Extension of Inagaki General Weighted Operators and A New Fusion Rule Class of Proportional Redistribution of Intersection Masses

Florentin Smarandache

Chair, Department of Mathematics and Science, University of New Mexico, Gallup, New Mexico, USA Email: smarand@unm.edu

Abstract

In this paper we extend Inagaki Weighted Operators fusion rule (WO) [see 1, 2] in information fusion by doing redistribution of not only the conflicting mass, but also of masses of non-empty intersections, that we call <u>Double Weighted Operators</u> (DWO).

Then we propose a new fusion rule <u>Class of Proportional Redistribution of Intersection Masses</u> (CPRIM), which generates many interesting particular fusion rules in information fusion.

Both formulas are presented for 2 and for $n \ge 3$ sources.

An application and comparison with other fusion rules are given in the last section.

Keywords: Inagaki Weighted Operator Rule, fusion rules, proportional redistribution rules, DSm classic rule, DSm cardinal, Smarandache codification, conflicting mass

Mathematics Subject Classification: 99C99, 68P99

ACM Classification: 1.4.8.

1. Introduction.

Let $\theta = \{\theta_1, \theta_2, ..., \theta_n\}$, for $n \ge 2$, be the frame of discernment, and $S^{\theta} = (\theta, \cup, \cap, \tau)$ its super-power set, where $\tau(\mathbf{x})$ means complement of \mathbf{x} with respect to the total ignorance.

Let $I_t = \text{total ignorance} = \theta_1 \chi \ \theta_2 \chi \dots \chi \theta_n$.

 $S^{\theta} = 2 \wedge \theta_{\text{refined}} = 2^{(2^{\theta})} = D^{\theta \chi \theta c}$, when refinement is possible, where $\theta_{c} = \{\tau(\theta_{1}), \tau(\theta_{2}), ..., \tau(\theta_{n})\}$.

We consider the general case when the domain is S^{θ} , but S^{θ} can be replaced by $D^{\theta} = (\theta, \chi, 1)$ or by $2^{\theta} = (\theta, \chi)$ in all formulas from below.

Let $m_1(\cdot)$ and $m_2(\cdot)$ be two normalized masses defined from S^{θ} to [0,1].

We use the conjunction rule to first combine $m_1(\cdot)$ with $m_2(\cdot)$ and then we redistribute the mass of $m(X \cap Y) \neq 0$, when $X \cap Y = \Phi$.

Let's denote $m_{2\cap}(A) = (m_1 \oplus m_2)(A) = \sum_{\substack{X,Y \in S^0 \\ (X \cap Y) = A}} m_1(X)m_2(Y)$ using the conjunction rule.

Let's note the set of intersections by:

$$S_{\cap} = \begin{cases} X \in S^{\theta} \mid X = y \cap z, \text{ where } y, z \in S^{\theta} \setminus \{\Phi\}, \\ X \text{ is in a canonical form, and} \\ X \text{ contains at least an } \cap \text{ symbol in its formula} \end{cases}.$$
 (1)

In conclusion, S_1 is a set of formulas formed with singletons (elements from the frame of discernment), such that each formula contains at least an intersection symbol 1, and each formula is in a canonical form (easiest form).

For example: $A \cap A \notin S_{\cap}$ since $A \cap A$ is not a canonical form, and $A \cap A = A$. Also, $(A \cap B) \cap B$ is not in a canonical form but $(A \cap B) \cap B = A \cap B \in S_{\cap}$.

Let

 S_{\cap}^{Φ} = the set of all empty intersections from S_{\cap} ,

and

 $S_{\bigcap,r}^{non\Phi} = \{$ the set of all non-empty intersections from $S_{\bigcap}^{non\Phi}$ whose masses are redistributed to other sets, which actually depends on the sub-model of each application $\}$.

2. Extension of Inagaki General Weighted Operators (WO).

Inagaki general weighted operator (WO) is defined for two sources as:

$$\forall A \in 2^{\theta} \setminus \{\Phi\}, \ m_{(WO)}(A) = \sum_{\substack{X, Y \in 2^{\theta} \\ (X \cap Y) = A}} m_1(X) m_2(Y) + W_m(A) \cdot m_{2\cap}(\Phi),$$
(2)

where

$$\sum_{X \in 2^{\theta}} W_m(X) = 1 \text{ and all } W_m(\cdot) \in [0,1].$$
(3)

So, the conflicting mass is redistributed to non-empty sets according to these weights $W_m(\cdot)$.

In the extension of this WO, which we call the Double Weighted Operator (DWO), we redistribute not only the conflicting mass $m_{2\cap}(\Phi)$ but also the mass of some (or all) nonempty intersections, i.e. those from the set $S_{\bigcap,r}^{non\Phi}$, to non-empty sets from S^{θ} according to some weights $W_m(\cdot)$ for the conflicting mass (as in WO), and respectively according to the weights $V_m(\cdot)$ for the non-conflicting mass of the elements from the set $S_{\bigcap,r}^{non\Phi}$:

$$\forall A \in \left(S^{\theta} \setminus S^{non\Phi}_{\bigcap,r}\right) \setminus \left\{\Phi\right\}, \ m_{DWO}(A) = \sum_{\substack{X, Y \in S^{\theta} \\ (X \cap Y) = A}} m_1(X)m_2(Y) + W_m(A) \cdot m_{2\cap}(\Phi) + V_m(A) \cdot \sum_{z \in S^{made}_{\bigcap,z}} m_{2\cap}(z), \quad (4)$$

where

$$\sum_{X \in S^{\theta}} W_m(X) = 1 \text{ and all } W_m(\cdot) \in [0,1], \text{ as in } (3)$$

and

$$\sum_{z \in S_{\cap r}^{mod}} V_m(z) = 1 \text{ and all } V_m(\cdot) \in [0,1].$$
(5)

In the free and hybrid modes, if no non-empty intersection is redistributed, i.e. $S_{\bigcap,r}^{non\Phi}$ contains no elements, *DWO* coincides with *WO*.

In the Shafer's model, always DWO coincides with WO.

For $s \ge 2$ sources, we have a similar formula:

$$\forall A \in \left(S^{\theta} \setminus S^{non\Phi}_{\bigcap,r}\right) \setminus \left\{\Phi\right\}, \ m_{DWO}(A) = \sum_{\substack{X_1, X_2, \dots, X_n \in S^{\theta} \\ \bigcap_{i=1}^{s} X_i = A}} m_i(X_i) + W_m(A) \cdot m_{s\cap}(\Phi) + V_m(A) \cdot \sum_{z \in S^{non\Phi}_{\bigcap,r}} m_{s\cap}(z)$$
(6)

with the same restrictions on $W_m(\cdot)$ and $V_m(\cdot)$.

3. A Fusion Rule Class of Proportional Redistribution of Intersection Masses

For $A \in \left(S^{\theta} \setminus S_{\cap,r}^{non\Phi}\right) \setminus \{\Phi, I_t\}$ for two sources we have:

$$m_{CPR \setminus M}(A) = m_{2 \cap}(A) + f(A) \cdot \sum_{\substack{X, Y \in S^{\theta} \\ \{\Phi = X \cap Y \text{ and } A \subseteq M\} \\ \text{or } \{\Phi \neq X \cap Y \in S^{\text{supp}} \text{ and } A \subseteq N\}}} \frac{m_1(X)m_2(Y)}{\sum_{z \subseteq M} f(z)},$$
(7)

where f(X) is a function directly proportional to $X, f: S^{\theta} \to [0, \infty]$. (8)

For example, $f(X) = m_{2\cap}(X)$, or (9) f(X) = card(X), or $f(X) = \frac{card(X)}{card(M)}$ (ratio of cardinals), or $f(X) = m_{2\cap}(X) + card(X)$, etc.; (10)

and M is a subset of S^{θ} , for example:

 $M = \tau (X \cup Y)$, or $M = (X \cup Y)$, or M is a subset of $X \cup Y$, etc.,

where N is a subset of S^{θ} , for example:

N is a subset of $X \bigcup Y$, etc.

 $N = X \cup Y$, or

And

$$m_{CPR\setminus M}(I_t) = m_{2\cap}(I_t) + \sum_{\substack{X,Y\in S^{\theta} \\ \left\{X\cap Y = \Phi \text{ and } (M = \Phi \text{ or } \sum_{z \in M} f(z) = 0)\right\}}} m_1(X)m_2(Y).$$
(12)

These formulas are easily extended for any $s \ge 2$ sources $m_1(\cdot), m_2(\cdot), ..., m_s(\cdot)$.

Let's denote, using the conjunctive rule:

$$m_{s\cap}(A) = \left(m_1 \oplus m_2 \oplus \dots \oplus m_s\right)(A) = \sum_{\substack{X_1, X_2, \dots, X_s \in S^{\wedge}\Theta \\ \bigcap_{i=1}^{s} X^{i=A}}} \prod_{i=1}^{s} m_i(x_i)$$
(13)

$$m_{s\cap}(A) = m_{s} \cap (A) + f(A) \cdot \sum_{\substack{X_1, X_2, \dots, X_n \in S^{\theta} \\ \left\{ \Phi = \bigcap_{i=1}^{s} X_i \text{ and } A \subseteq M \right\} \\ \text{or } \left\{ \Phi \neq \bigcap_{i=1}^{s} X_i \in S_{\cap, r}^{nom\Phi} \text{ and } A \subseteq N \right\}} \frac{\prod_{i=1}^{s} m_i(X_i)}{\sum_{z \subseteq M} f(z) \neq 0}$$
(14)

where $f(\cdot)$, M, and N are similar to the above where instead of $X \bigcup Y$ (for two sources) we take $X_1 \bigcup X_2 \bigcup ... \bigcup X_s$ (for s sources), and instead of $m_{2\cap}(X)$ for two sources we take $m_{s\cap}(X)$ for s sources.

4. Application and Comparison with other Fusion Rules.

Let's consider the frame of discernment $\Theta = \{A, B, C\}$, and two independent sources $m_1(.)$ and $m_2(.)$ that provide the following masses:

	А	В	С	AUBUC
m1(.)	0.3	0.4	0.2	0.1
m ₂ (.)	0.5	0.2	0.1	0.2

Now, we apply the conjunctive rule and we get:

	А	В	С	A∪B∪C	A∩B	A∩C	B∩C
m _{12∩} (.)	0.26	0.18	0.07	0.02	0.26	0.13	0.08

Suppose that all intersections are non-empty {this case is called: free DSm (Dezert-Smarandache) Model}. See below the Venn Diagram using the Smarandache codification [3]:

Applying DSm Classic rule, which is a generalization of classical conjunctive rule from the fusion space (Θ , \bigcup), called *power set*, when all hypotheses are supposed exclusive (i.e. all intersections are empty) to the fusion space (Θ , \bigcup , \cap), called *hyper-power set*, where

hypotheses are not necessarily exclusive (i.e. there exist non-empty intersections), we just get:

	А	В	С	A∪B∪C	A∩B	$A \cap C$	B∩C
m _{DSmC} (.)	0.26	0.18	0.07	0.02	0.26	0.13	0.08

DSmC and the Conjunctive Rule have the same formula, but they work on different fusion spaces.

Inagaki rule was defined on the fusion space (Θ, \bigcup) . In this case, since all intersections are empty, the total conflicting mass, which is $m_{12\cap}(A\cap B) + m_{12\cap}(A\cap C) + m_{12\cap}(B\cap C) = 0.26 + + 0.13 + 0.08 = 0.47$, and this is redistributed to the masses of A, B, C, and $A \bigcup B \bigcup C$ according to some weights w_1 , w_2 , w_3 , and w_4 respectively, depending to each particular rule, where:

 $0 \le w_1, w_2, w_3, w_4 \le 1$ and $w_1 + w_2 + w_3 + w_4 = 1$. Hence

А	В	С	$A \cup B \cup C$
$m_{Inagaki}(.) 0.26+0.47w_1$	0.18+0.47w ₂	0.07+0.47w ₃	$0.02 + 0.47 w_4$

Yet, Inagaki rule can also be straightly extended from the power set to the hyper-power set.

Suppose in DWO the user finds out that the hypothesis $B \cap C$ is not plausible, therefore

 $m_{12\cap}(B\cap C) = 0.08$ has to be transferred to the other non-empty elements: A, B, C, $A \cup B \cup C$, $A \cap B$, $A \cap C$, according to some weights v_1 , v_2 , v_3 , v_4 , v_5 , and v_6 respectively, depending to the particular version of this rule is chosen, where:

 $0 \le v_1, v_2, v_3, v_4, v_5, v_6 \le 1$ and $v_1 + v_2 + v_3 + v_4 + v_5 + v_6 = 1$. Hence

Now, since CPRIM is a particular case of DWO, but CPRIM is a class of fusion rules, let's consider a sub-particular case for example when the redistribution of $m_{12\cap}(B\cap C) = 0.08$ is done proportionally with respect to the DSm cardinals of B and C which are both equal to 4. DSm cardinal of a set is equal to the number of disjoint parts included in that set upon the Venn Diagram (see it above).

Therefore 0.08 is split equally between B and C, and we get:

А	В	С	AUBUC	A∩B	A∩C
m _{CPRIMcard} (.) 0.26	0.18+0.04=0.22	0.07+0.04=0.11	0.02	0.26	0.13

Applying one or another fusion rule is still debating today, and this depends on the hypotheses, on the sources, and on other information we receive.

5. Conclusion.

A generalization of Inagaki rule has been proposed in this paper, and also a new class of fusion rules, called **Class of Proportional Redistribution of Intersection Masses (CPRIM)**, which generates many interesting particular fusion rules in information fusion.

References:

- T. Inagaki, Independence Between Safety-Control Policy and Multiple-Sensors Schemes via Dempster-Shafer Theory, IEEE Transaction on Reliability, 40, 182-188, 1991.
- [2] E. Lefèbvre, O. Colot, P. Vannoorenberghe, Belief Function Combination and Conflict Management, Information Fusion 3, 149-162, 2002.
- [3] F. Smarandache, J. Dezert (editors), Advances and Applications of DSmT for Information Fusion, Collective Works, Vol. 2, Am. Res. Press, 2004.