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Abstract
In this paper we extend Inagaki Weighted Operators fusion rule (WO) [see 1, 2] in information 
fusion by doing redistribution of not only the conflicting mass, but also of masses of non-empty 
intersections, that we call Double Weighted Operators (DWO). 

Then we propose a new fusion rule Class of Proportional Redistribution of Intersection Masses 
(CPRIM), which generates many interesting particular fusion rules in information fusion. 

Both formulas are presented for 2 and for n � 3 sources. 

An application and comparison with other fusion rules are given in the last section. 
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1. Introduction. 

Let � �1 2, ,..., n� � � �� , for 2n � , be the frame of discernment, and � �, , ,S� � 	� 
 �  

its super-power set, where �(x) means complement of x with respect to the total ignorance.  

Let total ignorancetI � = �1� �2�…��n. 

2S� � ^�refined = 2^(2^�) = D���c, when refinement is possible, where �c = {�(�1), 
�(�2), …, �(�n)}.  

 We consider the general case when the domain is S� , but S�  can be replaced by D� = 

(�,�,) or by 2� = (�,�) in all formulas from below. 

 Let 1 2( ) and ( ) m m� �  be two normalized masses defined from S�  to � �0,1 . 

 We use the conjunction rule to first combine 1( )m �  with 2 ( )m �  and then we 

redistribute the mass of � � 0m X Y �� , when X Y � �� . 
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 Let’s denote � �
� �

2 1 2 1 2
,

( ) ( ) ( ) ( )
X Y S
X Y A

m A m m A m X m Y
��
�

� � � ��

�

 using the conjunction rule. 

 Let’s note the set of intersections by: 

 

 
� �| ,  where , \ ,

 is in a canonical form, and  
 contains at least an  symbol in its formula

X S X y z y z S
S X

X

� �� �� � � �
� �

� � �
� �
� �

�

�

�
.                                       (1) 

 

In conclusion, S is a set of formulas formed with singletons (elements from the frame of 
discernment), such that each formula contains at least an intersection symbol , and each 
formula is in a canonical form (easiest form). 

 For example: A A S� ��  since A A�  is not a canonical form, and A A A�� . Also, 

� �A B B� �  is not in a canonical form but � �A B B A B S� � �� � � . 

 Let  

S� ��  the set of all empty intersections from S� , 

 and 

,
non

rS � ��  {the set of all non-empty intersections from nonS �
�  whose masses are 

redistributed to other sets, which actually depends on the sub-model of each 
application}. 

2. Extension of Inagaki General Weighted Operators (WO). 

 

Inagaki general weighted operator ( )WO  is defined for two sources as: 

� �  2 \A �� � � , 

� �

( ) 1 2 2
, 2

( ) ( ) ( ) ( ) ( )WO m
X Y
X Y A

m A m X m Y W A m
��
�

� � � �� �

�

,               (2) 

where 

2

( ) 1m
X

W X
��

��  and all � �( ) 0,1mW � � .                                                (3) 

 So, the conflicting mass is redistributed to non-empty sets according to these weights 
( )mW � . 
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 In the extension of this WO , which we call the Double Weighted Operator � �DWO , 

we redistribute not only the conflicting mass 2 ( )m ��  but also the mass of some (or all) non-

empty intersections, i.e. those from the set ,
non

rS �
� , to non-empty sets from S�  according to 

some weights ( )mW �  for the conflicting mass (as in WO), and respectively according to the 

weights Vm(.) for the non-conflicting mass of the elements from the set ,
non

rS �
� : 

� � � �
� �

,

, 1 2 2 2
,

  \ \ ,  ( ) ( ) ( ) ( ) ( ) ( ) ( )
non

r

non
r DWO m m

X Y S z S
X Y A

A S S m A m X m Y W A m V A m z
�

�

�

�

� �
�

� � � � � � � � �� �
�

� � �

�

,   (4) 

where 

( ) 1m
X S

W X
��

��  and all � �( ) 0,1mW � � , as in (3) 

and  

,

( ) 1
non

r

m
z S

V z
��

��
�

 and all � �( ) 0,1mV � � .                                           (5) 

 In the free and hybrid modes, if no non-empty intersection is redistributed, i.e. ,
non

rS �
�  

contains no elements, DWO  coincides with WO . 

 In the Shafer’s model, always DWO  coincides with WO . 

 For 2s � sources, we have a similar formula: 

� � � �
1 2 ,

1

,
1, ,...,

  \ \ ,  ( ) ( ) ( ) ( ) ( ) ( )
non

n r
s

i
i

s
non

r DWO i i m s m s
iX X X S z S

X A

A S S m A m X W A m V A m z
�

�

�

�

�

�� �

�

� � � � � � � � �� � 
�

� � �

�

  (6) 

with the same restrictions on ( )mW �  and ( )mV � . 

 

 

3. A Fusion Rule Class of Proportional Redistribution of Intersection Masses  

 For � � � �, \ \ ,non
r tA S S I� �� ��  for two sources we have: 

� �
� �,

1 2
\ 2

                  ,
         and 
or  and   

( ) ( )( ) ( ) ( )
( )

non
r

CPR M
X Y S

X Y A M z M
X Y S A N

m X m Ym A m A f A
f z�

�

�
�� ! !

�� � !

� � � � �
�

�

�
�

,                    (7) 

where ( )f X  is a function directly proportional to � �,  : 0,X f S� " # .                                 (8) 
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For example,  2( ) ( )f X m X� � , or                                                                       (9) 

( ) ( )f X card X� , or  

( )( )
( )

card Xf X
card M

�  (ratio of cardinals), or  

2( ) ( ) ( )f X m X card X� �� , etc.;  

and M  is a subset of S� , for example:                                                                            (10) 

� �M X Y	� � , or  

� �M X Y� � , or  

M  is a subset of X Y� , etc.,  

where N  is a subset of S� , for example:                                                                        (11) 

N X Y� � , or  

N is a subset of X Y� , etc. 

And  

\ 2 1 2
                             ,

         and (  or ( ) 0)   

( ) ( ) ( ) ( )

z M

CPR M t t
X Y S

X Y M f z

m I m I m X m Y
�

!

�
� �� ��� �� �� �
� �� �

� �

�

��

�

.         (12) 

 These formulas are easily extended for any 2s �  sources 1 2( ), ( ),..., ( )sm m m� � � . 

Let’s denote, using the conjunctive rule: 

� �
1 2

1

1 2
, ,..., ^ 1

( ) ... ( )   ( )
s

s
i

i

s

i is s
X X X S i

X A

m A m m m A m x

�

� $ �

�
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�

                  (13) 
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             , ,...,

          and 

   or  and  
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�

 
� �

�

�

�

�

                 (14) 
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where ( ),  ,  and f M N�  are similar to the above where instead of X Y�  (for two sources) we 

take 1 2 ... sX X X� � �  (for s sources), and instead of 2 ( )m X�  for two sources we take 

( )sm X�  for s  sources. 

 

4. Application and Comparison with other Fusion Rules. 

 

Let’s consider the frame of discernment � = {A, B, C}, and two independent sources m1(.) 
and m2(.)  that provide the following masses: 

              A        B        C        A� B� C 

m1(.)     0.3      0.4     0.2             0.1 

m2(.)     0.5      0.2     0.1             0.2 

 

Now, we apply the conjunctive rule and we get: 

              A       B       C        A� B� C      A�B    A�C    B�C     

m12�(.)  0.26   0.18   0.07         0.02           0.26     0.13     0.08 

 

Suppose that all intersections are non-empty {this case is called: free DSm (Dezert-
Smarandache) Model}. See below the Venn Diagram using the Smarandache codification [3]: 

 

 

 

Applying DSm Classic rule, which is a generalization of classical conjunctive rule from the 
fusion space (�, � ), called power set, when all hypotheses are supposed exclusive (i.e. all 
intersections are empty) to the fusion space (�, � , �), called hyper-power set, where 
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hypotheses are not necessarily exclusive (i.e. there exist non-empty intersections), we just 
get: 

                  A       B       C        A� B� C      A�B    A�C    B�C     

mDSmC(.)  0.26   0.18   0.07         0.02             0.26     0.13     0.08 

 

DSmC and the Conjunctive Rule have the same formula, but they work on different fusion 
spaces. 

Inagaki rule was defined on the fusion space (�, � ) .  In this case, since all intersections are 
empty, the total conflicting mass, which is m12�( A�B) + m12�( A�C)  + m12�( B�C)  = 0.26  
+ + 0.13  +  0.08 = 0.47, and this is redistributed to the masses of A, B, C, and A� B� C 
according to some weights w1, w2, w3, and w4 respectively, depending to each particular rule, 
where: 

0 � w1, w2, w3, w4 � 1 and w1 + w2 + w3 + w4 = 1. Hence 

                   A                            B                      C                      A� B� C    

mInagaki(.)  0.26+0.47w1   0.18+0.47w2      0.07+0.47w3            0.02+0.47w4                 

 

Yet, Inagaki rule can also be straightly extended from the power set to the hyper-power set.  

Suppose in DWO the user finds out that the hypothesis B�C is not plausible, therefore  

m12�( B�C) = 0.08 has to be transferred to the other non-empty elements: A, B, C, 
A� B� C, A�B, A�C, according to some weights v1, v2, v3, v4, v5, and v6 respectively, 
depending to the particular version of this rule is chosen, where: 

0 � v1, v2, v3, v4, v5, v6 � 1 and v1 + v2 + v3 + v4 + v5 + v6 = 1. Hence 

                       A                      B                  C             A� B� C         A�B                  A�C     

mDWO(.)  0.26+0.08v1   0.18+0.08v2   0.07+0.08v3   0.02+0.08v4   0.26+0.08v5       
0.13+0.08v6         

          

Now, since CPRIM is a particular case of DWO, but CPRIM is a class of fusion rules, let’s 
consider a sub-particular case for example when the redistribution of m12�( B�C) = 0.08 is 
done proportionally with respect to the DSm cardinals of B and C which are both equal to 4.  
DSm cardinal of a set is equal to the number of disjoint parts included in that set upon the 
Venn Diagram (see it above). 
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Therefore 0.08 is split equally between B and C, and we get: 

                       A               B                            C                A� B� C         A�B       A�C     

mCPRIMcard(.)  0.26     0.18+0.04=0.22   0.07+0.04=0.11        0.02              0.26         0.13    

 

Applying one or another fusion rule is still debating today, and this depends on the 
hypotheses, on the sources, and on other information we receive. 

 

5. Conclusion. 

A generalization of Inagaki rule has been proposed in this paper, and also a new class of 
fusion rules, called Class of Proportional Redistribution of Intersection Masses 
(CPRIM), which generates many interesting particular fusion rules in information fusion. 
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