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Abstract: Different from the system in classical mathematics, a Smarandache system is

a contradictory system in which an axiom behaves in at least two different ways within the

same system, i.e., validated and invalided, or only invalided but in multiple distinct ways.

Such systems exist extensively in the world, particularly, in our daily life. In this paper, we

discuss such a kind of Smarandache system, i.e., non-solvable ordinary differential equation

systems by a combinatorial approach, classify these systems and characterize their behaviors,

particularly, the global stability, such as those of sum-stability and prod-stability of such

linear and non-linear differential equations. Some applications of such systems to other

sciences, such as those of globally controlling of infectious diseases, establishing dynamical

equations of instable structure, particularly, the n-body problem and understanding global

stability of matters with multilateral properties can be also found.
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§1. Introduction

Finding the exact solution of an equation system is a main but a difficult objective unless some

special cases in classical mathematics. Contrary to this fact, what is about the non-solvable

case for an equation system? In fact, such an equation system is nothing but a contradictory

system, and characterized only by having no solution as a conclusion. But our world is overlap

and hybrid. The number of non-solvable equations is much more than that of the solvable

and such equation systems can be also applied for characterizing the behavior of things, which

reflect the real appearances of things by that their complexity in our world. It should be noted

that such non-solvable linear algebraic equation systems have been characterized recently by

the author in the reference [7]. The main purpose of this paper is to characterize the behavior

of such non-solvable ordinary differential equation systems.
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Assume m, n ≥ 1 to be integers in this paper. Let

Ẋ = F (X) (DES1)

be an autonomous differential equation with F : Rn → Rn and F (0) = 0, particularly, let

Ẋ = AX (LDES1)

be a linear differential equation system and

x(n) + a1x
(n−1) + · · · + anx = 0 (LDEn)

a linear differential equation of order n with

A =




a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
an1 an2 · · · ann




X =




x1(t)

x2(t)

· · ·
xn(t)




and F (t, X) =




f1(t, X)

f2(t, X)

· · ·
fn(t, X)




,

where all ai, aij , 1 ≤ i, j ≤ n are real numbers with

Ẋ = (ẋ1, ẋ2, · · · , ẋn)T

and fi(t) is a continuous function on an interval [a, b] for integers 0 ≤ i ≤ n. The following

result is well-known for the solutions of (LDES1) and (LDEn) in references.

Theorem 1.1([13]) If F (X) is continuous in

U(X0) : |t − t0| ≤ a, ‖X − X0‖ ≤ b (a > 0, b > 0)

then there exists a solution X(t) of differential equation (DES1) in the interval |t − t0| ≤ h,

where h = min{a, b/M}, M = max
(t,X)∈U(t0,X0)

‖F (t, X)‖.

Theorem 1.2([13]) Let λi be the ki-fold zero of the characteristic equation

det(A − λIn×n) = |A − λIn×n| = 0

or the characteristic equation

λn + a1λ
n−1 + · · · + an−1λ + an = 0

with k1 + k2 + · · · + ks = n. Then the general solution of (LDES1) is

n∑

i=1

ciβi(t)e
αit,
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where, ci is a constant, βi(t) is an n-dimensional vector consisting of polynomials in t deter-

mined as follows

β1(t) =




t11

t21

· · ·
tn1




β2(t) =




t11t + t12

t21t + t22

· · · · · · · · ·
tn1t + tn2




· · · · · · · · · · · · · · · · · · · · · · · · · · ·

βk1
(t) =




t11
(k1−1)! t

k1−1 + t12
(k1−2)! t

k1−2 + · · · + t1k1

t21
(k1−1)! t

k1−1 + t22
(k1−2)! t

k1−2 + · · · + t2k1

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
tn1

(k1−1)! t
k1−1 + tn2

(k1−2)! t
k1−2 + · · · + tnk1




βk1+1(t) =




t1(k1+1)

t2(k1+1)

· · · · · ·
tn(k1+1)




βk1+2(t) =




t11t + t12

t21t + t22

· · · · · · · · ·
tn1t + tn2




· · · · · · · · · · · · · · · · · · · · · · · · · · ·

βn(t) =




t1(n−ks+1)

(ks−1)! tks−1 +
t1(n−ks+2)

(ks−2)! tks−2 + · · · + t1n

t2(n−ks+1)

(ks−1)! tks−1 +
t2(n−ks+2)

(ks−2)! tks−2 + · · · + t2n

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
tn(n−ks+1)

(ks−1)! tks−1 +
tn(n−ks+2)

(ks−2)! tks−2 + · · · + tnn




with each tij a real number for 1 ≤ i, j ≤ n such that det([tij ]n×n) 6= 0,

αi =





λ1, if 1 ≤ i ≤ k1;

λ2, if k1 + 1 ≤ i ≤ k2;

· · · · · · · · · · · · · · · · · · · · · ;

λs, if k1 + k2 + · · · + ks−1 + 1 ≤ i ≤ n.
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The general solution of linear differential equation (LDEn) is

s∑

i=1

(ci1t
ki−1 + ci2t

ki−2 + · · · + ci(ki−1)t + ciki
)eλit,

with constants cij , 1 ≤ i ≤ s, 1 ≤ j ≤ ki.

Such a vector family βi(t)e
αit, 1 ≤ i ≤ n of the differential equation system (LDES1) and

a family tleλit, 1 ≤ l ≤ ki, 1 ≤ i ≤ s of the linear differential equation (LDEn) are called the

solution basis, denoted by

B = { βi(t)e
αit | 1 ≤ i ≤ n } or C = { tleλit | 1 ≤ i ≤ s, 1 ≤ l ≤ ki }.

We only consider autonomous differential systems in this paper. Theorem 1.2 implies that

any linear differential equation system (LDES1) of first order and any differential equation

(LDEn) of order n with real coefficients are solvable. Thus a linear differential equation system

of first order is non-solvable only if the number of equations is more than that of variables, and

a differential equation system of order n ≥ 2 is non-solvable only if the number of equations

is more than 2. Generally, such a contradictory system, i.e., a Smarandache system [4]-[6] is

defined following.

Definition 1.3([4]-[6]) A rule R in a mathematical system (Σ;R) is said to be Smarandachely

denied if it behaves in at least two different ways within the same set Σ, i.e., validated and

invalided, or only invalided but in multiple distinct ways.

A Smarandache system (Σ;R) is a mathematical system which has at least one Smaran-

dachely denied rule R.

Generally, let (Σ1;R1) (Σ2;R2), · · · , (Σm;Rm) be mathematical systems, where Ri is a

rule on Σi for integers 1 ≤ i ≤ m. If for two integers i, j, 1 ≤ i, j ≤ m, Σi 6= Σj or Σi = Σj but

Ri 6= Rj , then they are said to be different, otherwise, identical. We also know the conception

of Smarandache multi-space defined following.

Definition 1.4([4]-[6]) Let (Σ1;R1), (Σ2;R2), · · · , (Σm;Rm) be m ≥ 2 mathematical spaces,

different two by two. A Smarandache multi-space Σ̃ is a union
m⋃

i=1

Σi with rules R̃ =
m⋃

i=1

Ri on

Σ̃, i.e., the rule Ri on Σi for integers 1 ≤ i ≤ m, denoted by
(
Σ̃; R̃

)
.

A Smarandache multi-space
(
Σ̃; R̃

)
inherits a combinatorial structure, i.e., a vertex-edge

labeled graph defined following.

Definition 1.5([4]-[6]) Let
(
Σ̃; R̃

)
be a Smarandache multi-space with Σ̃ =

m⋃
i=1

Σi and R̃ =

m⋃
i=1

Ri. Its underlying graph G
[
Σ̃, R̃

]
is a labeled simple graph defined by

V
(
G
[
Σ̃, R̃

])
= {Σ1, Σ2, · · · , Σm},

E
(
G
[
Σ̃, R̃

])
= { (Σi, Σj) | Σi

⋂
Σj 6= ∅, 1 ≤ i, j ≤ m}
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with an edge labeling

lE : (Σi, Σj) ∈ E
(
G
[
S̃, R̃

])
→ lE(Σi, Σj) = ̟

(
Σi

⋂
Σj

)
,

where ̟ is a characteristic on Σi

⋂
Σj such that Σi

⋂
Σj is isomorphic to Σk

⋂
Σl if and only

if ̟(Σi

⋂
Σj) = ̟ (Σk

⋂
Σl) for integers 1 ≤ i, j, k, l ≤ m.

Now for integers m, n ≥ 1, let

Ẋ = F1(X), Ẋ = F2(X), · · · , Ẋ = Fm(X) (DES1
m)

be a differential equation system with continuous Fi : Rn → Rn such that Fi(0) = 0, particu-

larly, let

Ẋ = A1X, · · · , Ẋ = AkX, · · · , Ẋ = AmX (LDES1
m)

be a linear ordinary differential equation system of first order and





x(n) + a
[0]
11x(n−1) + · · · + a

[0]
1nx = 0

x(n) + a
[0]
21x(n−1) + · · · + a

[0]
2nx = 0

· · · · · · · · · · · ·
x(n) + a

[0]
m1x

(n−1) + · · · + a
[0]
mnx = 0

(LDEn
m)

a linear differential equation system of order n with

Ak =




a
[k]
11 a

[k]
12 · · · a

[k]
1n

a
[k]
21 a

[k]
22 · · · a

[k]
2n

· · · · · · · · · · · ·
a
[k]
n1 a

[k]
n2 · · · a

[k]
nn




and X =




x1(t)

x2(t)

· · ·
xn(t)




where each a
[k]
ij is a real number for integers 0 ≤ k ≤ m, 1 ≤ i, j ≤ n.

Definition 1.6 An ordinary differential equation system (DES1
m) or (LDES1

m) (or (LDEn
m))

are called non-solvable if there are no function X(t) (or x(t)) hold with (DES1
m) or (LDES1

m)

(or (LDEn
m)) unless the constants.

The main purpose of this paper is to find contradictory ordinary differential equation

systems, characterize the non-solvable spaces of such differential equation systems. For such

objective, we are needed to extend the conception of solution of linear differential equations in

classical mathematics following.

Definition 1.7 Let S0
i be the solution basis of the ith equation in (DES1

m). The ∨-solvable, ∧-

solvable and non-solvable spaces of differential equation system (DES1
m) are respectively defined

by
m⋃

i=1

S0
i ,

m⋂

i=1

S0
i and

m⋃

i=1

S0
i −

m⋂

i=1

S0
i ,

where S0
i is the solution space of the ith equation in (DES1

m).
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According to Theorem 1.2, the general solution of the ith differential equation in (LDES1
m)

or the ith differential equation system in (LDEn
m) is a linear space spanned by the elements

in the solution basis Bi or Ci for integers 1 ≤ i ≤ m. Thus we can simplify the vertex-edge

labeled graph G
[∑̃

, R̃
]

replaced each
∑

i by the solution basis Bi (or Ci) and
∑

i

⋂∑
j by

Bi

⋂
Bj (or Ci

⋂
Cj) if Bi

⋂
Bj 6= ∅ (or Ci

⋂
Cj 6= ∅) for integers 1 ≤ i, j ≤ m. Such a vertex-

edge labeled graph is called the basis graph of (LDES1
m) ((LDEn

m)), denoted respectively by

G[LDES1
m] or G[LDEn

m] and the underlying graph of G[LDES1
m] or G[LDEn

m], i.e., cleared

away all labels on G[LDES1
m] or G[LDEn

m] are denoted by Ĝ[LDES1
m] or Ĝ[LDEn

m].

Notice that
m⋂

i=1

S0
i =

m⋃
i=1

S0
i , i.e., the non-solvable space is empty only if m = 1 in

(LDEq). Thus G[LDES1] ≃ K1 or G[LDEn] ≃ K1 only if m = 1. But in general, the

basis graph G[LDES1
m] or G[LDEn

m] is not trivial. For example, let m = 4 and B0
1 =

{eλ1t, eλ2t, eλ3t}, B0
2 = {eλ3t, eλ4t, eλ5t}, B0

3 = {eλ1t, eλ3t, eλ5t} and B0
4 = {eλ4t, eλ5t, eλ6t},

where λi, 1 ≤ i ≤ 6 are real numbers different two by two. Then its edge-labeled graph

G[LDES1
m] or G[LDEn

m] is shown in Fig.1.1.

B0
1 B0

2

B0
3 B0

4

{eλ3t}

{eλ4t, eλ5t}

{eλ5t}

{eλ3t, eλ5t}{eλ1t, eλ3t}

Fig.1.1

If some functions Fi(X), 1 ≤ i ≤ m are non-linear in (DES1
m), we can linearize these

non-linear equations Ẋ = Fi(X) at the point 0, i.e., if

Fi(X) = F ′
i (0)X + Ri(X),

where F ′
i (0) is an n× n matrix, we replace the ith equation Ẋ = Fi(X) by a linear differential

equation

Ẋ = F ′
i (0)X

in (DES1
m). Whence, we get a uniquely linear differential equation system (LDES1

m) from

(DES1
m) and its basis graph G[LDES1

m]. Such a basis graph G[LDES1
m] of linearized differen-

tial equation system (DES1
m) is defined to be the linearized basis graph of (DES1

m) and denoted

by G[DES1
m].

All of these notions will contribute to the characterizing of non-solvable differential equation

systems. For terminologies and notations not mentioned here, we follow the [13] for differential

equations, [2] for linear algebra, [3]-[6], [11]-[12] for graphs and Smarandache systems, and [1],

[12] for mechanics.
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§2. Non-Solvable Linear Ordinary Differential Equations

2.1 Characteristics of Non-Solvable Linear Ordinary Differential Equations

First, we know the following conclusion for non-solvable linear differential equation systems

(LDES1
m) or (LDEn

m).

Theorem 2.1 The differential equation system (LDES1
m) is solvable if and only if

(|A1 − λIn×n, |A2 − λIn×n|, · · · , |Am − λIn×n|) 6= 1

i.e., (LDEq) is non-solvable if and only if

(|A1 − λIn×n, |A2 − λIn×n|, · · · , |Am − λIn×n|) = 1.

Similarly, the differential equation system (LDEn
m) is solvable if and only if

(P1(λ), P2(λ), · · · , Pm(λ)) 6= 1,

i.e., (LDEn
m) is non-solvable if and only if

(P1(λ), P2(λ), · · · , Pm(λ)) = 1,

where Pi(λ) = λn + a
[0]
i1 λn−1 + · · · + a

[0]
i(n−1)λ + a

[0]
in for integers 1 ≤ i ≤ m.

Proof Let λi1, λi2, · · · , λin be the n solutions of equation |Ai − λIn×n| = 0 and Bi the

solution basis of ith differential equation in (LDES1
m) or (LDEn

m) for integers 1 ≤ i ≤ m.

Clearly, if (LDES1
m) ((LDEn

m)) is solvable, then

m⋂

i=1

Bi 6= ∅, i.e.,

m⋂

i=1

{λi1, λi2, · · · , λin} 6= ∅

by Definition 1.5 and Theorem 1.2. Choose λ0 ∈
m⋂

i=1

{λi1, λi2, · · · , λin}. Then (λ − λ0) is a

common divisor of these polynomials |A1 − λIn×n, |A2 − λIn×n|, · · · , |Am − λIn×n|. Thus

(|A1 − λIn×n, |A2 − λIn×n|, · · · , |Am − λIn×n|) 6= 1.

Conversely, if

(|A1 − λIn×n, |A2 − λIn×n|, · · · , |Am − λIn×n|) 6= 1,

let (λ−λ01), (λ−λ02), · · · , (λ−λ0l) be all the common divisors of polynomials |A1−λIn×n, |A2−
λIn×n|, · · · , |Am − λIn×n|, where λ0i 6= λ0j if i 6= j for 1 ≤ i, j ≤ l. Then it is clear that

C1e
λ01 + C2e

λ02 + · · · + Cle
λ0l

is a solution of (LEDq) ((LDEn
m)) for constants C1, C2, · · · , Cl. �

For discussing the non-solvable space of a linear differential equation system (LEDS1
m) or

(LDEn
m) in details, we introduce the following conception.
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Definition 2.2 For two integers 1 ≤ i, j ≤ m, the differential equations





dXi

dt
= AiX

dXj

dt
= AjX

(LDES1
ij)

in (LDES1
m) or





x(n) + a
[0]
i1 x(n−1) + · · · + a

[0]
inx = 0

x(n) + a
[0]
j1x(n−1) + · · · + a

[0]
jnx = 0

(LDEn
ij)

in (LDEn
m) are parallel if Bi

⋂
Bj = ∅.

Then, the following conclusion is clear.

Theorem 2.3 For two integers 1 ≤ i, j ≤ m, two differential equations (LDES1
ij) (or (LDEn

ij))

are parallel if and only if

(|Ai| − λIn×n, |Aj | − λIn×n) = 1 (or (Pi(λ), Pj(λ)) = 1),

where (f(x), g(x)) is the least common divisor of f(x) and g(x), Pk(λ) = λn + a
[0]
k1λ

n−1 + · · ·+
a
[0]
k(n−1)λ + a

[0]
kn for k = i, j.

Proof By definition, two differential equations (LEDS1
ij) in (LDES1

m) are parallel if and

only if the characteristic equations

|Ai − λIn×n| = 0 and |Aj − λIn×n| = 0

have no same roots. Thus the polynomials |Ai| − λIn×n and |Aj | − λIn×n are coprime, which

means that

(|Ai − λIn×n, |Aj − λIn×n) = 1.

Similarly, two differential equations (LEDn
ij) in (LDEn

m) are parallel if and only if the

characteristic equations Pi(λ) = 0 and Pj(λ) = 0 have no same roots, i.e., (Pi(λ), Pj(λ)) = 1.�

Let f(x) = a0x
m + a1x

m−1 + · · · + am−1x + am, g(x) = b0x
n + b1x

n−1 + · · ·+ bn−1x + bn

with roots x1, x2, · · · , xm and y1, y2, · · · , yn, respectively. A resultant R(f, g) of f(x) and g(x)

is defined by

R(f, g) = am
0 bn

0

∏

i,j

(xi − yj).

The following result is well-known in polynomial algebra.

Theorem 2.4 Let f(x) = a0x
m + a1x

m−1 + · · · + am−1x + am, g(x) = b0x
n + b1x

n−1 + · · · +
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bn−1x + bn with roots x1, x2, · · · , xm and y1, y2, · · · , yn, respectively. Define a matrix

V (f, g) =




a0 a1 · · · am 0 · · · 0 0

0 a0 a1 · · · am 0 · · · 0

· · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 0 a0 a1 · · · am

b0 b1 · · · bn 0 · · · 0 0

0 b0 b1 · · · bn 0 · · · 0

· · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 0 b0 b1 · · · bn




Then

R(f, g) = detV (f, g).

We get the following result immediately by Theorem 2.3.

Corollary 2.5 (1) For two integers 1 ≤ i, j ≤ m, two differential equations (LDES1
ij) are

parallel in (LDES1
m) if and only if

R(|Ai − λIn×n|, |Aj − λIn×n|) 6= 0,

particularly, the homogenous equations

V (|Ai − λIn×n|, |Aj − λIn×n|)X = 0

have only solution (0, 0, · · · , 0︸ ︷︷ ︸
2n

)T if |Ai − λIn×n| = a0λ
n + a1λ

n−1 + · · · + an−1λ + an and

|Aj − λIn×n| = b0λ
n + b1λ

n−1 + · · · + bn−1λ + bn.

(2) For two integers 1 ≤ i, j ≤ m, two differential equations (LDEn
ij) are parallel in

(LDEn
m) if and only if

R(Pi(λ), Pj(λ)) 6= 0,

particularly, the homogenous equations V (Pi(λ), Pj(λ))X = 0 have only solution (0, 0, · · · , 0︸ ︷︷ ︸
2n

)T .

Proof Clearly, |Ai − λIn×n| and |Aj − λIn×n| have no same roots if and only if

R(|Ai − λIn×n|, |Aj − λIn×n|) 6= 0,

which implies that the two differential equations (LEDS1
ij) are parallel in (LEDS1

m) and the

homogenous equations

V (|Ai − λIn×n|, |Aj − λIn×n|)X = 0

have only solution (0, 0, · · · , 0︸ ︷︷ ︸
2n

)T . That is the conclusion (1). The proof for the conclusion (2)

is similar. �
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Applying Corollary 2.5, we can determine that an edge (Bi, Bj) does not exist in G[LDES1
m]

or G[LDEn
m] if and only if the ith differential equation is parallel with the jth differential equa-

tion in (LDES1
m) or (LDEn

m). This fact enables one to know the following result on linear

non-solvable differential equation systems.

Corollary 2.6 A linear differential equation system (LDES1
m) or (LDEn

m) is non-solvable if

Ĝ(LDES1
m) 6≃ Km or Ĝ(LDEn

m) 6≃ Km for integers m, n > 1.

2.2 A Combinatorial Classification of Linear Differential Equations

There is a natural relation between linear differential equations and basis graphs shown in the

following result.

Theorem 2.7 Every linear homogeneous differential equation system (LDES1
m) (or (LDEn

m))

uniquely determines a basis graph G[LDES1
m] (G[LDEn

m]) inherited in (LDES1
m) (or in (LDEn

m)).

Conversely, every basis graph G uniquely determines a homogeneous differential equation system

(LDES1
m) ( or (LDEn

m)) such that G[LDES1
m] ≃ G (or G[LDEn

m] ≃ G).

Proof By Definition 1.4, every linear homogeneous differential equation system (LDES1
m)

or (LDEn
m) inherits a basis graph G[LDES1

m] or G[LDEn
m], which is uniquely determined by

(LDES1
m) or (LDEn

m).

Now let G be a basis graph. For ∀v ∈ V (G), let the basis Bv at the vertex v be Bv =

{ βi(t)e
αit | 1 ≤ i ≤ nv} with

αi =





λ1, if 1 ≤ i ≤ k1;

λ2, if k1 + 1 ≤ i ≤ k2;

· · · · · · · · · · · · · · · · · · · · · ;

λs, if k1 + k2 + · · · + ks−1 + 1 ≤ i ≤ nv

We construct a linear homogeneous differential equation (LDES1) associated at the vertex v.

By Theorem 1.2, we know the matrix

T =




t11 t12 · · · t1nv

t21 t22 · · · t2nv

· · · · · · · · · · · ·
tnv1 tnv2 · · · tnvnv




is non-degenerate. For an integer i, 1 ≤ i ≤ s, let

Ji =




λi 1 0 · · · 0 0

0 λi 1 0 · · · 0

· · · · · · · · · · · · · · · · · ·
0 0 · · · 0 0 λi
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be a Jordan black of ki × ki and

A = T




J1 O

J2

. . .

O Js




T−1.

Then we are easily know the solution basis of the linear differential equation system

dX

dt
= AX (LDES1)

with X = [x1(t), x2(t), · · · , xnv
(t)]T is nothing but Bv by Theorem 1.2. Notice that the Jordan

black and the matrix T are uniquely determined by Bv. Thus the linear homogeneous differen-

tial equation (LDES1) is uniquely determined by Bv. It should be noted that this construction

can be processed on each vertex v ∈ V (G). We finally get a linear homogeneous differential

equation system (LDES1
m), which is uniquely determined by the basis graph G.

Similarly, we construct the linear homogeneous differential equation system (LDEn
m) for

the basis graph G. In fact, for ∀u ∈ V (G), let the basis Bu at the vertex u be Bu = { tleαit | 1 ≤
i ≤ s, 1 ≤ l ≤ ki}. Notice that λi should be a ki-fold zero of the characteristic equation P (λ) = 0

with k1 + k2 + · · · + ks = n. Thus P (λi) = P ′(λi) = · · · = P (ki−1)(λi) = 0 but P (ki)(λi) 6= 0

for integers 1 ≤ i ≤ s. Define a polynomial Pu(λ) following

Pu(λ) =

s∏

i=1

(λ − λi)
ki

associated with the vertex u. Let its expansion be

Pu(λ) = λn + au1λ
n−1 + · · · + au(n−1)λ + aun.

Now we construct a linear homogeneous differential equation

x(n) + au1x
(n−1) + · · · + au(n−1)x

′ + aunx = 0 (LhDEn)

associated with the vertex u. Then by Theorem 1.2 we know that the basis solution of (LDEn)

is just Cu. Notices that such a linear homogeneous differential equation (LDEn) is uniquely

constructed. Processing this construction for every vertex u ∈ V (G), we get a linear homoge-

neous differential equation system (LDEn
m). This completes the proof. �

Example 2.8 Let (LDEn
m) be the following linear homogeneous differential equation system





ẍ − 3ẋ + 2x = 0 (1)

ẍ − 5ẋ + 6x = 0 (2)

ẍ − 7ẋ + 12x = 0 (3)

ẍ − 9ẋ + 20x = 0 (4)

ẍ − 11ẋ + 30x = 0 (5)

ẍ − 7ẋ + 6x = 0 (6)
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where ẍ =
d2x

dt2
and ẋ =

dx

dt
. Then the solution basis of equations (1) − (6) are respectively

{et, e2t}, {e2t, e3t}, {e3t, e4t}, {e4t, e5t}, {e5t, e6t}, {e6t, et} and its basis graph is shown in

Fig.2.1.

{et, e2t} {e2t, e3t}

{e3t, e4t}

{e4t, e5t}{e5t, e6t}

{e6t, et}

{e2t}

{e3t}

{e4t}
{e5t}

{e6t}

{et}

Fig.2.1 The basis graph H

Theorem 2.7 enables one to extend the conception of solution of linear differential equation

to the following.

Definition 2.9 A basis graph G[LDES1
m] (or G[LDEn

m]) is called the graph solution of the

linear homogeneous differential equation system (LDES1
m) (or (LDEn

m)), abbreviated to G-

solution.

The following result is an immediately conclusion of Theorem 3.1 by definition.

Theorem 2.10 Every linear homogeneous differential equation system (LDES1
m) (or (LDEn

m))

has a unique G-solution, and for every basis graph H, there is a unique linear homogeneous

differential equation system (LDES1
m) (or (LDEn

m)) with G-solution H.

Theorem 2.10 implies that one can classifies the linear homogeneous differential equation

systems by those of basis graphs.

Definition 2.11 Let (LDES1
m), (LDES1

m)′ (or (LDEn
m), (LDEn

m)′) be two linear homo-

geneous differential equation systems with G-solutions H, H ′. They are called combinato-

rially equivalent if there is an isomorphism ϕ : H → H ′, thus there is an isomorphism

ϕ : H → H ′ of graph and labelings θ, τ on H and H ′ respectively such that ϕθ(x) = τϕ(x) for

∀x ∈ V (H)
⋃

E(H), denoted by (LDES1
m)

ϕ≃ (LDES1
m)′ (or (LDEn

m)
ϕ≃ (LDEn

m)′).

{e−t, e−2t} {e−2t, e−3t}

{e−3t, e−4t}

{e−4t, e−5t}{e−5t, e−6t}

{−e6t, e−t}

{e−2t}

{e−3t}

{e−4t}

{e−5t}

{e−6t}

{e−t}

Fig.2.2 The basis graph H’
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Example 2.12 Let (LDEn
m)′ be the following linear homogeneous differential equation system





ẍ + 3ẋ + 2x = 0 (1)

ẍ + 5ẋ + 6x = 0 (2)

ẍ + 7ẋ + 12x = 0 (3)

ẍ + 9ẋ + 20x = 0 (4)

ẍ + 11ẋ + 30x = 0 (5)

ẍ + 7ẋ + 6x = 0 (6)

Then its basis graph is shown in Fig.2.2.

Let ϕ : H → H ′ be determined by ϕ({eλit, eλjt}) = {e−λit, e−λjt} and

ϕ({eλit, eλjt}
⋂

{eλkt, eλlt}) = {e−λit, e−λjt}
⋂

{e−λkt, e−λlt}

for integers 1 ≤ i, k ≤ 6 and j = i + 1 ≡ 6(mod6), l = k + 1 ≡ 6(mod6). Then it is clear that

H
ϕ≃ H ′. Thus (LDEn

m)′ is combinatorially equivalent to the linear homogeneous differential

equation system (LDEn
m) appeared in Example 2.8.

Definition 2.13 Let G be a simple graph. A vertex-edge labeled graph θ : G → Z
+ is called

integral if θ(uv) ≤ min{θ(u), θ(v)} for ∀uv ∈ E(G), denoted by GIθ .

Let GIθ

1 and GIτ

2 be two integral labeled graphs. They are called identical if G1
ϕ≃ G2 and

θ(x) = τ(ϕ(x)) for any graph isomorphism ϕ and ∀x ∈ V (G1)
⋃

E(G1), denoted by GIθ

1 = GIτ

2 .

For example, these labeled graphs shown in Fig.2.3 are all integral on K4−e, but GIθ

1 = GIτ

2 ,

GIθ

1 6= GIσ

3 .

3 4

4 3

1

2

2

1 2 2 1 1

4 2

2 4

3

3

3 3

4 4

2

GIθ

1 GIτ

2

2 2

1

1

GIσ

3

Fig.2.3

Let G[LDES1
m] (G[LDEn

m]) be a basis graph of the linear homogeneous differential equa-

tion system (LDES1
m) (or (LDEn

m)) labeled each v ∈ V (G[LDES1
m]) (or v ∈ V (G[LDEn

m]))

by Bv. We are easily get a vertex-edge labeled graph by relabeling v ∈ V (G[LDES1
m]) (or

v ∈ V (G[LDEn
m])) by |Bv| and uv ∈ E(G[LDES1

m]) (or uv ∈ E(G[LDEn
m])) by |Bu

⋂
Bv|.

Obviously, such a vertex-edge labeled graph is integral, and denoted by GI [LDES1
m] (or

GI [LDEn
m]). The following result completely characterizes combinatorially equivalent linear

homogeneous differential equation systems.

Theorem 2.14 Let (LDES1
m), (LDES1

m)′ (or (LDEn
m), (LDEn

m)′) be two linear homogeneous
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differential equation systems with integral labeled graphs H, H ′. Then (LDES1
m)

ϕ≃ (LDES1
m)′

(or (LDEn
m)

ϕ≃ (LDEn
m)′) if and only if H = H ′.

Proof Clearly, H = H ′ if (LDES1
m)

ϕ≃ (LDES1
m)′ (or (LDEn

m)
ϕ≃ (LDEn

m)′) by defini-

tion. We prove the converse, i.e., if H = H ′ then there must be (LDES1
m)

ϕ≃ (LDES1
m)′ (or

(LDEn
m)

ϕ≃ (LDEn
m)′).

Notice that there is an objection between two finite sets S1, S2 if and only if |S1| = |S2|.
Let τ be a 1 − 1 mapping from Bv on basis graph G[LDES1

m] (or basis graph G[LDEn
m]) to

Bv′ on basis graph G[LDES1
m]′ (or basis graph G[LDEn

m]′) for v, v′ ∈ V (H ′). Now if H = H ′,

we can easily extend the identical isomorphism idH on graph H to a 1 − 1 mapping id∗H :

G[LDES1
m] → G[LDES1

m]′ (or id∗H : G[LDEn
m] → G[LDEn

m]′) with labelings θ : v → Bv and

θ′v′ : v′ → Bv′ on G[LDES1
m], G[LDES1

m]′ (or basis graphs G[LDEn
m], G[LDEn

m]′). Then

it is an immediately to check that id∗Hθ(x) = θ′τ(x) for ∀x ∈ V (G[LDES1
m])

⋃
E(G[LDES1

m])

(or for ∀x ∈ V (G[LDEn
m])

⋃
E(G[LDEn

m])). Thus id∗H is an isomorphism between basis graphs

G[LDES1
m] and G[LDES1

m]′ (or G[LDEn
m] and G[LDEn

m]′). Thus (LDES1
m)

id∗

H≃ (LDES1
m)′

(or (LDEn
m)

id∗

H≃ (LDEn
m)′). This completes the proof. �

According to Theorem 2.14, all linear homogeneous differential equation systems (LDES1
m)

or (LDEn
m) can be classified by G-solutions into the following classes:

Class 1. Ĝ[LDES1
m] ≃ Km or Ĝ[LDEn

m] ≃ Km for integers m, n ≥ 1.

The G-solutions of differential equation systems are labeled by solution bases on Km and

any two linear differential equations in (LDES1
m) or (LDEn

m) are parallel, which characterizes

m isolated systems in this class.

For example, the following differential equation system





ẍ + 3ẋ + 2x = 0

ẍ − 5ẋ + 6x = 0

ẍ + 2ẋ − 3x = 0

is of Class 1.

Class 2. Ĝ[LDES1
m] ≃ Km or Ĝ[LDEn

m] ≃ Km for integers m, n ≥ 1.

The G-solutions of differential equation systems are labeled by solution bases on complete

graphs Km in this class. By Corollary 2.6, we know that Ĝ[LDES1
m] ≃ Km or Ĝ[LDEn

m] ≃ Km

if (LDES1
m) or (LDEn

m) is solvable. In fact, this implies that

⋂

v∈V (Km)

Bv =
⋂

u,v∈V (Km)

(Bu

⋂
Bv) 6= ∅.

Otherwise, (LDES1
m) or (LDEn

m) is non-solvable.

For example, the underlying graphs of linear differential equation systems (A) and (B) in
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the following

(A)





ẍ − 3ẋ + 2x = 0

ẍ − x = 0

ẍ − 4ẋ + 3x = 0

ẍ + 2ẋ − 3x = 0

(B)





ẍ − 3ẋ + 2x = 0

ẍ − 5ẋ + 6x = 0

ẍ − 4ẋ + 3x = 0

are respectively K4, K3. It is easily to know that (A) is solvable, but (B) is not.

Class 3. Ĝ[LDES1
m] ≃ G or Ĝ[LDEn

m] ≃ G with |G| = m but G 6≃ Km, Km for integers

m, n ≥ 1.

The G-solutions of differential equation systems are labeled by solution bases on G and all

linear differential equation systems (LDES1
m) or (LDEn

m) are non-solvable in this class, such

as those shown in Example 2.12.

2.3 Global Stability of Linear Differential Equations

The following result on the initial problem of (LDES1) and (LDEn) are well-known for differ-

ential equations.

Lemma 2.15([13]) For t ∈ [0,∞), there is a unique solution X(t) for the linear homogeneous

differential equation system
dX

dt
= AX (LhDES1)

with X(0) = X0 and a unique solution for

x(n) + a1x
(n−1) + · · · + anx = 0 (LhDEn)

with x(0) = x0, x
′(0) = x′

0, · · · , x(n−1)(0) = x
(n−1)
0 .

Applying Lemma 2.15, we get easily a conclusion on the G-solution of (LDES1
m) with

Xv(0) = Xv
0 for ∀v ∈ V (G) or (LDEn

m) with x(0) = x0, x
′(0) = x′

0, · · · , x(n−1)(0) = x
(n−1)
0 by

Theorem 2.10 following.

Theorem 2.16 For t ∈ [0,∞), there is a unique G-solution for a linear homogeneous dif-

ferential equation systems (LDES1
m) with initial value Xv(0) or (LDEn

m) with initial values

xv(0), x′
v(0), · · · , x

(n−1)
v (0) for ∀v ∈ V (G).

For discussing the stability of linear homogeneous differential equations, we introduce the

conceptions of zero G-solution and equilibrium point of that (LDES1
m) or (LDEn

m) following.

Definition 2.17 A G-solution of a linear differential equation system (LDES1
m) with initial

value Xv(0) or (LDEn
m) with initial values xv(0), x′

v(0), · · · , x
(n−1)
v (0) for ∀v ∈ V (G) is called

a zero G-solution if each label Bi of G is replaced by (0, · · · , 0) (|Bi| times) and Bi

⋂
Bj by

(0, · · · , 0) (|Bi

⋂
Bj | times) for integers 1 ≤ i, j ≤ m.
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Definition 2.18 Let dX/dt = AvX, x(n) + av1x
(n−1) + · · ·+ avnx = 0 be differential equations

associated with vertex v and H a spanning subgraph of G[LDES1
m] (or G[LDEn

m]). A point

X∗ ∈ Rn is called a H-equilibrium point if AvX∗ = 0 in (LDES1
m) with initial value Xv(0)

or (X∗)n + av1(X
∗)n−1 + · · · + avnX∗ = 0 in (LDEn

m) with initial values xv(0), x′
v(0), · · · ,

x
(n−1)
v (0) for ∀v ∈ V (H).

We consider only two kind of stabilities on the zero G-solution of linear homogeneous

differential equations in this section. One is the sum-stability. Another is the prod-stability.

2.3.1 Sum-Stability

Definition 2.19 Let H be a spanning subgraph of G[LDES1
m] or G[LDEn

m] of the linear

homogeneous differential equation systems (LDES1
m) with initial value Xv(0) or (LDEn

m) with

initial values xv(0), x′
v(0), · · · , x

(n−1)
v (0). Then G[LDES1

m] or G[LDEn
m] is called sum-stable

or asymptotically sum-stable on H if for all solutions Yv(t), v ∈ V (H) of the linear differential

equations of (LDES1
m) or (LDEn

m) with |Yv(0)−Xv(0)| < δv exists for all t ≥ 0, | ∑
v∈V (H)

Yv(t)−
∑

v∈V (H)

Xv(t)| < ε, or furthermore, lim
t→0

| ∑
v∈V (H)

Yv(t) − ∑
v∈V (H)

Xv(t)| = 0.

Clearly, an asymptotic sum-stability implies the sum-stability of that G[LDES1
m] or G[LDEn

m].

The next result shows the relation of sum-stability with that of classical stability.

Theorem 2.20 For a G-solution G[LDES1
m] of (LDES1

m) with initial value Xv(0) (or G[LDEn
m]

of (LDEn
m) with initial values xv(0), x′

v(0), · · · , x
(n−1)
v (0)), let H be a spanning subgraph of

G[LDES1
m] (or G[LDEn

m]) and X∗ an equilibrium point on subgraphs H. If G[LDES1
m] (or

G[LDEn
m]) is stable on any ∀v ∈ V (H), then G[LDES1

m] (or G[LDEn
m]) is sum-stable on H.

Furthermore, if G[LDES1
m] (or G[LDEn

m]) is asymptotically sum-stable for at least one vertex

v ∈ V (H), then G[LDES1
m] (or G[LDEn

m]) is asymptotically sum-stable on H.

Proof Notice that

|
∑

v∈V (H)

pvYv(t) −
∑

v∈V (H)

pvXv(t)| ≤
∑

v∈V (H)

pv|Yv(t) − Xv(t)|

and

lim
t→0

|
∑

v∈V (H)

pvYv(t) −
∑

v∈V (H)

pvXv(t)| ≤
∑

v∈V (H)

pv lim
t→0

|Yv(t) − Xv(t)|.

Then the conclusion on sum-stability follows. �

For linear homogenous differential equations (LDES1) (or (LDEn)), the following result

on stability of its solution X(t) = 0 (or x(t) = 0) is well-known.

Lemma 2.21 Let γ = max{ Reλ| |A − λIn×n| = 0}. Then the stability of the trivial solution

X(t) = 0 of linear homogenous differential equations (LDES1) (or x(t) = 0 of (LDEn)) is

determined as follows:

(1) if γ < 0, then it is asymptotically stable;
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(2) if γ > 0, then it is unstable;

(3) if γ = 0, then it is not asymptotically stable, and stable if and only if m′(λ) = m(λ)

for every λ with Reλ = 0, where m(λ) is the algebraic multiplicity and m′(λ) the dimension of

eigenspace of λ.

By Theorem 2.20 and Lemma 2.21, the following result on the stability of zero G-solution

of (LDES1
m) and (LDEn

m) is obtained.

Theorem 2.22 A zero G-solution of linear homogenous differential equation systems (LDES1
m)

(or (LDEn
m)) is asymptotically sum-stable on a spanning subgraph H of G[LDES1

m] (or G[LDEn
m])

if and only if Reαv < 0 for each βv(t)e
αvt ∈ Bv in (LDES1) or Reλv < 0 for each tlveλvt ∈ Cv

in (LDEn
m) hold for ∀v ∈ V (H).

Proof The sufficiency is an immediately conclusion of Theorem 2.20.

Conversely, if there is a vertex v ∈ V (H) such that Reαv ≥ 0 for βv(t)e
αvt ∈ Bv in

(LDES1) or Reλv ≥ 0 for tlveλvt ∈ Cv in (LDEn
m), then we are easily knowing that

lim
t→∞

βv(t)eαvt → ∞

if αv > 0 or βv(t) 6=constant, and

lim
t→∞

tlveλvt → ∞

if λv > 0 or lv > 0, which implies that the zero G-solution of linear homogenous differential

equation systems (LDES1) or (LDEn) is not asymptotically sum-stable on H . �

The following result of Hurwitz on real number of eigenvalue of a characteristic polynomial

is useful for determining the asymptotically stability of the zero G-solution of (LDES1
m) and

(LDEn
m).

Lemma 2.23 Let P (λ) = λn + a1λ
n−1 + · · ·+ an−1λ+ an be a polynomial with real coefficients

ai, 1 ≤ i ≤ n and

∆1 = |a1|, ∆2 =

∣∣∣∣∣∣
a1 1

a3 a2

∣∣∣∣∣∣
, · · ·∆n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 1 0 · · · 0

a3 a2 a1 0 · · · 0

a5 a4 a3 a2 a1 0 · · · 0

· · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · an

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Then Reλ < 0 for all roots λ of P (λ) if and only if ∆i > 0 for integers 1 ≤ i ≤ n.

Thus, we get the following result by Theorem 2.22 and lemma 2.23.

Corollary 2.24 Let ∆v
1, ∆

v
2 , · · · , ∆v

n be the associated determinants with characteristic polyno-

mials determined in Lemma 4.8 for ∀v ∈ V (G[LDES1
m]) or V (G[LDEn

m]). Then for a spanning

subgraph H < G[LDES1
m] or G[LDEn

m], the zero G-solutions of (LDES1
m) and (LDEn

m) is

asymptotically sum-stable on H if ∆v
1 > 0, ∆v

2 > 0, · · · , ∆v
n > 0 for ∀v ∈ V (H).
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Particularly, if n = 2, we are easily knowing that Reλ < 0 for all roots λ of P (λ) if and

only if a1 > 0 and a2 > 0 by Lemma 2.23. We get the following result.

Corollary 2.25 Let H < G[LDES1
m] or G[LDEn

m] be a spanning subgraph. If the characteristic

polynomials are λ2 + av
1λ + av

2 for v ∈ V (H) in (LDES1
m) (or (LhDE2

m)), then the zero G-

solutions of (LDES1
m) and (LDE2

m) is asymptotically sum-stable on H if av
1 > 0, av

2 > 0 for

∀v ∈ V (H).

2.3.2 Prod-Stability

Definition 2.26 Let H be a spanning subgraph of G[LDES1
m] or G[LDEn

m] of the linear

homogeneous differential equation systems (LDES1
m) with initial value Xv(0) or (LDEn

m) with

initial values xv(0), x′
v(0), · · · , x

(n−1)
v (0). Then G[LDES1

m] or G[LDEn
m] is called prod-stable

or asymptotically prod-stable on H if for all solutions Yv(t), v ∈ V (H) of the linear differential

equations of (LDES1
m) or (LDEn

m) with |Yv(0)−Xv(0)| < δv exists for all t ≥ 0, | ∏
v∈V (H)

Yv(t)−
∏

v∈V (H)

Xv(t)| < ε, or furthermore, lim
t→0

| ∏
v∈V (H)

Yv(t) − ∏
v∈V (H)

Xv(t)| = 0.

We know the following result on the prod-stability of linear differential equation system

(LDES1
m) and (LDEn

m).

Theorem 2.27 A zero G-solution of linear homogenous differential equation systems (LDES1
m)

(or (LDEn
m)) is asymptotically prod-stable on a spanning subgraph H of G[LDES1

m] (or G[LDEn
m])

if and only if
∑

v∈V (H)

Reαv < 0 for each βv(t)eαvt ∈ Bv in (LDES1) or
∑

v∈V (H)

Reλv < 0 for

each tlveλvt ∈ Cv in (LDEn
m).

Proof Applying Theorem 1.2, we know that a solution Xv(t) at the vertex v has the form

Xv(t) =

n∑

i=1

ciβv(t)e
αvt.

Whence,
∣∣∣∣∣∣

∏

v∈V (H)

Xv(t)

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∏

v∈V (H)

n∑

i=1

ciβv(t)e
αvt

∣∣∣∣∣∣

=

∣∣∣∣∣∣

n∑

i=1

∏

v∈V (H)

ciβv(t)e
αvt

∣∣∣∣∣∣
=

∣∣∣∣∣∣

n∑

i=1

∏

v∈V (H)

ciβv(t)

∣∣∣∣∣∣
e

∑
v∈V (H)

αvt

.

Whence, the zero G-solution of homogenous (LDES1
m) (or (LDEn

m)) is asymptotically sum-

stable on subgraph H if and only if
∑

v∈V (H)

Reαv < 0 for ∀βv(t)eαvt ∈ Bv in (LDES1) or

∑
v∈V (H)

Reλv < 0 for ∀tlveλvt ∈ Cv in (LDEn
m). �

Applying Theorem 2.22, the following conclusion is a corollary of Theorem 2.27.

Corollary 2.28 A zero G-solution of linear homogenous differential equation systems (LDES1
m)
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(or (LDEn
m)) is asymptotically prod-stable if it is asymptotically sum-stable on a spanning

subgraph H of G[LDES1
m] (or G[LDEn

m]). Particularly, it is asymptotically prod-stable if the

zero solution 0 is stable on ∀v ∈ V (H).

Example 2.29 Let a G-solution of (LDES1
m) or (LDEn

m) be the basis graph shown in Fig.2.4,

where v1 = {e−2t, e−3t, e3t}, v2 = {e−3t, e−4t}, v3 = {e−4t, e−5t, e3t}, v4 = {e−5t, e−6t, e−8t},
v5 = {e−t, e−6t}, v6 = {e−t, e−2t, e−8t}. Then the zero G-solution is sum-stable on the triangle

v4v5v6, but it is not on the triangle v1v2v3. In fact, it is prod-stable on the triangle v1v2v3.

{e−8t} {e3t}

v1

v2

v3v4

{e−2t}

{e−3t}

{e−4t}

{e−5t}

{e−6t}

{e−t}
v5

v6

Fig.2.4 A basis graph

§3. Global Stability of Non-Solvable Non-Linear Differential Equations

For differential equation system (DES1
m), we consider the stability of its zero G-solution of

linearized differential equation system (LDES1
m) in this section.

3.1 Global Stability of Non-Solvable Differential Equations

Definition 3.1 Let H be a spanning subgraph of G[DES1
m] of the linearized differential equation

systems (DES1
m) with initial value Xv(0). A point X∗ ∈ Rn is called a H-equilibrium point of

differential equation system (DES1
m) if fv(X

∗) = 0 for ∀v ∈ V (H).

Clearly, 0 is a H-equilibrium point for any spanning subgraph H of G[DES1
m] by definition.

Whence, its zero G-solution of linearized differential equation system (LDES1
m) is a solution

of (DES1
m).

Definition 3.2 Let H be a spanning subgraph of G[DES1
m] of the linearized differential equation

systems (DES1
m) with initial value Xv(0). Then G[DES1

m] is called sum-stable or asymptoti-

cally sum-stable on H if for all solutions Yv(t), v ∈ V (H) of (DES1
m) with ‖Yv(0) − Xv(0)‖ < δv

exists for all t ≥ 0,
∥∥∥∥∥∥

∑

v∈V (H)

Yv(t) −
∑

v∈V (H)

Xv(t)

∥∥∥∥∥∥
< ε,

or furthermore,
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lim
t→0

∥∥∥∥∥∥

∑

v∈V (H)

Yv(t) −
∑

v∈V (H)

Xv(t)

∥∥∥∥∥∥
= 0,

and prod-stable or asymptotically prod-stable on H if for all solutions Yv(t), v ∈ V (H) of

(DES1
m) with ‖Yv(0) − Xv(0)‖ < δv exists for all t ≥ 0,

∥∥∥∥∥∥

∏

v∈V (H)

Yv(t) −
∏

v∈V (H)

Xv(t)

∥∥∥∥∥∥
< ε,

or furthermore,

lim
t→0

∥∥∥∥∥∥

∏

v∈V (H)

Yv(t) −
∏

v∈V (H)

Xv(t)

∥∥∥∥∥∥
= 0.

Clearly, the asymptotically sum-stability or prod-stability implies respectively that the

sum-stability or prod-stability.

Then we get the following result on the sum-stability and prod-stability of the zero G-

solution of (DES1
m).

Theorem 3.3 For a G-solution G[DES1
m] of differential equation systems (DES1

m) with initial

value Xv(0), let H1, H2 be spanning subgraphs of G[DES1
m]. If the zero G-solution of (DES1

m)

is sum-stable or asymptotically sum-stable on H1 and H2, then the zero G-solution of (DES1
m)

is sum-stable or asymptotically sum-stable on H1

⋃
H2.

Similarly, if the zero G-solution of (DES1
m) is prod-stable or asymptotically prod-stable on

H1 and Xv(t) is bounded for ∀v ∈ V (H2), then the zero G-solution of (DES1
m) is prod-stable

or asymptotically prod-stable on H1

⋃
H2.

Proof Notice that

‖X1 + X2‖ ≤ ‖X1‖ + ‖X2‖ and ‖X1X2‖ ≤ ‖X1‖‖X2‖

in Rn. We know that
∥∥∥∥∥∥

∑

v∈V (H1)
⋃

V (H2)

Xv(t)

∥∥∥∥∥∥
=

∥∥∥∥∥∥

∑

v∈V (H1)

Xv(t) +
∑

v∈V (H2)

Xv(t)

∥∥∥∥∥∥

≤

∥∥∥∥∥∥

∑

v∈V (H1)

Xv(t)

∥∥∥∥∥∥
+

∥∥∥∥∥∥

∑

v∈V (H2)

Xv(t)

∥∥∥∥∥∥

and
∥∥∥∥∥∥

∏

v∈V (H1)
⋃

V (H2)

Xv(t)

∥∥∥∥∥∥
=

∥∥∥∥∥∥

∏

v∈V (H1)

Xv(t)
∏

v∈V (H2)

Xv(t)

∥∥∥∥∥∥

≤

∥∥∥∥∥∥

∏

v∈V (H1)

Xv(t)

∥∥∥∥∥∥

∥∥∥∥∥∥

∏

v∈V (H2)

Xv(t)

∥∥∥∥∥∥
.
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Whence, ∥∥∥∥∥∥

∑

v∈V (H1)
⋃

V (H2)

Xv(t)

∥∥∥∥∥∥
≤ ǫ or lim

t→0

∥∥∥∥∥∥

∑

v∈V (H1)
⋃

V (H2)

Xv(t)

∥∥∥∥∥∥
= 0

if ǫ = ǫ1 + ǫ2 with ∥∥∥∥∥∥

∑

v∈V (H1)

Xv(t)

∥∥∥∥∥∥
≤ ǫ1 and

∥∥∥∥∥∥

∑

v∈V (H2)

Xv(t)

∥∥∥∥∥∥
≤ ǫ2

or

lim
t→0

∥∥∥∥∥∥

∑

v∈V (H1)

Xv(t)

∥∥∥∥∥∥
= 0 and lim

t→0

∥∥∥∥∥∥

∑

v∈V (H2)

Xv(t)

∥∥∥∥∥∥
= 0.

This is the conclusion (1). For the conclusion (2), notice that

∥∥∥∥∥∥

∏

v∈V (H1)
⋃

V (H2)

Xv(t)

∥∥∥∥∥∥
≤

∥∥∥∥∥∥

∏

v∈V (H1)

Xv(t)

∥∥∥∥∥∥

∥∥∥∥∥∥

∏

v∈V (H2)

Xv(t)

∥∥∥∥∥∥
≤ Mǫ

if ∥∥∥∥∥∥

∏

v∈V (H1)

Xv(t)

∥∥∥∥∥∥
≤ ǫ and

∥∥∥∥∥∥

∏

v∈V (H2)

Xv(t)

∥∥∥∥∥∥
≤ M.

Consequently, the zero G-solution of (DES1
m) is prod-stable or asymptotically prod-stable on

H1

⋃
H2. �

Theorem 3.3 enables one to get the following conclusion which establishes the relation of

stability of differential equations at vertices with that of sum-stability and prod-stability.

Corollary 3.4 For a G-solution G[DES1
m] of differential equation system (DES1

m) with initial

value Xv(0), let H be a spanning subgraph of G[DES1
m]. If the zero solution is stable or

asymptotically stable at each vertex v ∈ V (H), then it is sum-stable, or asymptotically sum-

stable and if the zero solution is stable or asymptotically stable in a vertex u ∈ V (H) and Xv(t)

is bounded for ∀v ∈ V (H) \ {u}, then it is prod-stable, or asymptotically prod-stable on H.

It should be noted that the converse of Theorem 3.3 is not always true. For example, let

∥∥∥∥∥∥

∑

v∈V (H1)

Xv(t)

∥∥∥∥∥∥
≤ a + ǫ and

∥∥∥∥∥∥

∑

v∈V (H2)

Xv(t)

∥∥∥∥∥∥
≤ −a + ǫ.

Then the zero G-solution G[DES1
m] of differential equation system (DES1

m) is not sum-stable

on subgraphs H1 and H2, but

∥∥∥∥∥∥

∑

v∈V (H1

⋃
H2)

Xv(t)

∥∥∥∥∥∥
≤

∥∥∥∥∥∥

∑

v∈V (H1)

Xv(t)

∥∥∥∥∥∥
+

∥∥∥∥∥∥

∑

v∈V (H2)

Xv(t)

∥∥∥∥∥∥
= ǫ.

Thus the zero G-solution G[DES1
m] of differential equation system (DES1

m) is sum-stable on

subgraphs H1

⋃
H2. Similarly, let



22 Linfan Mao

∥∥∥∥∥∥

∏

v∈V (H1)

Xv(t)

∥∥∥∥∥∥
≤ ǫ

tr
and

∥∥∥∥∥∥

∑

v∈V (H2)

Xv(t)

∥∥∥∥∥∥
≤ tr

for a real number r. Then the zero G-solution G[DES1
m] of (DES1

m) is not prod-stable on

subgraphs H1 and Xv(t) is not bounded for v ∈ V (H2) if r > 0. However, it is prod-stable on

subgraphs H1

⋃
H2 for

∥∥∥∥∥∥

∏

v∈V (H1
⋃

H2)

Xv(t)

∥∥∥∥∥∥
≤

∥∥∥∥∥∥

∏

v∈V (H1)

Xv(t)

∥∥∥∥∥∥

∥∥∥∥∥∥

∏

v∈V (H2)

Xv(t)

∥∥∥∥∥∥
= ǫ.

3.2 Linearized Differential Equations

Applying these conclusions on linear differential equation systems in the previous section, we

can find conditions on Fi(X), 1 ≤ i ≤ m for the sum-stability and prod-stability at 0 following.

For this objective, we need the following useful result.

Lemma 3.5([13]) Let Ẋ = AX + B(X) be a non-linear differential equation, where A is a

constant n×n matrix and Reλi < 0 for all eigenvalues λi of A and B(X) is continuous defined

on t ≥ 0, ‖X‖ ≤ α with

lim
‖X‖→0

‖B(X)‖
‖X‖ = 0.

Then there exist constants c > 0, β > 0 and δ, 0 < δ < α such that

‖X(0)‖ ≤ ε ≤ δ

2c
implies that ‖X(t)‖ ≤ cεe−βt/2.

Theorem 3.6 Let (DES1
m) be a non-linear differential equation system, H a spanning subgraph

of G[DES1
m] and

Fv(X) = F ′
v

(
0
)
X + Rv(X)

such that

lim
‖X‖→0

‖Rv(X)‖
‖X‖ = 0

for ∀v ∈ V (H). Then the zero G-solution of (DES1
m) is asymptotically sum-stable or asymp-

totically prod-stable on H if Reαv < 0 for each βv(t)e
αvt ∈ Bv, v ∈ V (H) in (DES1

m).

Proof Define c = max{cv, v ∈ V (H)}, ε = min{εv, v ∈ V (H)} and β = min{βv, v ∈
V (H)}. Applying Lemma 3.5, we know that for ∀v ∈ V (H),

‖Xv(0)‖ ≤ ε ≤ δ

2c
implies that ‖Xv(t)‖ ≤ cεe−βt/2.
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Whence,
∥∥∥∥∥∥

∑

v∈V (H)

Xv(t)

∥∥∥∥∥∥
≤

∑

v∈V (H)

‖Xv(t)‖ ≤ |H |cεe−βt/2

∥∥∥∥∥∥

∏

v∈V (H)

Xv(t)

∥∥∥∥∥∥
≤

∏

v∈V (H)

‖Xv(t)‖ ≤ c|H|ε|H|e−|H|βt/2.

Consequently,

lim
t→0

∥∥∥∥∥∥

∑

v∈V (H)

Xv(t)

∥∥∥∥∥∥
→ 0 and lim

t→0

∥∥∥∥∥∥

∏

v∈V (H)

Xv(t)

∥∥∥∥∥∥
→ 0.

Thus the zero G-solution (DESn
m) is asymptotically sum-stable or asymptotically prod-stable

on H by definition. �

3.3 Liapunov Functions on G-Solutions

We have know Liapunov functions associated with differential equations. Similarly, we introduce

Liapunov functions for determining the sum-stability or prod-stability of (DES1
m) following.

Definition 3.7 Let (DES1
m) be a differential equation system, H < G[DES1

m] a spanning

subgraph and a H-equilibrium point X∗ of (DES1
m). A differentiable function L : O → R

defined on an open subset O ⊂ Rn is called a Liapunov sum-function on X∗ for H if

(1) L(X∗) = 0 and L

(
∑

v∈V (H)

Xv(t)

)
> 0 if

∑
v∈V (H)

Xv(t) 6= X∗;

(2) L̇

(
∑

v∈V (H)

Xv(t)

)
≤ 0 for

∑
v∈V (H)

Xv(t) 6= X∗,

and a Liapunov prod-function on X∗ for H if

(1) L(X∗) = 0 and L

(
∏

v∈V (H)

Xv(t)

)
> 0 if

∏
v∈V (H)

Xv(t) 6= X∗;

(2) L̇

(
∏

v∈V (H)

Xv(t)

)
≤ 0 for

∏
v∈V (H)

Xv(t) 6= X∗.

Then, the following conclusions on the sum-stable and prod-stable of zero G-solutions of

differential equations holds.

Theorem 3.8 For a G-solution G[DES1
m] of a differential equation system (DES1

m) with

initial value Xv(0), let H be a spanning subgraph of G[DES1
m] and X∗ an equilibrium point of

(DES1
m) on H.

(1) If there is a Liapunov sum-function L : O → R on X∗, then the zero G-solution

G[DES1
m] is sum-stable on X∗ for H. Furthermore, if

L̇


 ∑

v∈V (H)

Xv(t)


 < 0
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for
∑

v∈V (H)

Xv(t) 6= X∗, then the zero G-solution G[DES1
m] is asymptotically sum-stable on X∗

for H.

(2) If there is a Liapunov prod-function L : O → R on X∗ for H, then the zero G-solution

G[DES1
m] is prod-stable on X∗ for H. Furthermore, if

L̇


 ∏

v∈V (H)

Xv(t)


 < 0

for
∏

v∈V (H)

Xv(t) 6= X∗, then the zero G-solution G[DES1
m] is asymptotically prod-stable on X∗

for H.

Proof Let ǫ > 0 be a so small number that the closed ball Bǫ(X
∗) centered at X∗ with

radius ǫ lies entirely in O and ̟ the minimum value of L on the boundary of Bǫ(X
∗), i.e.,

the sphere Sǫ(X
∗). Clearly, ̟ > 0 by assumption. Define U = {X ∈ Bǫ(X

∗)|L(X) < ̟}.
Notice that X∗ ∈ U and L is non-increasing on

∑
v∈V (H)

Xv(t) by definition. Whence, there are

no solutions Xv(t), v ∈ V (H) starting in U such that
∑

v∈V (H)

Xv(t) meet the sphere Sǫ(X
∗).

Thus all solutions Xv(t), v ∈ V (H) starting in U enable
∑

v∈V (H)

Xv(t) included in ball Bǫ(X
∗).

Consequently, the zero G-solution G[DES1
m] is sum-stable on H by definition.

Now assume that

L̇


 ∑

v∈V (H)

Xv(t)


 < 0

for
∑

v∈V (H)

Xv(t) 6= X∗. Thus L is strictly decreasing on
∑

v∈V (H)

Xv(t). If Xv(t), v ∈ V (H) are

solutions starting in U − X∗ such that
∑

v∈V (H)

Xv(tn) → Y ∗ for n → ∞ with Y ∗ ∈ Bǫ(X
∗),

then it must be Y ∗ = X∗. Otherwise, since

L


 ∑

v∈V (H)

Xv(t)


 > L(Y ∗)

by the assumption

L̇


 ∑

v∈V (H)

Xv(t)


 < 0

for all
∑

v∈V (H)

Xv(t) 6= X∗ and

L


 ∑

v∈V (H)

Xv(tn)


→ L(Y ∗)

by the continuity of L, if Y ∗ 6= X∗, let Yv(t), v ∈ V (H) be the solutions starting at Y ∗. Then

for any η > 0,

L


 ∑

v∈V (H)

Yv(η)


 < L(Y ∗).
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But then there is a contradiction

L


 ∑

v∈V (H)

Xv(tn + η)


 < L(Y ∗)

yields by letting Yv(0) =
∑

v∈V (H)

Xv(tn) for sufficiently large n. Thus, there must be Y ∗
v = X∗.

Whence, the zero G-solution G[DES1
m] is asymptotically sum-stable on H by definition. This

is the conclusion (1).

Similarly, we can prove the conclusion (2). �

The following result shows the combination of Liapunov sum-functions or prod-functions.

Theorem 3.9 For a G-solution G[DES1
m] of a differential equation system (DES1

m) with

initial value Xv(0), let H1, H2 be spanning subgraphs of G[DES1
m], X∗ an equilibrium point of

(DES1
m) on H1

⋃
H2 and

R+(x, y) =
∑

i≥0,j≥0

ai,jx
iyj

be a polynomial with ai,j ≥ 0 for integers i, j ≥ 0. Then R+(L1, L2) is a Liapunov sum-function

or Liapunov prod-function on X∗ for H1

⋃
H2 with conventions for integers i, j, k, l ≥ 0 that

aijL
i
1L

j
2


 ∑

v∈V (H1

⋃
V (H2)

Xv(t)


+ aklL

k
1L

l
2


 ∑

v∈V (H1

⋃
V (H2)

Xv(t)




= aijL
i
1


 ∑

v∈V (H1)

Xv(t)


Lj

2


 ∑

v∈V (H2)

Xv(t)




+aklL
k
1


 ∑

v∈V (H1)

Xv(t)


Ll

2


 ∑

v∈V (H2)

Xv(t)




if L1, L2 are Liapunov sum-functions and

aijL
i
1L

j
2


 ∏

v∈V (H1
⋃

V (H2)

Xv(t)


+ aklL

k
1L

l
2


 ∏

v∈V (H1
⋃

V (H2)

Xv(t)




= aijL
i
1


 ∏

v∈V (H1)

Xv(t)


Lj

2


 ∏

v∈V (H2)

Xv(t)




+aklL
k
1


 ∏

v∈V (H1)

Xv(t)


Ll

2


 ∏

v∈V (H2)

Xv(t)




if L1, L2 are Liapunov prod-functions on X∗ for H1 and H2, respectively. Particularly, if

there is a Liapunov sum-function (Liapunov prod-function) L on H1 and H2, then L is also a

Liapunov sum-function (Liapunov prod-function) on H1

⋃
H2.

Proof Notice that

d
(
aijL

i
1L

j
2

)

dt
= aij

(
iLi−1

1 L̇1L
j
2 + jLi

1L
j−1
1 L̇2

)
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if i, j ≥ 1. Whence,

aijL
i
1L

j
2


 ∑

v∈V (H1

⋃
V (H2)

Xv(t)


 ≥ 0

if

L1


 ∑

v∈V (H1)

Xv(t)


 ≥ 0 and L2


 ∑

v∈V (H2)

Xv(t)


 ≥ 0

and

d(aijL
i
1L

j
2)

dt


 ∑

v∈V (H1

⋃
V (H2)

Xv(t)


 ≤ 0

if

L̇1


 ∑

v∈V (H1)

Xv(t)


 ≤ 0 and L̇2


 ∑

v∈V (H2)

Xv(t)


 ≤ 0.

Thus R+(L1, L2) is a Liapunov sum-function on X∗ for H1

⋃
H2.

Similarly, we can know that R+(L1, L2) is a Liapunov prod-function on X∗ for H1

⋃
H2 if

L1, L2 are Liapunov prod-functions on X∗ for H1 and H2. �

Theorem 3.9 enables one easily to get the stability of the zero G-solutions of (DES1
m).

Corollary 3.10 For a differential equation system (DES1
m), let H < G[DES1

m] be a spanning

subgraph. If Lv is a Liapunov function on vertex v for ∀v ∈ V (H), then the functions

LH
S =

∑

v∈V (H)

Lv and LH
P =

∏

v∈V (H)

Lv

are respectively Liapunov sum-function and Liapunov prod-function on graph H. Particularly,

if L = Lv for ∀v ∈ V (H), then L is both a Liapunov sum-function and a Liapunov prod-function

on H.

Example 3.11 Let (DES1
m) be determined by





dx1/dt = λ11x1

dx2/dt = λ12x2

· · · · · · · · ·
dxn/dt = λ1nxn





dx1/dt = λ21x1

dx2/dt = λ22x2

· · · · · · · · ·
dxn/dt = λ2nxn

· · ·





dx1/dt = λn1x1

dx2/dt = λn2x2

· · · · · · · · ·
dxn/dt = λnnxn

where all λij , 1 ≤ i ≤ m, 1 ≤ j ≤ n are real and λij1 6= λij2 if j1 6= j2 for integers 1 ≤ i ≤ m.

Let L = x2
1 + x2

2 + · · · + x2
n. Then

L̇ = λi1x
2
1 + λi2x

2
2 + · · · + λinx2

n

for integers 1 ≤ i ≤ n. Whence, it is a Liapunov function for the ith differential equation if

λij < 0 for integers 1 ≤ j ≤ n. Now let H < G[LDES1
m] be a spanning subgraph of G[LDES1

m].

Then L is both a Liapunov sum-function and a Liapunov prod-function on H if λvj < 0 for

∀v ∈ V (H) by Corollaries 3.10.
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Theorem 3.12 Let L : O → R be a differentiable function with L(0) = 0 and L

(
∑

v∈V (H)

X

)
>

0 always holds in an area of its ǫ-neighborhood U(ǫ) of 0 for ε > 0, denoted by U+(0, ε) such

area of ε-neighborhood of 0 with L

(
∑

v∈V (H)

X

)
> 0 and H < G[DES1

m] be a spanning subgraph.

(1) If ∥∥∥∥∥∥
L


 ∑

v∈V (H)

X



∥∥∥∥∥∥
≤ M

with M a positive number and

L̇


 ∑

v∈V (H)

X


 > 0

in U+(0, ǫ), and for ∀ǫ > 0, there exists a positive number c1, c2 such that

L


 ∑

v∈V (H)

X


 ≥ c1 > 0 implies L̇


 ∑

v∈V (H)

X


 ≥ c2 > 0,

then the zero G-solution G[DES1
m] is not sum-stable on H. Such a function L : O → R is

called a non-Liapunov sum-function on H.

(2) If ∥∥∥∥∥∥
L


 ∏

v∈V (H)

X



∥∥∥∥∥∥
≤ N

with N a positive number and

L̇


 ∏

v∈V (H)

X


 > 0

in U+(0, ǫ), and for ∀ǫ > 0, there exists positive numbers d1, d2 such that

L


 ∏

v∈V (H)

X


 ≥ d1 > 0 implies L̇


 ∏

v∈V (H)

X


 ≥ d2 > 0,

then the zero G-solution G[DES1
m] is not prod-stable on H. Such a function L : O → R is

called a non-Liapunov prod-function on H.

Proof Generally, if ‖L(X)‖ is bounded and L̇ (X) > 0 in U+(0, ǫ), and for ∀ǫ > 0, there

exists positive numbers c1, c2 such that if L (X) ≥ c1 > 0, then L̇ (X) ≥ c2 > 0, we prove that

there exists t1 > t0 such that ‖X(t1, t0)‖ > ǫ0 for a number ǫ0 > 0, where X(t1, t0) denotes

the solution of (DESn
m) passing through X(t0). Otherwise, there must be ‖X(t1, t0)‖ < ǫ0 for

t ≥ t0. By L̇ (X) > 0 we know that L(X(t)) > L(X(t0)) > 0 for t ≥ t0. Combining this fact

with the condition L̇ (X) ≥ c2 > 0, we get that

L(X(t)) = L(X(t0)) +

t∫

t0

dL(X(s))

ds
≥ L(X(t0)) + c2(t − t0).



28 Linfan Mao

Thus L(X(t)) → +∞ if t → +∞, a contradiction to the assumption that L(X) is bounded.

Whence, there exists t1 > t0 such that

‖X(t1, t0)‖ > ǫ0.

Applying this conclusion, we immediately know that the zero G-solution G[DES1
m] is not sum-

stable or prod-stable on H by conditions in (1) or (2). �

Similar to Theorem 3.9, we know results for non-Liapunov sum-function or prod-function

by Theorem 3.12 following.

Theorem 3.13 For a G-solution G[DES1
m] of a differential equation system (DES1

m) with

initial value Xv(0), let H1, H2 be spanning subgraphs of G[DES1
m], 0 an equilibrium point of

(DES1
m) on H1

⋃
H2. Then R+(L1, L2) is a non-Liapunov sum-function or non-Liapunov

prod-function on 0 for H1

⋃
H2 with conventions for

aijL
i
1L

j
2


 ∑

v∈V (H1

⋃
V (H2)

Xv(t)


+ aklL

k
1L

l
2


 ∑

v∈V (H1

⋃
V (H2)

Xv(t)




and

aijL
i
1L

j
2


 ∏

v∈V (H1

⋃
V (H2)

Xv(t)


+ aklL

k
1L

l
2


 ∏

v∈V (H1

⋃
V (H2)

Xv(t)




the same as in Theorem 3.9 if L1, L2 are non-Liapunov sum-functions or non-Liapunov prod-

functions on 0 for H1 and H2, respectively. Particularly, if there is a non-Liapunov sum-

function (non-Liapunov prod-function) L on H1 and H2, then L is also a non-Liapunov sum-

function (non-Liapunov prod-function) on H1

⋃
H2.

Proof Similarly, we can show that R+(L1, L2) satisfies these conditions on H1

⋃
H2 for

non-Liapunov sum-functions or non-Liapunov prod-functions in Theorem 3.12 if L1, L2 are

non-Liapunov sum-functions or non-Liapunov prod-functions on 0 for H1 and H2, respectively.

Thus R+(L1, L2) is a non-Liapunov sum-function or non-Liapunov prod-function on 0. �

Corollary 3.14 For a differential equation system (DES1
m), let H < G[DES1

m] be a spanning

subgraph. If Lv is a non-Liapunov function on vertex v for ∀v ∈ V (H), then the functions

LH
S =

∑

v∈V (H)

Lv and LH
P =

∏

v∈V (H)

Lv

are respectively non-Liapunov sum-function and non-Liapunov prod-function on graph H. Par-

ticularly, if L = Lv for ∀v ∈ V (H), then L is both a non-Liapunov sum-function and a non-

Liapunov prod-function on H.

Example 3.15 Let (DES1
m) be





ẋ1 = λ1x
2
1 − λ1x

2
2

ẋ2 =
λ1

2
x1x2





ẋ2 = λ2x
2
1 − λ2x

2
2

ẋ2 =
λ2

2
x1x2

· · ·





ẋ1 = λmx2
1 − λmx2

2

ẋ2 =
λm

2
x1x2
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with constants λi > 0 for integers 1 ≤ i ≤ m and L(x1, x2) = x2
1 − 2x2

2. Then L̇(x1, x2) =

4λix1L(x1, x2) for the i-th equation in (DES1
m). Calculation shows that L(x1, x2) > 0 if

x1 >
√

2x2 or x1 < −
√

2x2 and L̇(x1, x2) > 4c
3
2 for L(x1, x2) > c in the area of L(x1, x2) > 0.

Applying Theorem 3.12, we know the zero solution of (DES1
m) is not stable for the i-th equation

for any integer 1 ≤ i ≤ m. Applying Corollary 3.14, we know that L is a non-Liapunov sum-

function and non-Liapunov prod-function on any spanning subgraph H < G[DES1
m].

§4. Global Stability of Shifted Non-Solvable Differential Equations

The differential equation systems (DES1
m) discussed in previous sections are all in a same

Euclidean space Rn. We consider the case that they are not in a same space Rn, i.e., shifted

differential equation systems in this section. These differential equation systems and their

non-solvability are defined in the following.

Definition 4.1 A shifted differential equation system (SDES1
m) is such a differential equation

system

Ẋ1 = F1(X1), Ẋ2 = F2(X2), · · · , Ẋm = Fm(Xm) (SDES1
m)

with

X1 = (x1, x2, · · · , xl, x1(l+1), x1(l+2), · · · , x1n),

X2 = (x1, x2, · · · , xl, x2(l+1), x2(l+2), · · · , x2n),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

Xm = (x1, x2, · · · , xl, xm(l+1), xm(l+2), · · · , xmn),

where x1, x2, · · · , xl, xi(l+j), 1 ≤ i ≤ m, 1 ≤ j ≤ n − l are distinct variables and Fs : Rn → Rn

is continuous such that Fs(0) = 0 for integers 1 ≤ s ≤ m.

A shifted differential equation system (SDES1
m) is non-solvable if there are integers i, j, 1 ≤

i, j ≤ m and an integer k, 1 ≤ k ≤ l such that x
[i]
k (t) 6= x

[j]
k (t), where x

[i]
k (t), x

[j]
k (t) are solutions

xk(t) of the i-th and j-th equations in (SDES1
m), respectively.

The number dim(SDES1
m) of variables x1, x2, · · · , xl, xi(l+j), 1 ≤ i ≤ m, 1 ≤ j ≤ n − l in

Definition 4.1 is uniquely determined by (SDES1
m), i.e., dim(SDES1

m) = mn − (m − 1)l. For

classifying and finding the stability of these differential equations, we similarly introduce the

linearized basis graphs G[SDES1
m] of a shifted differential equation system to that of (DES1

m),

i.e., a vertex-edge labeled graph with

V (G[SDES1
m]) = {Bi|1 ≤ i ≤ m},

E(G[SDES1
m]) = {(Bi, Bj)|Bi

⋂
Bj 6= ∅, 1 ≤ i, j ≤ m},

where Bi is the solution basis of the i-th linearized differential equation Ẋi = F ′
i (0)Xi for

integers 1 ≤ i ≤ m, called such a vertex-edge labeled graph G[SDES1
m] the G-solution of

(SDES1
m) and its zero G-solution replaced Bi by (0, · · · , 0) (|Bi| times) and Bi

⋂
Bj by

(0, · · · , 0) (|Bi

⋂
Bj | times) for integers 1 ≤ i, j ≤ m.

Let (LDES1
m), (LDES1

m)′ be linearized differential equation systems of shifted differential

equation systems (SDES1
m) and (SDES1

m) with G-solutions H, H ′. Similarly, they are called
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combinatorially equivalent if there is an isomorphism ϕ : H → H ′ of graph and labelings

θ, τ on H and H ′ respectively such that ϕθ(x) = τϕ(x) for ∀x ∈ V (H)
⋃

E(H), denoted by

(SDES1
m)

ϕ≃ (SDES1
m)′. Notice that if we remove these superfluous variables from G[SDES1

m],

then we get nothing but the same vertex-edge labeled graph of (LDES1
m) in Rl. Thus we can

classify shifted differential similarly to (LDES1
m) in Rl. The following result can be proved

similarly to Theorem 2.14.

Theorem 4.2 Let (LDES1
m), (LDES1

m)′ be linearized differential equation systems of two

shifted differential equation systems (SDES1
m), (SDES1

m)′ with integral labeled graphs H, H ′.

Then (SDES1
m)

ϕ≃ (SDES1
m)′ if and only if H = H ′.

The stability of these shifted differential equation systems (SDES1
m) is also similarly to

that of (DES1
m). For example, we know the results on the stability of (SDES1

m) similar to

Theorems 2.22, 2.27 and 3.6 following.

Theorem 4.3 Let (LDES1
m) be a shifted linear differential equation systems and H < G[LDES1

m]

a spanning subgraph. A zero G-solution of (LDES1
m) is asymptotically sum-stable on H if and

only if Reαv < 0 for each βv(t)e
αvt ∈ Bv in (LDES1) hold for ∀v ∈ V (H) and it is asymptot-

ically prod-stable on H if and only if
∑

v∈V (H)

Reαv < 0 for each βv(t)e
αvt ∈ Bv in (LDES1).

Theorem 4.4 Let (SDES1
m) be a shifted differential equation system, H < G[SDES1

m] a

spanning subgraph and

Fv(X) = F ′
v

(
0
)
X + Rv(X)

such that

lim
‖X‖→0

‖Rv(X)‖
‖X‖ = 0

for ∀v ∈ V (H). Then the zero G-solution of (SDES1
m) is asymptotically sum-stable or asymp-

totically prod-stable on H if Reαv < 0 for each βv(t)e
αvt ∈ Bv, v ∈ V (H) in (SDES1

m).

For the Liapunov sum-function or Liapunov prod-function of a shifted differential equation

system (SDES1
m), we choose it to be a differentiable function L : O ⊂ Rdim(SDES1

m) → R with

conditions in Definition 3.7 hold. Then we know the following result similar to Theorem 3.8.

Theorem 4.5 For a G-solution G[SDES1
m] of a shifted differential equation system (SDES1

m)

with initial value Xv(0), let H be a spanning subgraph of G[DES1
m] and X∗ an equilibrium

point of (SDES1
m) on H.

(1) If there is a Liapunov sum-function L : O ⊂ Rdim(SDES1
m) → R on X∗, then the zero

G-solution G[SDES1
m] is sum-stable on X∗ for H, and furthermore, if

L̇


 ∑

v∈V (H)

Xv(t)


 < 0

for
∑

v∈V (H)

Xv(t) 6= X∗, then the zero G-solution G[SDES1
m] is asymptotically sum-stable on

X∗ for H.
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(2) If there is a Liapunov prod-function L : O ⊂ Rdim(SDES1
m) → R on X∗ for H, then

the zero G-solution G[SDES1
m] is prod-stable on X∗ for H, and furthermore, if

L̇


 ∏

v∈V (H)

Xv(t)


 < 0

for
∏

v∈V (H)

Xv(t) 6= X∗, then the zero G-solution G[SDES1
m] is asymptotically prod-stable on

X∗ for H.

§5. Applications

5.1 Global Control of Infectious Diseases

An immediate application of non-solvable differential equations is the globally control of infec-

tious diseases with more than one infectious virus in an area. Assume that there are three kind

groups in persons at time t, i.e., infected I(t), susceptible S(t) and recovered R(t), and the

total population is constant in that area. We consider two cases of virus for infectious diseases:

Case 1 There are m known virus V1, V2, · · · , Vm with infected rate ki, heal rate hi for integers

1 ≤ i ≤ m and an person infected a virus Vi will never infects other viruses Vj for j 6= i.

Case 2 There are m varying V1, V2, · · · , Vm from a virus V with infected rate ki, heal rate hi

for integers 1 ≤ i ≤ m such as those shown in Fig.5.1.

V1 V2
- - - Vm

Fig.5.1

We are easily to establish a non-solvable differential model for the spread of infectious

viruses by applying the SIR model of one infectious disease following:





Ṡ = −k1SI

İ = k1SI − h1I

Ṙ = h1I





Ṡ = −k2SI

İ = k2SI − h2I

Ṙ = h2I

· · ·





Ṡ = −kmSI

İ = kmSI − hmI

Ṙ = hmI

(DES1
m)

Notice that the total population is constant by assumption, i.e., S + I + R is constant.

Thus we only need to consider the following simplified system





Ṡ = −k1SI

İ = k1SI − h1I





Ṡ = −k2SI

İ = k2SI − h2I
· · ·





Ṡ = −kmSI

İ = kmSI − hmI
(DES1

m)

The equilibrium points of this system are I = 0, the S-axis with linearization at equilibrium
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points




Ṡ = −k1S

İ = k1S − h1





Ṡ = −k2S

İ = k2S − h2

· · ·





Ṡ = −kmS

İ = kmS − hm

(LDES1
m)

Calculation shows that the eigenvalues of the ith equation are 0 and kiS−hi, which is negative,

i.e., stable if 0 < S < hi/ki for integers 1 ≤ i ≤ m. For any spanning subgraph H < G[LDES1
m],

we know that its zero G-solution is asymptotically sum-stable on H if 0 < S < hv/kv for

v ∈ V (H) by Theorem 2.22, and it is asymptotically sum-stable on H if

∑

v∈V (H)

(kvS − hv) < 0 i.e., 0 < S <
∑

v∈V (H)

hv

/
∑

v∈V (H)

kv

by Theorem 2.27. Notice that if Ii(t), Si(t) are probability functions for infectious viruses

Vi, 1 ≤ i ≤ m in an area, then
m∏

i=1

Ii(t) and
m∏

i=1

Si(t) are just the probability functions for

all these infectious viruses. This fact enables one to get the conclusion following for globally

control of infectious diseases.

Conclusion 5.1 For m infectious viruses V1, V2, · · · , Vm in an area with infected rate ki, heal

rate hi for integers 1 ≤ i ≤ m, then they decline to 0 finally if

0 < S <

m∑

i=1

hi

/
m∑

i=1

ki ,

i.e., these infectious viruses are globally controlled. Particularly, they are globally controlled if

each of them is controlled in this area.

5.2 Dynamical Equations of Instable Structure

There are two kind of engineering structures, i.e., stable and instable. An engineering structure

is instable if its state moving further away and the equilibrium is upset after being moved

slightly. For example, the structure (a) is engineering stable but (b) is not shown in Fig.5.2,

A1

B1 C1

A2

B2

C2

D2

(a) (b)

Fig.5.2

where each edge is a rigid body and each vertex denotes a hinged connection. The motion of

a stable structure can be characterized similarly as a rigid body. But such a way can not be

applied for instable structures for their internal deformations such as those shown in Fig.5.3.
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A B

C D

BA

C D

moves

Fig.5.3

Furthermore, let P1, P2, · · · , Pm be m particles in R3 with some relations, for instance,

the gravitation between particles Pi and Pj for 1 ≤ i, j ≤ m. Thus we get an instable structure

underlying a graph G with

V (G) = {P1, P2, · · · , Pm};
E(G) = {(Pi, Pj)|there exists a relation between Pi and Pj}.

For example, the underlying graph in Fig.5.4 is C4. Assume the dynamical behavior of particle

Pi at time t has been completely characterized by the differential equations Ẋ = Fi(X, t),

where X = (x1, x2, x3). Then we get a non-solvable differential equation system

Ẋ = Fi(X, t), 1 ≤ i ≤ m

underlying the graph G. Particularly, if all differential equations are autonomous, i.e., depend

on X alone, not on time t, we get a non-solvable autonomous differential equation system

Ẋ = Fi(X), 1 ≤ i ≤ m.

All of these differential equation systems particularly answer a question presented in [3] for

establishing the graph dynamics, and if they satisfy conditions in Theorems 2.22, 2.27 or 3.6,

then they are sum-stable or prod-stable. For example, let the motion equations of 4 members

in Fig.5.3 be respectively

AB : ẌAB = 0; CD : ẌCD = 0, AC : ẌAC = aAC , BC : ẌBC = aBC ,

where XAB, XCD, XAC and XBC denote central positions of members AB, CD, AC, BC and

aAC , aBC are constants. Solving these equations enable one to get

XAB = cABt + dAB, XAC = aACt2 + cACt + dAC ,

XCD = cCDt + dCD, XBC = aBCt2 + cBCt + dBC ,

where cAB, cAC , cCD, cBC , dAB, dAC , dCD, dBC are constants. Thus we get a non-solvable dif-

ferential equation system

Ẍ = 0; Ẍ = 0, Ẍ = aAC , Ẍ = aBC ,
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or a non-solvable algebraic equation system

X = cABt + dAB, X = aACt2 + cACt + dAC ,

X = cCDt + dCD, X = aBCt2 + cBCt + dBC

for characterizing the behavior of the instable structure in Fig.5.3 if constants cAB, cAC , cCD, cBC ,

dAB, dAC , dCD, dBC are different.

Now let X1, X2, · · · , Xm be the respectively positions in R3 with initial values X0
1 , X0

2 , · · · , X0
m,

Ẋ0
1 , Ẋ0

2 , · · · , Ẋ0
m and M1, M2, · · · , Mm the masses of particles P1, P2, · · · , Pm. If m = 2, then

from Newton’s law of gravitation we get that

Ẍ1 = GM2
X2 − X1

|X2 − X1|3
, Ẍ2 = GM1

X1 − X2

|X1 − X2|3
,

where G is the gravitational constant. Let X = X2 −X1 = (x1, x2, x3). Calculation shows that

Ẍ = −G (M1 + M2)
X

|X |3
.

Such an equation can be completely solved by introducing the spherical polar coordinates





x1 = r cosφ cos θ

x2 = r cosφ cos θ

x3 = r sin θ

with r ≥ 0, 0 ≤ φ ≤ π, 0 ≤ θ < 2π, where r = ‖X‖, φ = ∠Xoz, θ = ∠X ′ox with X ′

the projection of X in the plane xoy are parameters with r = α/(1 + ǫ cosφ) hold for some

constants α, ǫ. Whence,

X1(t) = GM2

∫ (∫
X

|X |3
dt

)
dt and X2(t) = −GM1

∫ (∫
X

|X |3
dt

)
dt.

Notice the additivity of gravitation between particles. The gravitational action of particles

P1, P2, · · · , Pm on P can be regarded as the respective actions of P1, P2, · · · , Pm on P,

such as those shown in Fig.5.4.

P1 P2 Pm

P

F1

K >}
F2 Fm

Fig.5.4
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Thus we can establish the differential equations two by two, i.e., P1 acts on P, P2 acts on

P, · · · , Pm acts on P and get a non-solvable differential equation system

Ẍ = GMi
Xi − X

|Xi − X |3
, Pi 6= P, 1 ≤ i ≤ m.

Fortunately, each of these differential equations in this system can be solved likewise that of

m = 2. Not loss of generality, assume X̂i(t) to be the solution of the differential equation in

the case of Pi 6= P, 1 ≤ i ≤ m. Then

X(t) =
∑

Pi 6=P

X̂i(t) = G
∑

Pi 6=P

Mi

∫ (∫
Xi − X

|Xi − X |3
dt

)
dt

is nothing but the position of particle P at time t in R3 under the actions of Pi 6= P for

integers 1 ≤ i ≤ m, i.e., its position can be characterized completely by the additivity of

gravitational force.

5.3 Global Stability of Multilateral Matters

Usually, one determines the behavior of a matter by observing its appearances revealed before

one’s eyes. If a matter emerges more lateralities before one’s eyes, for instance the different

states of a multiple state matter. We have to establish different models, particularly, differential

equations for understanding that matter. In fact, each of these differential equations can be

solved but they are contradictory altogether, i.e., non-solvable in common meaning. Such a

multilateral matter is globally stable if these differential equations are sum or prod-stable in all.

Concretely, let S1, S2, · · · , Sm be m lateral appearances of a matter M in R3 which are

respectively characterized by differential equations

Ẋi = Hi(Xi, t), 1 ≤ i ≤ m,

where Xi ∈ R3, a 3-dimensional vector of surveying parameters for Si, 1 ≤ i ≤ m. Thus we get

a non-solvable differential equations

Ẋ = Hi(X, t), 1 ≤ i ≤ m (DES1
m)

in R3. Noticing that all these equations characterize a same matter M , there must be equilib-

rium points X∗ for all these equations. Let

Hi(X, t) = H ′
i(X

∗)X + Ri(X
∗),

where

H ′
i(X

∗) =




h
[i]
11 h

[i]
12 · · · h

[i]
1n

h
[i]
21 h

[i]
22 · · · h

[i]
2n

· · · · · · · · · · · ·
h

[i]
n1 h

[i]
n2 · · · h

[i]
nn




is an n × n matrix. Consider the non-solvable linear differential equation system

Ẋ = H ′
i(X

∗)X, 1 ≤ i ≤ m (LDES1
m)
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with a basis graph G. According to Theorem 3.6, if

lim
‖X‖→X∗

‖Ri(X)‖
‖X‖ = 0

for integers 1 ≤ i ≤ m, then the G-solution of these differential equations is asymptotically

sum-stable or asymptotically prod-stable on G if each Reα
[i]
k < 0 for all eigenvalues α

[i]
k of

matrix H ′
i(X

∗), 1 ≤ i ≤ m. Thus we therefore determine the behavior of matter M is globally

stable nearly enough X∗. Otherwise, if there exists such an equation which is not stable at the

point X∗, then the matter M is not globally stable. By such a way, if we can determine these

differential equations are stable in everywhere, then we can finally conclude that M is globally

stable.

Conversely, let M be a globally stable matter characterized by a non-solvable differential

equation

Ẋ = Hi(X, t)

for its laterality Si, 1 ≤ i ≤ m. Then the differential equations

Ẋ = Hi(X, t), 1 ≤ i ≤ m (DES1
m)

are sum-stable or prod-stable in all by definition. Consequently, we get a sum-stable or prod-

stable non-solvable differential equation system.

Combining all of these previous discussions, we get an interesting conclusion following.

Conclusion 5.2 Let M GS , M
GS

be respectively the sets of globally stable multilateral matters,

non-stable multilateral matters characterized by non-solvable differential equation systems and

DE , DE the sets of sum or prod-stable non-solvable differential equation systems, not sum or

prod-stable non-solvable differential equation systems. then

(1) ∀M ∈ M GS ⇒ ∃(DES1
m) ∈ DE ;

(2) ∀M ∈ M
GS ⇒ ∃(DES1

m) ∈ DE .

Particularly, let M be a multiple state matter. If all of its states are stable, then M is

globally stable. Otherwise, it is unstable.
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