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    J.Wheeler’s geometrodynamic concept have been used, in which space continuum is considered as a 

topologically non-unitary coherent surface admitting the existence of transitions of the input-output kind 

between distant regions of the space in an additional dimension. This model assumes the existence of 

closed structures (micro- and macrocontours) formed due to the balance between main interactions: 

gravitational, electric, magnetic, and inertial forces. It is such macrocontours that have been demonstrated 

to form—independently of their material basis — the essential structure of objects at various levels of 

organization of matter. On the basis of this concept in this paper basic regularities acting during formation 

planetary systems have been obtained. The existence of two sharply different types of planetary systems 

has been determined. The dependencies linking the masses of the planets, the diameters of the planets, the 

orbital radii of the planet, and the mass of the central body have been deduced. Formation of low-density 

planets was explained. The possibility of formation Earth-like planets near brown dwarfs has been 

grounded. The minimum mass of the planet, which may arise in the planetary system, has been defined. 

 

   1  Introduction 

 

   Wheeler’s geometrodynamic concept, in which microparticles are considered as vortical 

oscillating deformations on a non-unitary coherent surface and the idea about transitions between 

distant regions of space in the form of Wheeler’s ―wormholes‖, made it possible to substantiate 

the existence of closed structures (micro- and macrocontours) acting at various levels of 

organization of matter [1-3]. 

   These contours are material, based on the balance between main interactions: electrical, 

magnetic, gravitational, and inertial forces. They are not associated to the specific properties of 

the medium; they determine the important properties of objects and allow using of analogies 

between objects of different scales. 

   Such approach allows using a model that best are independent of the properties of an object or 

medium. In this paper the concept is used to establish some of the basic laws of the formation of 

planetary systems. Here, as in paper [2], there is no need to consider the nature of the 

cosmological medium, i.e. protoplanetary nebula, from which the planets formed, and other 

specific features of the process. Idea of the planetary system consisting of some amount of 

macrocontours, from which planets formed, and the contours of a higher order integrating the 

planets and a central body was enough to get the general regularities.  

 

   2  Initial premises 

 

   As was shown earlier [1], from the purely mechanistic point of view the so-called charge only 

manifests the degree of the nonequilibrium state of physical vacuum; it is proportional to the 

momentum of physical vacuum in its motion along the contour of the vortical current tube. 

Respectively, the spin is proportional to the angular momentum of the physical vacuum with 

respect to the longitudinal axis of the contour, while the magnetic interaction of the conductors 

is analogous to the forces acting among the current tubes. It is given that the elementary unit of 

such tubes is a unit with the radius and mass equal to those of a classical electron (re and me). 

   It should be noted that in [1, 2] the expressions for the electrical and magnetic forces are 

written in a ―Coulombless‖ form with charge replaced by electron limiting momentum.  

   In this case, the electrical and magnetic constants (ε0 and μ0) are expressed as follows: 

 

                                               ε0  = me /re  = 3.33*10
-16

  kg/m,                                                      (1) 

 



                                                 μ0  = 1/(ε0 c
2
) =  0.0344  N

-1
,                                                         (2)  

 

where c  is the velocity of light.  

   Thus, the electric constant ε0 makes sense the linear density of the vortex tube current, and the 

magnetic constant μ0 makes sense the reciprocal value of the interaction force between two 

elementary charges. 

   In [2] the relative comparison of various interactions have been carried out and the basic 

relationships were obtained, some of which are necessary for the understanding of thise article. 

   1. The balance of electric and magnetic forces gives a geometric mean - a characteristic linear 

       parameter that is independent of the direction of the vortex tubes and the number of charges: 

 

                                      Rs = (r0L)
1/2

 = (2π)
1/2 

c*[sec] = 7.52*10
8
 m,                                           (3) 

 

       - a magnitude close to the Sun radius and the sizes of typical stars, where r0, and L are the   

       rotary radius or the distance between the vortex tubes (thread) and their length. 

   2. The balance of gravitational and inertial (centrifugal) forces gives the maximum  

       gravitational mass of the object satisfying the condition (3):   

 

                                          Mm = Rs c
2
/γ = f Rs ε0  = 1.01*10

36 
 kg.                                                 (4) 

 

   3. The balance of magnetic and gravitational forces also results in a geometrical mean: 

 

                                                     (r0L)
1/2

 = (ε / f)
1/2 

Rs,                                                                 (5) 

 

      where the ratio of the products  ε = (zg1zg2)/(ze1ze2 )  is an evolutionary parameter, which  

      characterizes the state of the medium and its changes, as the mass carriers become  

      predominant over the electrical ones and, as a matter of fact, shows how the material medium 

      differs from vacuum,  f - is  the ratio of electrical-to-gravitational forces, which under the  

      given conditions is expressed as follows: 

 

                                                   f = c
2
/ (ε0 γ) = 4.16*10

42
,                                                            (6)  

 

       where γ is the gravitational constant. In the general case, expression (5) gives a family of  

       lengthy contours consisting of contra-directional closed vortex tubes (mg-contours). 

   4. The vortex tubes can consist, in their turn, of a number of parallel unidirectional vortex  

       threads, whose stability is ensured by the balance of magnetic and inertial forces forming 

       mi-zones. 

   5. Structurizations of the primary medium, where there is more than one pair of balanced  

       forces, results in complication an originally unstructured mass by forming in it local mi- 

       zones. In particular, the number of mi-zones in the object of arbitrary mass Mi will be: 

 

                                                              zi = Mm /Mi 
1/4

. 
          

                                                         (7) 

 

 

   3  Planetary systems 

 

   Let us assume there is a cloud of the originally protoplanetary material having an evolutionary 

parameter ε, in which a planetary system with a central mass M0 and planets with a mass mp on a 

radius rp, with a rotary velocity v0 is being formed.  Let us assume that the central body is a 

point-like mass, and the mass of the planet is formed of contours of total number zp and axis 

sizes dp x lp.  

   Then the mass of the planet can be expressed as the total mass of contours: 



                                         
 
                   mp = zpεε0lp.                                                                      (8)    

 

   The characteristic size of the mg-contour by analogy to (5):  

 

                                      
 
              ( lpdp)

1/2
 = (ε / f)

1/2 
Rs .                                                               (9) 

 

   Suppose the number of mg-contours constituting the mass of the planet is proportional to the 

distance to the central body, i.e. a planet contour is a structural unit for the contour of higer 

order that integrates planet with the central body 

 

                                        
 
                    zp = rp /dp.                                                                       (10) 

 

   This is true for a flat homogeneous disk of the initial nebula, where the mg-contour is one-

dimensional, but in general, density of medium may be different and, of course, decrease toward 

the periphery. The protoplanetary disk may have a local rarefaction or condensation, i.e. have 

sleeves or be flatspiral. Therefore, in general, we have: 

 

                                        
 
                   zp = (rp /dp)

n
,                                                                    (11)        

  

where the coefficient n reflects the ―packaging‖ of contours in the model object (planet). 

  The orbital velocity of the planet can be expressed from the balance of centrifugal and 

gravitational forces:  

 

                                       
 
                 v0 = (γM0 /rp)

1/2
.                              

 
                                   (12)   

  

   On the other hand, we can use the analogy of the Bohr atom, where in the proton-electron 

system the orbital velocity of the electron at the radius of  ri is equal to  

 

                                                          v0 = c (re /ri)
1/2

 .                                                                  (13)    

  

   Then for the contour integrating the planet with the central body, taking the parameter lp as the 

unit of length, an analogous relation can be written: 

        

                                                 
 
       v0 = c (lp /rp)

1/2
.                                                                   (14)      

 

   The number of mg-contour z0 for the stable state of the object, as given in [2], should be taken 

equal to the number of mi-zones: 

 

                                                      zp = zi = (Mm /mp)
1/4

.                                                              (15)     

 

   Share further the dimensionless parameter: M = М0 /Mm, m = mp /Mm, v = v0 /c, r = rp /Rs, l =  

lp/Rs, d = dp/Rs, and z = m
-1/4

. Taking into account (8-15), after transformations we obtain 

expressions describing the dependence of the planet mass on its orbit radius and mass of the 

central body: 

 

                                                        m  = (rM
 2

)
4n/(5n-1)

,                                                               (16)  

 

proportions of mg-contour 

 

                                                     d =
 
m

5/4
/ M 

2
,    l = M,                 

 
                                    (17, 18) 

 

and the value of the evolutionary parameter 



                                                            ε = f m
5/4

/ M .                                                                  (19) 

 

   However, this model also admits a second case of orientation of mg-contour according to 

another to its axis. In this case an expression for zp analogous to (11) can be written: 

    

                                                             zp = (rp / lp)
k 
;
                                                                                                   

(20)  

 

then relation m(r) taking into account (15), (18), (20) will look as follows: 

 

                                                 m = (M / r)
4k 

.  
                                            

                                  (21)    

 

   In this variant the emerging masses of planets quickly decrease to the periphery of the 

protoplanetary disk, and it can be assumed that such initial nebulae are lenticular in nature. We 

call planets corresponding relations of (16) and (20) as Type I planets and Type II planets, 

accordingly 

   The actual data relating to the planets in extrasolar planetary systems having three or more 

planets plotted on diagrams in the coordinates of r - m, where r - the size of the major semiaxis, 

(Fig. 1-3). The results of the site http://www.allplanets.ru/index.htm have been used. The 

numbers in the figures correspond to the position of the experimental points and point to the 

sections of the catalog of extrasolar planets.        

 

                                         
   

  Fig. 1: Dependence of the mass of Type I planets on their orbital radius at M ≈ 1 s.m.  1- HD10180, 2 - D125612,  

              3 - HD134606, 4 -  HD160691, 5 - HD204313, 6 - HD75732, 7 - HD95128, 8 - HD31527,  9, 10 - KOI. 

 

                       

                                       
  

  Fig. 2: Dependence of the mass of Type I planets on their orbital radius at M ≈ 0.7 s.m. 1- HD20794, 2 - D40307,  

              3 - GJ676A, 4 - HD10700, 5 - HD181433, 6 - KOI 701, 7 - HIP57274. 

http://www.allplanets.ru/index.htm


                                       
  
  Fig. 3: Dependence of the mass of Type I planets on their orbital radius at M ≈ 0.3…0.4 s.m. 1 - GJ, 2 - Gliese,  

              3 - OGLE. 
 

   The calculated dependences m(r) according with forrmula (16) converted to coordinates 

expressed in the masses of Jupiter and astronomical units by multiplying m by Mm / 1.87*10
27

 

and r by Rc / 1.5*10
11

. These dependencies correspond to the period of planet formation, but 

several isolines n are shown, because the conditions of formation of the planets and their further 

evolution is unknown. A large range of values is present on this and others diagrams; in this case 

it is inevitable. However, the dependence of the masses of extrasolar planets on their orbital radii 

and on the masses of central stars is revealed quite clearly in agreement with the expression (16). 

These regularities, i.e. increas in the mass of planets with increasing distance to the central star 

and with increasing the mass of central stars, also confirmed in [4 - 7] and others. 

   Types II planets do not fit into this pattern. In (Fig. 1-3) they would be located near the dashed 

line. They have masses typically of the order of the mass of Jupiter and greater than one and are 

in orbits close to the central star (hot Jupiters). 

   Figure 4 shows the actual data on extrasolar Type II planets, which are in agreement with the 

expression (21) at a coefficient k, whose value differs very little from 1/3. When comparing (11) 

and (20), given that k ≈ 1/3, one comes to the conclusion that in this case mg-contour is a three-

dimensional element. With decreasing the density of medium towards the periphery of the disc 

the dimension of mg-contour can be reduced. 

 

                                     
  
  Fig. 4: Dependence of the mass of Type II planets on their orbital radius at M ≈ 1 s.m. 1 - CoRoT, 2 - HAT-P,  

              3 - WASP, 4 - TrES, 5 - XO, 6 - OGLE, 7 - HD. 

 

  These planets are mainly found in singl-planet systems. The existence of systems of this type 

was unexpected for astrophysicists. It is supposed that their formation or dynamical history 



occurred in another way when the planets were formed on the periphery of the initial disc and 

then migrated to closer orbits [8]. In the framework of the proposed model the existence of such 

planetary systems is natural. Moreover, this situation by Type II occurs in systems of the 

planetary satellites, such as Earth-Moon, Neptune-Triton, and Pluto-Charon. 

   Figure 5, taken from [9], shows a large array of data on extrasolar planets in the coordinates     

r - m (star masses are different). In order to confirm the obtained regularities isolines m(r) by 

(16) and (21) at M = 1 s.m. superimposed on the diagram; they just pass through areas, where the 

planets are at the most grouped. Moreover, the model allows us to explain the presence of the 

large number of massive planets and indicate the area, where they are concentrated.  

 

                                 
   Fig. 5: The calculated dependence m(r) on the background of distribution of all known extrasolar planets in the  

               semimajor axis-mass parameter spaces. Triangles represent the planets of the system GJ 221. The masses  

               shown in masses of the Earth. 

 

   In [2] it is shown that for the central star there is a period of evolution when the number of mg-

contours is equal to the number of mi-zones, which should correspond to the most stable or 

balanced state. It is this period is most favorable for the formation of the most massive planets. 

In this case, the evolutionary parameter ε receives the expression: 

 

                                                                ε = f M 
11/12

.
                                                                                                 

(22) 

 

   Then, as it follows from (19) and (22), 

 

                                                                m = M 
23/15

.                                                                  (23)                                  

    

   For the mass of the Sun M = 2*10
-6

. Then mp = (2*10
-6

)
23/15

Mm or 1.85*10
27

 kg, which is 

almost exactly the mass of Jupiter. Depending on the type of planetary system this mass can arise 

in orbit size of 0.038 au (hot Jupiters), or 2.3 au (cold Jupiter), (Fig. 5). More massive stars give 

rise greater mass of the planet. 

   Figure 6 shows the dependences of m(r) by (16) at different n and by (21) at k = 1/3 as well as 

the position of the planets in the solar system. Decrease in the value of index n with increasing 

radius and decreasing density of protoplanetary disk is interpreted by expression n - (n -0.4) r / 

50, assuming that the disk was limited of radius 50 au wherein n was reduced to a value 0.4 at 

the periphery. 

   In general, the initial protoplanetary cloud of the solar system would fit the flat model at n ≈ 1 

if it is assumed that the small planets were formed close to the Sun, but later moved to a more 

distant orbit uder the influence of massive planets that were formed later. Detection of Earth-like 



planets that are very close to the central star [10, 16] confirms this assumption. It is also possible 

that the initial cloud had a low density on the orbits where small planets have been formed. 

 

                                   
 
                   Fig. 6: Dependence of the mass of the solar system planets on their orbital radius.  

 

 

   4  On the parameters of the planets 

 

   For Type I planets calculations show that d >> l, i.e. a mg-contour is actually a one-

dimensional structure and when "packing" it in a volume ratio of linear dimensions, i.e. ratio of 

the diameters of planets averaged over density, taking into account (17), must meet the 

relationship: 

 

                                                          D = d
1/3 

= m
5/12

M 
-2/3

. 
                                                    

(24) 

 

These parameters are here dimensionless and can be expressed as, for example, the parameters of 

Jupiter and the Sun. 

   Figure 7 shows the dimensionless dependence D(m) by (24) for Type I planets reduced to the 

parameters of Jupiter and mass of the Sun. The planets of the solar system are located along a 

solid line. It also shows the position of the six planets of the sistem Kepler-11 having an 

intermediate density [11], which generally corresponds to the calculated dependence. 

 

                                      
 
   Fig. 7: The dependence of the diameter of the planets on their mass for Type I planets. The squares marked  

               planets  of the system Kepler-11. Rectangle roughly bounded region of massive Type II planets at M ≈ 1.  

               Dash-dot line shows the boundary of the minimum planetary masses, determined from the condition  

               rp=Rs  at  n=1. 

 



   It is interesting to note that the expression (24) obtained solely on the basis of general 

provisions and being adequate to a wide range for Type I planets, in fact, coincides with the 

analogous dimensionless dependence derived by the authors in the paper [7]. However, this 

dependence was obtained by the authors by solving the equation of state, which describes the 

relationship between density, pressure, and temperature for the substance under conditions of 

thermodynamic equilibrium. The position of the terrestrial planets corresponds exactly to the 

general trend and confirms the assumption that these planets were formed by Type I near the 

Sun. 

   During evolution first planets were formed when the orbital angular momentum of the planet 

is compared to the rotational angular momentum of the central body. Let us compare the 

corresponding expression: to the central body derived in [2] and, referring to (10), (12), (17), and 

(19), at n = 1, analogous one to the planet: 

 

                                             M(ε / f)MmcRs = M 
7/10

(ε / f)
6/5

MmcRs .                                            (25) 

 

   As follows from (25): 

 

                                                               ε = f M 
3/2

,                                                                     (26) 

 

and then one can obtain: 

 

                                                           m = M 
2
,   r = 1.                                                                                       (27, 28)    

   

   Radius rp = Rs is the natural limit for the minimum masses of Type I planets. The outer planets, 

whose mass is greater, have the orbital angular momentum greater than the rotational angular 

momentum of the central star. With M = 1 s.m. mpmin = 4*10
-12

Mm
 
= 4*10

24
 kg, which just 

corresponds to the average mass of the terrestrial planets. Thus, in this model the existence of 

Earth-like planets near the central star is natural. 

  By analogy, for Type II planets one can obtain the relations similar to (25-28) at k = 1/3: 

  

                                           M(ε / f)MmcRs = M 
3/2

(ε / f)
1/2

MmcRs ,                                               (29) 

 

 

                                             ε = f M,   m = M 
8/5

,   r = M 
-1/5

,                                         (30, 31, 32)  

 

which determine their specific mass and orbital radius. At M = 1 s.m. mp = 7.6*10
-10

Mm
 
= 

7.6*10
26

 kg or 0.4 Jupiter’s mass, rp = 13.8 Rs = 1.03*10
10

 m or 0.07 au. The inner planets with a 

greater mass have angular momentum that is less than that of the central star. 

   The size of the planets of type II can be estimated by the value of the orbital radius, having on 

a mg-contour, r/z. Keeping in mind the expression z = m
-1/4

, and expressing r from (21) at k = 

1/3, we obtain (in the parameters of the Sun and Jupiter): 

 

                                                               D ~ M /m
1/2

.                                                                  (33)    

 

   There is a need additionally to take account the fact that the unit mg-contour is in this case not 

one-dimensional, and the mass of the model object is proportional to the parameter ε, formula 

(8). Thus, the relation (33) should be supplemented. Using (19) and moving from the mass ratio 

to the ratio of linear sizes the final expression gets the following forms: 

 – in the case of a three-dimensional mg-contour 

 

                                            D = (M /m
1/2

) (m
5/4

M 
-1

)
1/3

 = M 
2/3

/m
1/12

.                                         (34) 

 



 – for the less dense medium, in the case of two-dimensional mg-contour, formula (34) takes the 

form: 

 

                                           D = (M /m
1/2

) (m
5/4

M 
-1

)
1/2

 = M 
1/2 

m
1/8

.                                          (34a) 

  

   The obtained dimensionless relationships are generally in agreement with the actual laws. 

Figure 8 shows the dependence of D(M), and Figure 9 shows the dependence of D(m) calculated 

from formulas (34) and (34a) at different M, which are for illustrative purposes superimposed on 

the chart taken from the article [12].  

 

                                    
 
  Fig. 8: The dependence of the diameter of the planets on the mass of the central star (masses of the planets are  

              different). 1 - CoRoT, 2 - HAT-P, 3 - WASP, 4 - KOI, 5 - XO, 6 - TrES, 7 - OGLE, 8 - GJ.  

   

    

                                   
 
   Fig. 9: The calculated dependences D(m) of Type II planet on the background of distribution of  known transit  

               extrasolar planets in the planet mass-radius spaces. Gray squares shows the planets in the solar system.  

               Dotted lines are lines of equal density - 0.1, 0.3, 0.9, 3.0, 9.0, 25.0, and 100 g/cm
3
. Dash-dotted line limits  

               the maximum masses of the planets, k = 1/3.   

    

   In particular, it becomes clear both the existence of planets with similar sizes but sharply 

differing masses and having the same mass at various sizes. Planets with a relatively small mass, 

for example, GJ 1214b [13], Kepler-87c (they are shown in Fig. 8 and 9), and others, formed 

probably by type II; their diameters varied greatly and correspond to the values, which are 

calculated by the option (34a).  



   The densities of Type I and Type II planets through their mass and the mass of a star in 

dimensionless units (in units of the Jupiter’s mass and the Sun’s mass), having in mind that ρ ~ 

mD
-3

, have radically different character and can be expressed as follows: 

 

                                      ρ1 = m
-1/4 

M 
2
,   ρ2 = m

5/4 
M 

-2
,   ρ2a = m

5/8
M

  -3/2
.
                          

(35, 36, 36a)
  
  

 

   Of course, obtained dependences are not precise or definitive. They only reflect the general 

trends uniting the diameter of the planet to its mass and the mass of stars in the period of the 

formation of planetary systems. As follows from (21) and (36) Type II planet masses decrease 

with increasing distance from the central star as well as their density decreases. This is illustrated 

by the planet Kepler 87c having a very low density with its orbital radius of 136 Rs or 0.68 au. 

Even more striking instance - is the planets of Kepler-51 system. Formulas (36) and (36a) 

explain such a low density of these planets. Formation of Type II planets in more remote orbits it 

is unlikely, and the massive main planet, the less likely others planets are formed [8].   

   Low-mass rocky planets of type II can not be formed near Sun’s mass stars and others having 

greater masses, but, as follows from (36), their formation is possible in the system of dwarf stars 

when M < 1 s.m. Indeed, another test of the correctness of the presented model may serve 

determination the masses of stars, at which planets with masses and sizes like the Earth can be 

formed. Let their mass is in the range from 0.001 ... 0.01 Jupiter’s mass and the density is 3 ... 5 

Jupiter’s density. Then for the Type I planets formula (35) gives: M = 0.73 ... 1.26 s.m. and for 

Type II planets formulas (36) and (36a) give: M = 0.006 ... 0.032 and 0.019…0.07 s.m. The first 

solution is obvious and corresponds to the stars with a mass close to the mass of the Sun and the 

second solution just corresponds to the very low-mass stars - brown dwarfs. 

   This prediction proved to be correct. Indeed, recent observations have shown that is quite 

possible the formation of Earth-like planets around of brown dwarfs and there may be created 

suitable conditions for emergence of life [14]. These types of planetary systems even more 

preferable since no need planets to migrate to more distant (as in the case of the Earth) and the 

suitable masses of the brown dwarfs vary within a more wide range. The question arises whether 

there are conditions under which the formation of planets in the evolution of both types is 

equally probable?
 

   It is logical to assume that in the initial period there had been rarefied initial spherical cloud 

around the central body, which is then transformed into or flatspiral disk, or lenticular in shape, 

from which Type I planets or Type II planets, respectively, have been formed. Hypothetically, 

this would correspond to the initial state of complete equality of conditions of planets formation 

in both types, i.e. l = d = M, n = k, masses of planets by (16) and (21) are equal. 

   Having in mind (16), (17), (21), we find:   

 

                                            n = k = 0.2 (lg(rM 
2
) / lg(M / r) + 1),                                               (37) 

 

                                                                m = M 
12/5

.                                                                    (38) 

 

   Thus, this mass depending on the coefficient n may occur at any orbit (Fig. 10). The size of the 

planet in this case is uncertain since dependences (24) and (34) are here incorrect. One can 

specify the maximum size of an object if mg-counters are packaged in a linear structure, Dmax = 

zl. Since z = m
-1/4

 and l = M, using (38), we obtain: 

 

                                                                Dmax = M 
2/5

.                                                                (39) 

 

   Convergence coefficient values of n and k indicates a decrease formally in the density of 

medium in any variant evolution that, obviously, corresponds to the moust low mass. The 

average value of the coefficient equal to 0.5 at M = 1 s.m. corresponds to the orbital radius of 

0.07 au, which coincides with the specific radius for Type II planets. 



 

 

                                  
                     
                    Fig. 10: Dependence of the mass of the planets on their orbital radius at l = d. 

 

   For the mass of the Sun, mplim = 2.1*10
-14 

Mm
  
= 2.1*10

22  
kg,  Dpmax = 0.0053 Rs = 3.9*10

6  
m.  

It is unknown whether such planets form in reality. In any case, in the solar system there are no 

regular planet’s masses less than mplim, except Pluto having a similar mass of 1.3*10
22 

kg, the 

status of which is uncertain. The same can be said of the satellite systems of the major planets. 

Masses less settlement not observed to date also among extrasolar planets. 

   The existence of lowest masses for the planets formed and, accordingly, their lowest diameters 

explains fact of rapid decrease of the planets having a small radius as well as existence of a 

maximum of planetary radii specified in [15]. 

 

   5  Conclusion  

 

   Planetary systems can be quite diverse as their structure depends on the initial composition of 

the protoplanetary cloud, mass and type of stars, formation history of the planetary system, and 

the random factors. Nevertheless, there are some general patterns. 

   There are two types of planetary systems. In the sistem of the first type planets are formed 

from flatspiral protoplanetary cloud. Masses of Type I planets increase to the periphery passing 

through their maximum (cold Jupiters) that occur in the distance from the center in the local 

condensations of the medium (the sleeves, spirals), supposedly, in later periods of the evolution. 

Earth-like planets are formed near the central star and maybe can migrate to the more remote 

orbits. 

   In the second type of planetary systems planets are formed from a protoplanetary cloud 

lenticular or elliptical type. The masses of Type II planets decrease to the periphery of the disc. 

Massive planets (hot Jupiters) are formed in condensations near the central star; the formation of 

other planets in more distant orbits is unlikely and they have a low density. Low-mass rocky 

planets in these systems can be formed only at low-mass stars (brown dwarfs). 

   The possibility of the formation of Earth-like planets in the planetary systems of brown dwarfs 

has been predicted. 

   The regularities among the masses, sizes, orbital radii of the planets and masses of the central 

stars have been obtained. 
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