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Abstract: A Smarandache geometry is a geometry which has at least one

Smarandachely denied axiom(1969), i.e., an axiom behaves in at least two

different ways within the same space, i.e., validated and invalided, or only

invalided but in multiple distinct ways and a Smarandache n-manifold is a n-

manifold that support a Smarandache geometry. Iseri provided a construction

for Smarandache 2-manifolds by equilateral triangular disks on a plane and a

more general way for Smarandache 2-manifolds on surfaces, called map geome-

tries was presented by the author in [9]− [10] and [12]. However, few observa-

tions for cases of n ≥ 3 are found on the journals. As a kind of Smarandache

geometries, a general way for constructing dimensional n pseudo-manifolds are

presented for any integer n ≥ 2 in this paper. Connection and principal fiber

bundles are also defined on these manifolds. Following these constructions,

nearly all existent geometries, such as those of Euclid geometry, Lobachevshy-

Bolyai geometry, Riemann geometry, Weyl geometry, Kähler geometry and

Finsler geometry, ...,etc., are their sub-geometries.
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§1. Introduction

Various geometries are encountered in update mathematics, such as those of Euclid
geometry, Lobachevshy-Bolyai geometry, Riemann geometry, Weyl geometry, Kähler
geometry and Finsler geometry, ..., etc.. As a branch of geometry, each of them has
been a kind of spacetimes in physics once and contributes successively to increase
human’s cognitive ability on the natural world. Motivated by a combinatorial notion
for sciences: combining different fields into a unifying field, Smarandache introduced
neutrosophy and neutrosophic logic in references [14]− [15] and Smarandache geome-
tries in [16].

Definition 1.1([8][16]) An axiom is said to be Smarandachely denied if the axiom
behaves in at least two different ways within the same space, i.e., validated and
invalided, or only invalided but in multiple distinct ways.

A Smarandache geometry is a geometry which has at least one Smarandachely
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denied axiom(1969).

Definition 1.2 For an integer n, n ≥ 2, a Smarandache n-manifold is a n-manifold
that support a Smarandache geometry.

Smarandache geometries were applied to construct many world from conservation
laws as a mathematical tool([2]). For Smarandache n-manifolds, Iseri constructed
Smarandache manifolds for n = 2 by equilateral triangular disks on a plane in [6]
and [7] (see also [11] in details). For generalizing Iseri’s Smarandache manifolds,
map geometries were introduced in [9]− [10] and [12], particularly in [12] convinced
us that these map geometries are really Smarandache 2-manifolds. Kuciuk and
Antholy gave a popular and easily understanding example on an Euclid plane in
[8]. Notice that in [13], these multi-metric space were defined, which can be also
seen as Smarandache geometries. However, few observations for cases of n ≥ 3
and their relations with existent manifolds in differential geometry are found on the
journals. The main purpose of this paper is to give general ways for constructing
dimensional n pseudo-manifolds for any integer n ≥ 2. Differential structure, con-
nection and principal fiber bundles are also introduced on these manifolds. Following
these constructions, nearly all existent geometries, such as those of Euclid geometry,
Lobachevshy-Bolyai geometry, Riemann geometry, Weyl geometry, Kähler geometry
and Finsler geometry, ...,etc., are their sub-geometries.

Terminology and notations are standard used in this paper. Other terminology
and notations not defined here can be found in these references [1], [3] − [5].

For any integer n, n ≥ 1, an n-manifold is a Hausdorff space Mn, i.e., a space
that satisfies the T2 separation axiom, such that for ∀p ∈ Mn, there is an open
neighborhood Up, p ∈ Up ⊂ Mn and a homeomorphism ϕp : Up → Rn or Cn,
respectively.

Considering the differentiability of the homeomorphism ϕ : U → Rn enables us
to get the conception of differential manifolds, introduced in the following.

An differential n-manifold (Mn,A) is an n-manifold Mn, Mn =
⋃

i∈I
Ui, endowed

with a Cr differential structure A = {(Uα, ϕα)|α ∈ I} on Mn for an integer r with
following conditions hold.

(1) {Uα; α ∈ I} is an open covering of Mn;
(2) For ∀α, β ∈ I, atlases (Uα, ϕα) and (Uβ, ϕβ) are equivalent, i.e., Uα

⋂

Uβ = ∅
or Uα

⋂

Uβ 6= ∅ but the overlap maps

ϕαϕ−1
β : ϕβ(Uα

⋂

Uβ
) → ϕβ(Uβ) and ϕβϕ−1

α : ϕβ(Uα
⋂

Uβ
) → ϕα(Uα)

are Cr;
(3) A is maximal, i.e., if (U, ϕ) is an atlas of Mn equivalent with one atlas in

A, then (U, ϕ) ∈ A.
An n-manifold is smooth if it is endowed with a C∞ differential structure. It is

well-known that a complex manifold Mn
c is equal to a smooth real manifold M2n

r

with a natural base
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{ ∂

∂xi
,

∂

∂yi
| 1 ≤ i ≤ n}

for TpM
n
c , where TpM

n
c denotes the tangent vector space of Mn

c at each point p ∈ Mn
c .

§2. Pseudo-Manifolds

These Smarandache manifolds are non-homogenous spaces, i.e., there are singular
or inflection points in these spaces and hence can be used to characterize warped
spaces in physics. A generalization of ideas in map geometries can be applied for
constructing dimensional n pseudo-manifolds.

Construction 2.1 Let Mn be an n-manifold with an atlas A = {(Up, ϕp)|p ∈ Mn}.
For ∀p ∈ Mn with a local coordinates (x1, x2, · · · , xn), define a spatially directional
mapping ω : p → Rn action on ϕp by

ω : p → ϕω
p (p) = ω(ϕp(p)) = (ω1, ω2, · · · , ωn),

i.e., if a line L passes through ϕ(p) with direction angles θ1, θ2, · · · , θn with axes
e1, e2, · · · , en in Rn, then its direction becomes

θ1 −
ϑ1

2
+ σ1, θ2 −

ϑ2

2
+ σ2, · · · , θn − ϑn

2
+ σn

after passing through ϕp(p), where for any integer 1 ≤ i ≤ n, ωi ≡ ϑi(mod4π),
ϑi ≥ 0 and

σi =

{

π, if 0 ≤ ωi < 2π,

0, if 2π < ωi < 4π.

A manifold Mn endowed with such a spatially directional mapping ω : Mn → Rn is
called an n-dimensional pseudo-manifold, denoted by (Mn,Aω).

Theorem 2.1 For a point p ∈ Mn with local chart (Up, ϕp), ϕω
p = ϕp if and only if

ω(p) = (2πk1, 2πk2, · · · , 2πkn) with ki ≡ 1(mod2) for 1 ≤ i ≤ n.

Proof By definition, for any point p ∈ Mn, if ϕω
p (p) = ϕp(p), then ω(ϕp(p)) =

ϕp(p). According to Construction 2.1, this can only happens while ω(p) = (2πk1, 2πk2, · · · ,
2πkn) with ki ≡ 1(mod2) for 1 ≤ i ≤ n. ♮

Definition 2.1 A spatially directional mapping ω : Mn → Rn is euclidean if for any
point p ∈ Mn with a local coordinates (x1, x2, · · · , xn), ω(p) = (2πk1, 2πk2, · · · , 2πkn)
with ki ≡ 1(mod2) for 1 ≤ i ≤ n, otherwise, non-euclidean.

Definition 2.2 Let ω : Mn → Rn be a spatially directional mapping and p ∈
(Mn,Aω), ω(p)(mod4π) = (ω1, ω2, · · · , ωn). Call a point p elliptic, euclidean or
hyperbolic in direction ei, 1 ≤ i ≤ n if o ≤ ωi < 2π, ωi = 2π or 2π < ωi < 4π.
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Then we get a consequence by Theorem 2.1.

Corollary 2.1 Let (Mn,Aω) be a pseudo-manifold. Then ϕω
p = ϕp if and only if

every point in Mn is euclidean.

Theorem 2.2 Let (Mn,Aω) be an n-dimensional pseudo-manifold and p ∈ Mn.
If there are euclidean and non-euclidean points simultaneously or two elliptic or
hyperbolic points in a same direction in (Up, ϕp), then (Mn,Aω) is a Smarandache
n-manifold.

Proof On the first, we introduce a conception for locally parallel lines in an
n-manifold. Two lines C1, C2 are said locally parallel in a neighborhood (Up, ϕp) of
a point p ∈ Mn if ϕp(C1) and ϕp(C2) are parallel straight lines in Rn.

In (Mn,Aω), the axiom that there are lines pass through a point locally parallel
a given line is Smarandachely denied since it behaves in at least two different ways,
i.e., one parallel, none parallel, or one parallel, infinite parallels, or none parallel,
infinite parallels.

If there are euclidean and non-euclidean points in (Up, ϕp) simultaneously, not
loss of generality, we assume that u is euclidean but v non-euclidean, ω(v)(mod4π) =
(ω1, ω2, · · · , ωn) and ω1 6= 2π. Now let L be a straight line parallel the axis e1 in Rn.
There is only one line Cu locally parallel to ϕ−1

p (L) passing through the point u since
there is only one line ϕp(Cq) parallel to L in Rn by these axioms for Euclid spaces.
However, if 0 < ω1 < 2π, then there are infinite many lines passing through u locally
parallel to ϕ−1

p (L) in (Up, ϕp) since there are infinite many straight lines parallel L

in Rn, such as those shown in Fig.2.1(a) in where each straight line passing through
the point u = ϕp(u) from the shade field is parallel to L.

Fig.2.1¸

But if 2π < ω1 < 4π, then there are no lines locally parallel to ϕ−1
p (L) in (Up, ϕp)

since there are no straight lines passing through the point v = ϕp(v) parallel to L

in Rn, such as those shown in Fig.2.1(b).
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Fig.2.2¸

If there are two elliptic points u, v along a direction
−→
O , consider the plane P

determined by ω(u), ω(v) with
−→
O in Rn. Let L be a straight line intersecting with

the line uv in P. Then there are infinite lines passing through u locally parallel to
ϕp(L) but none line passing through v locally parallel to ϕ−1

p (L) in (Up, ϕp) since
there are infinite many lines or none lines passing through u = ω(u) or v = ω(v)
parallel to L in Rn, such as those shown in Fig.2.2.

Similarly, we can also get the conclusion for the case of hyperbolic points. Since
there exists a Smarandachely denied axiom in (Mn,Aω), it is a Smarandache man-
ifold. This completes the proof. ♮

For an Euclid space Rn, the homeomorphism ϕp is trivial for ∀p ∈ Rn. In this
case, we abbreviate (Rn,Aω) to (Rn, ω).

Corollary 2.2 For any integer n ≥ 2, if there are euclidean and non-euclidean
points simultaneously or two elliptic or hyperbolic points in a same direction in
(Rn, ω), then (Rn, ω) is an n-dimensional Smarandache geometry.

Particularly, Corollary 2.2 partially answers an open problem in [12] for estab-
lishing Smarandache geometries in R3.

Corollary 2.3 If there are points p, q ∈ R3 such that ω(p)(mod4π) 6= (2π, 2π, 2π)
but ω(q)(mod4π) = (2πk1, 2πk2, 2πk3), where ki ≡ 1(mod2), 1 ≤ i ≤ 3 or p, q are
simultaneously elliptic or hyperbolic in a same direction of R3, then (R3, ω) is a
Smarandache space geometry.

Definition 2.3 For any integer r ≥ 1, a Cr differential Smarandache n-manifold
(Mn,Aω) is a Smarandache n-manifold (Mn,Aω) endowed with a differential struc-
ture A and a Cr spatially directional mapping ω. A C∞ Smarandache n-manifold
(Mn,Aω) is also said to be a smooth Smarandache n-manifold.

According to Theorem 2.2, we get the next result by definitions.

Theorem 2.3 Let (Mn,A) be a manifold and ω : Mn → Rn a spatially directional
mapping action on A. Then (Mn,Aω) is a Cr differential Smarandache n-manifold
for an integer r ≥ 1 if the following conditions hold:
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(1) there is a Cr differential structure A = {(Uα, ϕα)|α ∈ I} on Mn;
(2) ω is Cr;
(3) there are euclidean and non-euclidean points simultaneously or two elliptic

or hyperbolic points in a same direction in (Up, ϕp) for a point p ∈ Mn.

Proof The condition (1) implies that (Mn,A) is a Cr differential n-manifold
and conditions (2), (3) ensure (Mn,Aω) is a differential Smarandache manifold by
definitions and Theorem 2.2. ♮

For a smooth differential Smarandache n-manifold (Mn,Aω), a function f :
Mn → R is said smooth if for ∀p ∈ Mn with an chart (Up, ϕp),

f ◦ (ϕω
p )−1 : (ϕω

p )(Up) → Rn

is smooth. Denote by ℑp all these C∞ functions at a point p ∈ Mn.

Definition 2.4 Let (Mn,Aω) be a smooth differential Smarandache n-manifold and
p ∈ Mn. A tangent vector v at p is a mapping v : ℑp → R with these following
conditions hold.

(1) ∀g, h ∈ ℑp, ∀λ ∈ R, v(h + λh) = v(g) + λv(h);
(2) ∀g, h ∈ ℑp, v(gh) = v(g)h(p) + g(p)v(h).

Denote all tangent vectors at a point p ∈ (Mn,Aω) by TpM
n and define addi-

tion+and scalar multiplication·for ∀u, v ∈ TpM
n, λ ∈ R and f ∈ ℑp by

(u + v)(f) = u(f) + v(f), (λu)(f) = λ · u(f).

Then it can be shown immediately that TpM
n is a vector space under these two

operations+and·.
Let p ∈ (Mn,Aω) and γ : (−ε, ε) → Rn be a smooth curve in Rn with γ(0) = p.

In (Mn,Aω), there are four possible cases for tangent lines on γ at the point p, such
as those shown in Fig.2.3, in where these bold lines represent tangent lines.

Fig.2.3¸

By these positions of tangent lines at a point p on γ, we conclude that there
is one tangent line at a point p on a smooth curve if and only if p is euclidean in
(Mn,Aω). This result enables us to get the dimensional number of a tangent vector
space TpM

n at a point p ∈ (Mn,Aω).
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Theorem 2.4 For any point p ∈ (Mn,Aω) with a local chart (Up, ϕp), ϕp(p) =
(x,

1x
0
2, · · · , x0

n), if there are just s euclidean directions along ei1, ei2 , · · · , eis for a
point , then the dimension of TpM

n is

dimTpM
n = 2n − s

with a basis

{ ∂

∂xij
|p | 1 ≤ j ≤ s}

⋃

{ ∂−

∂xl
|p,

∂+

∂xl
|p | 1 ≤ l ≤ n and l 6= ij, 1 ≤ j ≤ s}.

Proof We only need to prove that

{ ∂

∂xij
|p | 1 ≤ j ≤ s}

⋃

{ ∂−

∂xl
,
∂+

∂xl
|p | 1 ≤ l ≤ n and l 6= ij, 1 ≤ j ≤ s} (2.1)

is a basis of TpM
n. For ∀f ∈ ℑp, since f is smooth, we know that

f(x) = f(p) +
n

∑

i=1

(xi − x0
i )

∂ǫif

∂xi

(p)

+
n

∑

i,j=1

(xi − x0
i )(xj − x0

j )
∂ǫif

∂xi

∂ǫjf

∂xj

+ Ri,j,···,k

for ∀x = (x1, x2, · · · , xn) ∈ ϕp(Up) by the Taylor formula in Rn, where each term in
Ri,j,···,k contains (xi − x0

i )(xj − x0
j ) · · · (xk − x0

k), ǫl ∈ {+,−} for 1 ≤ l ≤ n but l 6= ij
for 1 ≤ j ≤ s and ǫl should be deleted for l = ij , 1 ≤ j ≤ s.

Now let v ∈ TpM
n. By Definition 2.4(1), we get that

v(f(x)) = v(f(p)) + v(
n

∑

i=1

(xi − x0
i )

∂ǫif

∂xi

(p))

+ v(
n

∑

i,j=1

(xi − x0
i )(xj − x0

j)
∂ǫif

∂xi

∂ǫjf

∂xj

) + v(Ri,j,···,k).

Application of the condition (2) in Definition 2.4 shows that

v(f(p)) = 0,
n

∑

i=1

v(x0
i )

∂ǫif

∂xi

(p) = 0,

v(
n

∑

i,j=1

(xi − x0
i )(xj − x0

j )
∂ǫif

∂xi

∂ǫjf

∂xj

) = 0

and
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v(Ri,j,···,k) = 0.

Whence, we get that

v(f(x)) =
n

∑

i=1

v(xi)
∂ǫif

∂xi

(p) =
n

∑

i=1

v(xi)
∂ǫi

∂xi

|p(f). (2.2)

The formula (2.2) shows that any tangent vector v in TpM
n can be spanned by

elements in (2.1).
All elements in (2.1) are linearly independent. Otherwise, if there are numbers

a1, a2, · · · , as, a+
1 , a−

1 , a+
2 , a−

2 , · · · , a+
n−s, a

−
n−s such that

s
∑

j=1

aij

∂

∂xij

+
∑

i6=i1,i2,···,is,1≤i≤n

aǫi

i

∂ǫi

∂xi

|p = 0,

where ǫi ∈ {+,−}, then we get that

aij = (
s

∑

j=1

aij

∂

∂xij

+
∑

i6=i1,i2,···,is,1≤i≤n

aǫi

i

∂ǫi

∂xi

)(xij ) = 0

for 1 ≤ j ≤ s and

aǫi

i = (
s

∑

j=1

aij

∂

∂xij

+
∑

i6=i1,i2,···,is,1≤i≤n

aǫi

i

∂ǫi

∂xi

)(xi) = 0

for i 6= i1, i2, · · · , is, 1 ≤ i ≤ n. Therefore, (2.1) is a basis of the tangent vector space
TpM

n at the point p ∈ (Mn,Aω). ♮

Notice that dimTpM
n = n in Theorem 2.4 if and only if all these directions are

euclidean along e1, e2, · · · , en. We get a consequence by Theorem 2.4.

Corollary 2.4([4]-[5]) Let (Mn,A) be a smooth manifold and p ∈ Mn. Then

dimTpM
n = n

with a basis

{ ∂

∂xi
|p | 1 ≤ i ≤ n}.

Definition 2.5 For ∀p ∈ (Mn,Aω), the dual space T ∗
p Mn is called a co-tangent

vector space at p.

Definition 2.6 For f ∈ ℑp, d ∈ T ∗
p Mn and v ∈ TpM

n, the action of d on f , called
a differential operator d : ℑp → R, is defined by

df = v(f).
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Then we immediately get the following result.

Theorem 2.5 For any point p ∈ (Mn,Aω) with a local chart (Up, ϕp), ϕp(p) =
(x,

1x
0
2, · · · , x0

n), if there are just s euclidean directions along ei1, ei2 , · · · , eis for a
point , then the dimension of T ∗

p Mn is

dimT ∗
p Mn = 2n − s

with a basis

{dxij |p | 1 ≤ j ≤ s}
⋃

{d−xl
p, d

+xl|p | 1 ≤ l ≤ n and l 6= ij , 1 ≤ j ≤ s},

where

dxi|p(
∂

∂xj
|p) = δi

j and dǫixi|p(
∂ǫi

∂xj
|p) = δi

j

for ǫi ∈ {+,−}, 1 ≤ i ≤ n.

§3. Pseudo-Manifold Geometries

Here we introduce Minkowski norms on these pseudo-manifolds (Mn,Aω).

Definition 3.1 A Minkowski norm on a vector space V is a function F : V → R
such that

(1) F is smooth on V \{0} and F (v) ≥ 0 for ∀v ∈ V ;
(2) F is 1-homogenous, i.e., F (λv) = λF (v) for ∀λ > 0;
(3) for all y ∈ V \{0}, the symmetric bilinear form gy : V × V → R with

gy(u, v) =
∑

i,j

∂2F (y)

∂yi∂yj

is positive definite for u, v ∈ V .

Denote by TMn =
⋃

p∈(Mn,Aω)
TpM

n.

Definition 3.2 A pseudo-manifold geometry is a pseudo-manifold (Mn,Aω) en-
dowed with a Minkowski norm F on TMn.

Then we get the following result.

Theorem 3.1 There are pseudo-manifold geometries.

Proof Consider an eucildean 2n-dimensional space R2n. Then there exists a
Minkowski norm F (x) = |x| at least. According to Theorem 2.4, TpM

n is Rs+2(n−s)

9



if ω(p) has s euclidean directions along e1, e2, · · · , en. Whence there are Minkowski
norms on each chart of a point in (Mn,Aω).

Since (Mn,A) has finite cover {(Uα, ϕα)|α ∈ I}, where I is a finite index set,
by the decomposition theorem for unit, we know that there are smooth functions
hα, α ∈ I such that

∑

α∈I

hα = 1 with 0 ≤ hα ≤ 1.

Choose a Minkowski norm F α on each chart (Uα, ϕα). Define

Fα =

{

hαF α, if p ∈ Uα,

0, if p 6∈ Uα

for ∀p ∈ (Mn, ϕω). Now let

F =
∑

α∈I

Fα.

Then F is a Minkowski norm on TMn since it satisfies all of these conditions (1)−(3)
in Definition 3.1. ♮

Although the dimension of each tangent vector space maybe different, we can
also introduce principal fiber bundles and connections on pseudo-manifolds.

Definition 3.3 A principal fiber bundle (PFB) consists of a pseudo-manifold (P,Aω
1 ),

a projection π : (P,Aω
1 ) → (M,Aπ(ω)

0 ), a base pseudo-manifold (M,Aπ(ω)
0 ) and a Lie

group G, denoted by (P, M, ωπ, G) such that (1), (2) and (3) following hold.
(1) There is a right freely action of G on (P,Aω

1 ), i.e., for ∀g ∈ G, there is a
diffeomorphism Rg : (P,Aω

1 ) → (P,Aω
1 ) with Rg(p

ω) = pωg for ∀p ∈ (P,Aω
1 ) such

that pω(g1g2) = (pωg1)g2 for ∀p ∈ (P,Aω
1 ), ∀g1, g2 ∈ G and pωe = pω for some

p ∈ (P n,Aω
1 ), e ∈ G if and only if e is the identity element of G.

(2) The map π : (P,Aω
1 ) → (M,Aπ(ω)

0 ) is onto with π−1(π(p)) = {pg|g ∈ G},
πω1 = ω0π, and regular on spatial directions of p, i.e., if the spatial directions of p

are (ω1, ω2, · · · , ωn), then ωi and π(ωi) are both elliptic, or euclidean, or hyperbolic
and |π−1(π(ωi))| is a constant number independent of p for any integer i, 1 ≤ i ≤ n.

(3) For ∀x ∈ (M,Aπ(ω)
0 ) there is an open set U with x ∈ U and a diffeomorphism

T π(ω)
u : (π)−1(Uπ(ω)) → Uπ(ω) × G of the form Tu(p) = (π(pω), su(p

ω)), where su :
π−1(Uπ(ω)) → G has the property su(p

ωg) = su(p
ω)g for ∀g ∈ G, p ∈ π−1(U).

We know the following result for principal fiber bundles of pseudo-manifolds.

Theorem 3.2 Let (P, M, ωπ, G) be a PFB. Then

(P, M, ωπ, G) = (P, M, π, G)

if and only if all points in pseudo-manifolds (P,Aω
1 ) are euclidean.
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Proof For ∀p ∈ (P,Aω
1 ), let (Up, ϕp) be a chart at p. Notice that ωπ = π if and

only if ϕω
p = ϕp for ∀p ∈ (P,Aω

1 ). According to Theorem 2.1, by definition this is
equivalent to that all points in (P,Aω

1 ) are euclidean. ♮

Definition 3.4 Let (P, M, ωπ, G) be a PFB with dimG = r. A subspace family H =
{Hp|p ∈ (P,Aω

1 ), dimHp = dimTπ(p)M} of TP is called a connection if conditions
(1) and (2) following hold.

(1) For ∀p ∈ (P,Aω
1 ), there is a decomposition

TpP = Hp

⊕

Vp

and the restriction π∗|Hp
: Hp → Tπ(p)M is a linear isomorphism.

(2) H is invariant under the right action of G, i.e., for p ∈ (P,Aω
1 ), ∀g ∈ G,

(Rg)∗p(Hp) = Hpg.

Similar to Theorem 3.2, the conception of connection introduced in Definition
3.4 is more general than the popular connection on principal fiber bundles.

Theorem 3.3(dimensional formula) Let (P, M, ωπ, G) be a PFB with a connection
H. For ∀p ∈ (P,Aω

1 ), if the number of euclidean directions of p is λP (p), then

dimVp =
(dimP − dimM)(2dimP − λP (p))

dimP
.

Proof Assume these euclidean directions of the point p being e1, e2, · · · , eλP (p).
By definition π is regular, we know that π(e1), π(e2), · · · , π(eλP (p)) are also euclidean

in (M,Aπ(ω)
1 ). Now since

π−1(π(e1)) = π−1(π(e2)) = · · · = π−1(π(eλP (p))) = µ = constant,

we get that λP (p) = µλM , where λM denotes the correspondent euclidean directions

in (M,Aπ(ω)
1 ). Similarly, consider all directions of the point p, we also get that

dimP = µdimM . Thereafter

λM =
dimM

dimP
λP (p). (3.1)

Now by Definition 3.4, TpP = Hp

⊕

Vp, i.e.,

dimTpP = dimHp + dimVp. (3.2)

Since π∗|Hp
: Hp → Tπ(p)M is a linear isomorphism, we know that dimHp =

dimTπ(p)M . According to Theorem 2.4, we have formulae

dimTpP = 2dimP − λP (p)
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and

dimTπ(p)M = 2dimM − λM = 2dimM − dimM

dimP
λP (p).

Now replacing all these formulae into (3.2), we get that

2dimP − λP (p) = 2dimM − dimM

dimP
λP (p) + dimVp.

That is,

dimVp =
(dimP − dimM)(2dimP − λP (p))

dimP
. ♮

We immediately get the following consequence by Theorem 3.3.

Corollary 3.1 Let (P, M, ωπ, G) be a PFB with a connection H. Then for ∀p ∈
(P,Aω

1 ),

dimVp = dimP − dimM

if and only if the point p is euclidean.

Now we consider conclusions included in Smarandache geometries, particularly
in pseudo-manifold geometries.

Theorem 3.4 A pseudo-manifold geometry (Mn, ϕω) with a Minkowski norm on
TMn is a Finsler geometry if and only if all points of (Mn, ϕω) are euclidean.

Proof According to Theorem 2.1, ϕω
p = ϕp for ∀p ∈ (Mn, ϕω) if and only if p is

eucildean. Whence, by definition (Mn, ϕω) is a Finsler geometry if and only if all
points of (Mn, ϕω) are euclidean. ♮

Corollary 3.1 There are inclusions among Smarandache geometries, Finsler ge-
ometry, Riemann geometry and Weyl geometry:

{Smarandache geometries} ⊃ {pseudo − manifold geometries}
⊃ {Finsler geometry} ⊃ {Riemann geometry} ⊃ {Weyl geometry}.

Proof The first and second inclusions are implied in Theorems 2.1 and 3.3. Other
inclusions are known in a textbook, such as [4] − [5]. ♮

Now we consider complex manifolds. Let zi = xi +
√
−1yi. In fact, any complex

manifold Mn
c is equal to a smooth real manifold M2n with a natural base { ∂

∂xi ,
∂

∂yi}
for TpM

n
c at each point p ∈ Mn

c . Define a Hermite manifold Mn
c to be a manifold

Mn
c endowed with a Hermite inner product h(p) on the tangent space (TpM

n
c , J) for

∀p ∈ Mn
c , where J is a mapping defined by

12



J(
∂

∂xi
|p) =

∂

∂yi
|p, J(

∂

∂yi
|p) = − ∂

∂xi
|p

at each point p ∈ Mn
c for any integer i, 1 ≤ i ≤ n. Now let

h(p) = g(p) +
√
−1κ(p), p ∈ Mm

c .

Then a Kähler manifold is defined to be a Hermite manifold (Mn
c , h) with a closed

κ satisfying

κ(X, Y ) = g(X, JY ), ∀X, Y ∈ TpM
n
c , ∀p ∈ Mn

c .

Similar to Theorem 3.3 for real manifolds, we know the next result.

Theorem 3.5 A pseudo-manifold geometry (Mn
c , ϕω) with a Minkowski norm on

TMn is a Kähler geometry if and only if F is a Hermite inner product on Mn
c with

all points of (Mn, ϕω) being euclidean.

Proof Notice that a complex manifold Mn
c is equal to a real manifold M2n.

Similar to the proof of Theorem 3.3, we get the claim. ♮

As a immediately consequence, we get the following inclusions in Smarandache
geometries.

Corollary 3.2 There are inclusions among Smarandache geometries, pseudo-manifold
geometry and Kähler geometry:

{Smarandache geometries} ⊃ {pseudo − manifold geometries}
⊃ {Kähler geometry}.

§4. Further Discussions

Undoubtedly, there are many and many open problems and research trends in
pseudo-manifold geometries. Further research these new trends and solving these
open problems will enrich one’s knowledge in sciences.

Firstly, we need to get these counterpart in pseudo-manifold geometries for some
important results in Finsler geometry or Riemann geometry.

4.1. Storkes Theorem Let (Mn,A) be a smoothly oriented manifold with the T2

axiom hold. Then for ∀̟ ∈ An−1
0 (Mn),

∫

Mn
d̟ =

∫

∂Mn
̟.

This is the well-known Storkes formula in Riemann geometry. If we replace (Mn,A)
by (Mn,Aω), what will happens? Answer this question needs to solve problems
following.
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(1) Establish an integral theory on pseudo-manifolds.
(2) Find conditions such that the Storkes formula hold for pseudo-manifolds.

4.2. Gauss-Bonnet Theorem Let S be an orientable compact surface. Then
∫ ∫

S
Kdσ = 2πχ(S),

where K and χ(S) are the Gauss curvature and Euler characteristic of S This for-
mula is the well-known Gauss-Bonnet formula in differential geometry on surfaces.
Then what is its counterpart in pseudo-manifold geometries? This need us to solve
problems following.

(1) Find a suitable definition for curvatures in pseudo-manifold geometries.
(2) Find generalizations of the Gauss-Bonnect formula for pseudo-manifold ge-

ometries, particularly, for pseudo-surfaces.

For a oriently compact Riemann manifold (M2p, g), let

Ω =
(−1)p

22pπpp!

∑

i1,i2,···,i2p

δ
i1,···,i2p

1,···,2p Ωi1i2 ∧ · · · ∧ Ωi2p−1i2p
,

where Ωij is the curvature form under the natural chart {ei} of M2p and

δ
i1,···,i2p

1,···,2p =











1, if permutation i1 · · · i2p is even,

−1, if permutation i1 · · · i2p is odd,

0, otherwise.

Chern proved that[4]−[5]

∫

M2p
Ω = χ(M2p).

Certainly, these new kind of global formulae for pseudo-manifold geometries are
valuable to find.

4.3. Gauge Fields Physicists have established a gauge theory on principal fiber
bundles of Riemann manifolds, which can be used to unite gauge fields with gravi-
tation. Similar consideration for pseudo-manifold geometries will induce new gauge
theory, which enables us to asking problems following.

Establish a gauge theory on those of pseudo-manifold geometries with some ad-
ditional conditions.

(1) Find these conditions such that we can establish a gauge theory on a pseudo-
manifold geometry.

(2) Find the Yang-Mills equation in a gauge theory on a pseudo-manifold geom-
etry.

(2) Unify these gauge fields and gravitation.
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