Odd perfect numbers conjecture

Idan Raman

Abstract

When defining $\mathrm{O}(\mathrm{N})$ as the sum of all divisors of N including himself, it is to be proved that there is no odd number which satisfy the equation: $$
\mathrm{O}(\mathrm{~N})=2 \mathrm{~N}
$$

And from that proof, it follows that there is no odd prime by definition. The work showed here, is based on the work Euler did on the subject.

\section*{Contents} Introduction 2 Notations 3 Lemmas 4 Summation. 7 Completion 10

Introduction

Let N be an odd natural number. $\mathrm{O}(\mathrm{N})$ is a function of N defined as the sum of all the positive divisors of N , including himself.

If we take this sum and decrease N from it, we will get the sum of N's proper positive divisors - which is defined in this way. As also defined, a number is called perfect if its sum of proper positive divisors is equal to the number N itself.

$$
\mathrm{O}(\mathrm{~N})-\mathrm{N}=\mathrm{N}
$$

Or

$$
\mathrm{O}(\mathrm{~N})=2 \mathrm{~N}
$$

In this paper, I will show beyond doubt that for no N this equality is being satisfied.
This problem has been around for the last 3 centuries, and has been investigated by a lot of known mathematicians. Some of them even showed some interesting and groundbreaking progress, in what conditions we can relate to N to satisfy the equation.
In this paper there is a use of some of this progress, mainly made be Euler. The following condition will be proved in part 3.
N is of the form $k^{w} p_{1}{ }^{a_{1}} p_{2}{ }^{a_{2}} \cdots p_{n}{ }^{a_{n}}$ where $a_{i}[1 \leq i \leq n]$ is even, k, p_{1}, \ldots, p_{n} are distinct
primes, and w is odd.

Notations

p, k - a prime number.
N - a natural number.
$\mathrm{L}(\mathrm{q})$ - the group of the positive divisors of q .
$O(q)$ - the sum of the positive divisors of q.
$E(q)$ - the group of the unique primed divisors of q.
$D(q)$ - the sum of the unique primed divisors of q.
$|q|$ - the amount of terms in q

Lemmas

$I_{\text {The formula }}$

$$
|\mathrm{L}(\mathrm{~N})|=\left(a_{1}+1\right)\left(a_{2}+1\right) \cdots\left(a_{n}+1\right)
$$

first of all, we know that every natural number N we can divide to prime divisors

$$
\mathrm{N}=p_{1}{ }^{a_{1}} \cdot p_{2}{ }^{a_{2}} \cdots p_{n}{ }^{a_{n}}
$$

when $\left(a_{1} \ldots a_{n}\right)>0$ and we also know, that since N is odd, none of its prime divisors is equal to 2 .
The amount of positive divisors of N is defined as all of the ways to choose a set of $a_{i 1}, a_{i 2}, a_{i 3} \ldots a_{i n}$ when $0 \leq a_{i 1} \leq \mathrm{a}_{\mathrm{i}}$.
The amount of options for each $a_{i t}$, is $a_{t}+1$ because the range is all the numbers below a_{t}, adding 0 .
That gives us the formula:

$$
|\mathrm{L}(\mathrm{~N})|=\left(a_{1}+1\right)\left(a_{2}+1\right) \cdots\left(a_{n}+1\right)
$$

II If $\mathbf{2}^{\mathbf{j}}\left|\mathbf{A} \rightarrow \mathbf{2}^{\mathbf{j}}\right| \mathbf{2}^{\mathbf{A}}$

First we will show that $A>j$.

$$
2^{j} \cdot b=A \rightarrow 2^{j} \leq A
$$

And we can also see that $2^{j}>j$ for any value of j, because if we will take the derivative of

$$
\begin{aligned}
& m(j)=2^{j}-j \rightarrow m^{\prime}(j)=\ln (2) \cdot 2^{j}-1=0 \rightarrow \frac{1}{\ln (2)}=2^{j} \rightarrow j=\log _{2}\left(\frac{1}{\ln (2)}\right)=0.5287 \\
& m(0.5287)=0.913>0 \\
& m^{\prime \prime}(j)=\ln ^{2}(2) \cdot 2^{j} \rightarrow m^{\prime \prime}(0.5287)=0.693>0 \rightarrow(0.5287,0.913) \min \text {. } \\
& \text { so } 2^{j}>j \text {, and so } j<2^{j} \leq A \rightarrow j<A \text {. } \\
& \text { now we can see that } 2^{\mathrm{j}}<2^{\mathrm{A}} \text {, and } 2^{\mathrm{j}} \mid 2^{\mathrm{A}} \text {. }
\end{aligned}
$$

III Only one of $a_{1}, a_{2}, a_{3} \ldots a_{n}$ is odd.

As we know N is odd, and 2 N divides by 2 only once.
Every term in $L(n)$ is odd, and so we can relate the terms as $2 f_{i}+1$, Where $1 \leq i \leq|L(n)|$ the sum of these terms will be:

$$
O(N)=\sum_{i=1}^{|L(n)|} 2 f_{i}+1=|L(n)|+\sum_{i=1}^{|L(n)|} 2 f_{i}=|\mathrm{L}(\mathrm{n})|+2^{|L(n)|} \sum_{i=1}^{|L(n)|} f_{i}
$$

By lemma II we know that the power of 2 in $2^{|L(n)|}$ will be bigger than the power of 2 in $|\mathrm{L}(\mathrm{N})|$, and the total minimum power of 2 in $\mathrm{O}(\mathrm{N})$ is $\mathrm{L}(\mathrm{N})$. Now as we know, if each of $a_{i 1}, a_{i 2}, a_{i 3} \ldots a_{i n}$ is odd, then the power of 2 in $|\mathrm{L}(\mathrm{N})|$ will get bigger by 1 so we have 2 options to keep it divisible by 2 only once:

1. all $a_{1}, a_{2}, a_{3} \ldots a_{n}$ are even

We will revoke this option negatively.
We know that all the terms in $\mathrm{L}(\mathrm{N})$ are odd, since $\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}}$ are odd too.
If all the terms are odd, and the amount of them is odd too, then the sum $O(N)$ is odd which contradicts the fact that $\mathrm{O}(\mathrm{N})$ needs to be divisible by 2 once.
2. only one of $a_{1}, a_{2}, a_{3} \ldots a_{n}$ is odd.

This is the only possibility, as showed.

IV For N to be able to satisfy the equation, N needs to be of the following form:
$\mathbf{k}^{\mathrm{w}} \mathbf{p}_{1}{ }^{\mathrm{a}_{1}} \mathbf{p}_{2}{ }^{\mathbf{a}_{2}} \ldots \mathbf{p}_{\mathrm{n}}{ }^{a_{n}}$ where $\mathrm{a}_{\mathrm{i}}[\mathbf{1} \leq \mathbf{i} \leq n]$ is even and $k, p_{1}, \ldots, \mathbf{p}_{\mathrm{n}}$ are distinct primes.
This one is easy to prove by lemma III.
we have already showed that only one of $a_{1}, a_{2}, a_{3} \ldots a_{n}$ is odd, and we will mark it as w .

V The formula:

$$
O(N)=\left[\frac{k^{w+1}-1}{k-1}\right] \cdot\left[\frac{p_{1}^{a_{1}+1}-1}{p_{1}-1}\right] \cdots\left[\frac{p_{n}^{a_{n}+1}-1}{p_{n}-1}\right]
$$

We will prove by induction, on the amount of unique prime divisors (n).

For $\mathrm{n}=1$:

$\mathrm{N}=\mathrm{p}_{1}{ }^{\mathrm{a}_{1}}$, we know we have $a_{1}+1$ options and they are generated by the formula $\mathrm{p}_{1}{ }^{\mathrm{a}_{\mathrm{i}}}$ when $1 \leq a_{i} \leq a_{n}$. This condition answers to the requires of a geometric sum, when $b_{1}=1, q=p_{1}, n=a_{n}$ and by the formula:

$$
O(N)=S_{a_{n}}=\left[\frac{p_{1}{ }^{a_{1}+1}-1}{p_{1}-1}\right]
$$

Because k, p_{1}, \ldots, p_{n} are independent primes, the total $\mathrm{O}(\mathrm{N})$ is achieved by the following multiply:

$$
O(N)=\left[\frac{k^{w+1}-1}{k-1}\right] \cdot\left[\frac{p_{1}{ }^{a_{1}+1}-1}{p_{1}-1}\right] \cdots\left[\frac{p_{n}^{a_{n}+1}-1}{p_{n}-1}\right]
$$

Summation

In this part, we will do use of the proved lemmas to show the solution to the conjecture. We will also do use of the functions $E(q)$ and $D(q)$.

Lets return to the first equation, which is equivalent to the conjecture itself:

$$
O(N)=2 N
$$

We will put both sides of the equation into the function $\mathrm{E}(\mathrm{q})$ first to determinate is it possible for the two numbers to be equal:

$$
2 N=2 \mathrm{k}^{\mathrm{w}} \mathrm{p}_{1}{ }^{\mathrm{a}_{1}} \mathrm{p}_{2}^{\mathrm{a}_{2}} \cdots \mathrm{p}_{\mathrm{n}}^{\mathrm{a}_{\mathrm{n}}} \rightarrow E(N)=n+2
$$

Because by definition $2, k$, and p_{1}, \ldots, p_{n} are distinct primes.
Now we will see the value of $\mathrm{E}(\mathrm{O}(\mathrm{N}))$:

$$
O(N)=\left[\frac{k^{w+1}-1}{k-1}\right] \cdot\left[\frac{p_{1}^{a_{1}+1}-1}{p_{1}-1}\right] \cdots\left[\frac{p_{n}^{a_{n}+1}-1}{p_{n}-1}\right] \rightarrow E(O(N)) \geq n+2
$$

Because $\left[\frac{p_{1}{ }^{a_{1}+1}-1}{p_{1}-1}\right] \ldots\left[\frac{p_{n} a_{n+1}-1}{p_{n}-1}\right]$ are distinct primes and $\left[\frac{k^{w+1}-1}{k-1}\right]$ is divisible by 2 , the minimum amount of divisors is $\mathrm{n}+2$ and we get it only when $\left[\frac{k^{w+1}-1}{k-1}\right],\left[\frac{p_{1} a_{1+1}-1}{p_{1}-1}\right] . .\left[\frac{p_{n}^{a_{1}+1}-1}{p_{n}-1}\right]$ are primes.

This fact is useable for us- since there are exactly equal amount of prime divisors to $\mathrm{N}, \mathrm{O}(\mathrm{N})$ we know that there should be an one to one correspondence between the factors - and if the factor k appears in the prime divisors of N , one of the divisors of $\mathrm{O}(\mathrm{N})$ must be equal to it.

Now we will use the function $\mathrm{D}(\mathrm{q})$ to determinate if the conjecture to be true, using also the previews discovery.

$$
\begin{gathered}
2 N=2 \mathrm{k}^{\mathrm{w}} \mathrm{p}_{1}{ }^{\mathrm{a}_{1}} \mathrm{p}_{2}{ }^{\mathrm{a}_{2}} \cdots \mathrm{p}_{\mathrm{n}}{ }^{\mathrm{a}_{\mathrm{n}}} \rightarrow D(2 N)=\sum_{i=1}^{n} p_{i}+k+2 \\
O(N)=2\left[\frac{k^{w+1}-1}{2 k-2}\right] \cdot\left[\frac{p_{1}{ }^{a_{1}+1}-1}{p_{1}-1}\right] \cdots\left[\frac{p_{n}{ }^{a_{n}+1}-1}{p_{n}-1}\right] \rightarrow D(O(N))=\sum_{I=1}^{n}\left[\frac{p_{i}{ }^{a_{i}+1}-1}{p_{i}-1}\right]+\left[\frac{k^{w+1}-1}{2 k-2}\right]+2
\end{gathered}
$$

Now we will look at the difference $\mathrm{D}(\mathrm{O}(\mathrm{N}))-\mathrm{D}(\mathrm{N})$:

$$
D(O(N))-D(2 N)=\sum_{I=1}^{n}\left[\frac{p_{i}^{a_{i}+1}-1}{p_{i}-1}-p_{i}\right]+\left[\frac{k^{w+1}-1}{2 k-2}-k\right]
$$

We will look at the minimum of first term of the sum:

$$
\begin{aligned}
& \sum_{I=1}^{n}\left[\frac{p_{i}{ }^{a_{i}+1}-1}{p_{i}-1}-p_{i}\right] \text { for a minimal value, } a_{i} \text { needs to be minimal }(2)= \\
& \sum_{I=1}^{n}\left[\frac{p_{i}{ }^{3}-1}{p_{i}-1}-p_{i}\right]=\sum_{I=1}^{n}\left[p_{i}{ }^{2}+p_{i}+1\right] \text { for a minimal value, } p_{i} \text { needs to be minimal }(3)= \\
& \qquad \sum_{I=1}^{n}\left[3^{2}+3+1\right]=13 n>0
\end{aligned}
$$

So the first term is always positive. Now we'll check whether the second term is always positive or not:

$$
\begin{aligned}
& \frac{k^{w+1}-1}{2 k-2}-k \text { for a minimal value, } w \text { needs to be minimal }(1)= \\
& \qquad \frac{k^{2}-1}{2 k-2}-k=\frac{k+1}{2}-k=\frac{1-k}{2}<0
\end{aligned}
$$

So the conjecture is possible when $w=1$. For $w=3$ or bigger:

$$
\frac{k^{3}-1}{2 k-2}-k=\frac{k^{2}+k+1}{2}-k=\frac{k^{2}-k+1}{2}>0
$$

So we can conclude, that $\mathrm{w}=1$.

$$
2 N=2 \mathrm{k} \cdot \mathrm{p}_{1}{ }^{\mathrm{a}_{1}} \mathrm{p}_{2}^{\mathrm{a}_{2}} \cdots \mathrm{p}_{\mathrm{n}}{ }^{\mathrm{a}_{\mathrm{n}}}
$$

We also know, that the following inequality must be true:

$$
\sum_{I=1}^{n}\left[\frac{p_{i}^{a_{i}+1}-1}{p_{i}-1}-p_{i}\right]<\frac{k-1}{2}
$$

For that to happen, k needs to be max.
The biggest value that k can get, is the biggest of the terms $\left[\frac{p_{1}{ }^{a_{1}+1}-1}{p_{1}-1}\right] \ldots\left[\frac{p_{n}{ }^{a_{n}+1}-1}{p_{n}-1}\right]$, which we'll mark as:

$$
k=\left[\frac{p_{t}{ }^{a_{t}+1}-1}{p_{t}-1}\right]
$$

So now we will put the value of k in the formula above:

$$
\begin{aligned}
& \sum_{I=1}^{n}\left[\frac{p_{i}{ }^{a_{i}+1}-1}{p_{i}-1}-p_{i}\right]<\frac{\left.\frac{p_{t}^{a_{t}+1}-1}{p_{t}-1}\right]-1}{2} \rightarrow 2 \sum_{I=1}^{n}\left[\frac{p_{i}^{a_{i}+1}-1}{p_{i}-1}-p_{i}\right]+1<\left[\frac{p_{t}^{a_{t}+1}-1}{p_{t}-1}\right] \rightarrow \\
& \quad \text { Because } t \text { is in }[1, n] \text { we know that: } 2 \sum_{I=1}^{n}\left[\frac{p_{i}^{a_{i}+1}-1}{p_{i}-1}-p_{i}\right]+1 \geq 2\left[\frac{p_{t}^{a_{t}+1}-1}{p_{t}-1}\right]+1
\end{aligned}
$$

and by transitive law: $2\left[\frac{p_{t}{ }^{a_{t}+1}-1}{p_{t}-1}\right]+1<\left[\frac{p_{t}{ }^{a_{t}+1}-1}{p_{t}-1}\right] \rightarrow\left[\frac{p_{t}{ }^{a_{t}+1}-1}{p_{t}-1}\right]<-1$
which is impossible, because as known $\left[\frac{p_{t}{ }^{a_{t}+1}-1}{p_{t}-1}\right]$ is positive.

Completion

Now we will go back through the steps, to make the proof more clear:

- We showed that no k is possible, in a way that $D(O(N))-D(2 N) \leq 0$, So we know that $D(O(N)) \neq D(2 N)$.
- If $\mathrm{O}(\mathrm{N})$ and N were equal, we would have gotten $D(O(N))=D(2 N)$ So we also know that $\mathrm{O}(\mathrm{N}) \neq 2 \mathrm{~N}$
- We showed that N of the form presented in lemma IV, and so there is no other option for N values which will might get the equality $D(O(N))=D(2 N)$, to be prefect numbers.
- And finally, we showed that the Odd Perfect Conjecture is equivalent to the equality $\mathrm{O}(\mathrm{N})=2 N$, and by showing it never holds we have solved the conjecture.

