ
}
Aµ (62)

Comparing with the correction to the bare self-energy, of the preceding section, which
is second-order in the momentum,

− 3e2

32π2

1

m
∂µΨ̄∂µΨ (63)

we realize that the above term comes from the gauge invariant counterpart

− 3e2

32π2

1

m
∇µΨ̄∇µΨ (64)
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2.5 Four-Fermion Contribution

The general form of the four-fermion one-loop contribution is given by
− i

2
∆−1
µν Ψ̄γν(γ · ∇ −m)−1γλΨ∆−1

λρ Ψ̄γρ(γ · ∇ −m)−1γµΨ

− i
2
∆−1
µν Ψ̄γν(γ · ∇ −m)−1γλΨ∆−1

λρ Ψ̄γµ(γ · ∇ −m)−1γρΨ
(65)

In fact, the contributions coming from this are finite even without a regularizing pre-
scription. We shall be interested here in the first-order term without photon insertions,
and we shall compute the contributions that do not depend on the momenta of the
external fermions. Hence, the corresponding expression in momentum space is

− i
2

∫
d4p

(2π)4
1

(−p2)4
1

(−p2+m2)2
(p2ηµν − pµpν)(p2ηλρ − pλpρ)

×

 Ψ̄γµ(γ · p+m)γλΨΨ̄γρ(γ · p+m)γνΨ+

Ψ̄γµ(γ · p+m)γλΨΨ̄γν(γ · p+m)γρΨ


(66)

Symmetrizing with respect to loop momentum, transforming to Euclidean loop mo-
mentum, simplifying and integrating, we obtain the result:

− 11e2

32π2

1

m2

{
(Ψ̄Ψ)2 +

3

22
Ψ̄γµΨΨ̄γµΨ

}
(67)

3 Two-Loop Contributions

The two-loop contributions in quantum electrodynamics are described by the effective
term:  −

1
2

(
∆µν − Ψ̄γµ(iγ · ∇ −m)−1γνΨ− Ψ̄γν(iγ · ∇ −m)−1γµΨ

)−1×

tr [(iγ · ∇ −m)−1γµ(iγ · ∇ −m)−1γν ]
(68)

This includes fermion and photon insertions that are obtained by expanding the above
with respect to the implicit fermion and photon fields. The above may be written as

− 1

2
Πµν × tr

[
(iγ · ∇ −m)−1γµ(iγ · ∇ −m)−1γν

]
(69)

This form shows that we can compute the effective fermion loop tr[· · · ], to any desired
order in the associated photon insertions, without worrying about the structure of Πµν .
The latter and the associated bosonic loop computation may be done afterwards. To
take care of divergences in the first loop, we replace each effective fermion propagator
by its regular counterpart as follows:

1

(iγ · ∇ −m)
⇒ %a

{
1

[(γ · ∇)2 +m2]1+a (iγ · ∇+m)

}
(70)
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Here a is a limiting parameter, and %a is the associated divergence-removal prescription.
Hence we have for the preceding expression, with two parameters a and b,

− 1

2
Πµν%a %b tr

{
1

[(γ · ∇)2 +m2]
1+a (iγ · ∇+m)γµ

1

[(γ · ∇)2 +m2]
1+b

(iγ · ∇+m)γν

}
(71)

We can expand the above to any desired order in the photon field. For example, if we
need to compute the effective action to second order in the photon field, we begin by
using  iγ · ∇ = iγ · ∂ + γ · A

(γ · ∇)2 = ∂2 − (iγ · ∂)(γ · A)− (γ · A)(iγ · ∂)− A2
(72)

For the factor
1

[(γ · ∇)2 +m2]1+a (73)

We write, to second order,

1
(∂2+m2)1+a+

Γ(2+a)
Γ(1+a)

1

∂2 +m2
{(iγ · ∂)(γ ·A) + (γ ·A)(iγ · ∂)} 1

∂2 +m2︸ ︷︷ ︸
2+a

+

Γ(2+a)
Γ(1+a)

1

∂2 +m2
A2 1

∂2 +m2︸ ︷︷ ︸
2+a

+

1
2

Γ(3+a)
Γ(1+a)

1

∂2 +m2
{(iγ · ∂)(γ ·A) + (γ ·A)(iγ · ∂)} 1

∂2 +m2
{(iγ · ∂)(γ ·A) + (γ ·A)(iγ · ∂)} 1

∂2 +m2︸ ︷︷ ︸
3+a

+ · · ·

(74)

The meaning of the above underbrace notation should be clear from preceding work. It
is clear that making the above substitutions, and converting to momentum space, any
desired term may be obtained, and would be gauge invariant and free from divergences,
provided the limiting procedure is applied correctly.

4 Discussion

In this article, we have given basic formalism, and detailed computations, more than
enough, in order to show that our basic framework for the effective action is easily
applicable to the theory of quantum electrodynamics. The renormalization procedure,
which amounts to redefining the basic fields and parameters of the Lagrangian, via finite
corrections in our case, as well as setting the basic vacuum contributions to zero, so that
the flat spacetime computations remain consistent, can all be done without problems
comparing with the example of the simple scalar field system[3]. More detailed and
complete results for quantum electrodynamics, with a computing package[4], together
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with rules, and algorithms, to obtain results to any desired perturbative order, will be
presented in other, more specialized, articles.

Extensions to non-Abelian gauge field[5], and to quantum gravitational[6], systems will
be treated in other articles, as well.
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