A conjecture about an infinity of sets of integers, each one having an infinite number of primes

Marius Coman
Bucuresti, Romania
email: mariuscoman13@gmail.com

Abstract

In this paper, inspired by one of my previous papers posted on Vixra, I make, considering the sum of the digits of an odd integer, a conjecture about an infinity of sets of integers, each one having an infinite number of primes and I also make, considering the sum of the digits of a prime number, two other conjectures.

Conjecture 1:

For an infinity of odd positive integers m there is an infinite set of primes with the property that the sum of their digits is equal to $m+1$.

Conjecture 2:

For an infinity of primes p there is an infinite set of primes with the property that the sum of their digits is equal to $p+1$.

Comment: such a prime p I conjectured to be, in a previous paper posted on Vixra, the number 13.

Conjecture 3:

There is an infinite number of values the sum of the digits of the numbers $p+1$, where p is odd prime, may have.

Note:

For a list with prime numbers with the property that the sum of their digits is equal to an even number see the sequence A119449 in OEIS.

Note:

We will refer hereinafter with $D(m)$ to the set of primes with the property that the sum of their digits is equal to $m+1$, where m is an odd integer.

The sequence $\mathrm{D}(1)$:
: 101 (...).

The sequence $\mathrm{D}(3)$:
: 13, 31, 103, 211, 1021, 1201 (...).

The sequence $D(5)$:

: (...).
The sequence $D(7)$:
: 17, 53, 71, 107, 233, 251, 431, 503, 521, 701, 1061, 1151, 1223 (...).

The sequence $D(9)$:
: 19, 37, 73, 109, 127, 163, 181, 271, 307, 433, 523, 541, 613, 631, 811, 1009, 1063, 1117, 1153, 1171 (...).

The sequence $D(11)$:
: (...).
The sequence $D(13)$:
: 59, 149, 167, 239, 257, 293, 347, 419, 491, 563, 617, 653, 743, 761, 941, 1049, 1193, 1229, 1283, 1319 (...).

The sequence $D(15)$:
: 79, 97, 277, 349, 367, 383, 439, 457, 547, 619, 673, 691, 709, 727, 853, 907, 1069, 1087, 1249 (...).

The sequence $D(17)$:
: (...).
The sequence $D(19)$:
: 389, 479, 569, 587, 659, 677, 839, 857, 929, 947, 983, 1289 (...).

The sequence $\mathrm{D}(21)$:
: 499, 769, 787, 859, 877, 967 (...).

Note:

It can easily be seen that for some values of odd integers m were obtained much more primes with the sum of the digits equal to $m+1$ than for other values of m; for instance were obtained, from the first hundred of primes having the sum of digits equal to an even number, 20 such primes for which $m=9,21$ such primes for which $m=13,19$ such primes for which $m=15$, but no such primes at all for which $m=5, m=11$ or $m=$ 17.

